
PAGE 1

USING A CONCEPT-BASED APPROACH TO

ASPECT-ORIENTED SOFTWARE DESIGN

Dennis Wagelaar & Lodewijk Bergmans

TRESEGROUP– UNIVERSITY OFTWENTE, P.O. BOX 217, 7500 AE, ENSCHEDE, THE NETHERLANDS

{ wagelaar|bergmans}@cs.utwente.nl

http://trese.cs.utwente.nl

ABSTRACT – Aspect-oriented programming (AOP) has received considerable interest, in particular as an
extension of object-oriented programming. However, current object-oriented software design techniques,
such as UML, are not well suited to cope with aspect orientation. In this paper we discuss a design ap-
proach, called CoCompose, which supports aspect orientation and software evolution. The CoCompose de-
sign language adopts a genericconcept construct for describing software systems. Design-level
relationships between concepts can be expressed by applying the parameterisedfeature construct. Com-
plete CoCompose models can be translated into executable programs using an automatic translation proc-
ess.

Keywords

Aspect Orientation, Advanced Separation of Concerns, Composition Filters, Design Patterns, software design,
software evolution.

1. INTRODUCTION & PROBLEM STATEMENT

One of the goals of software design models is to
achieve/retain an overview of the software system under con-
struction. It determines the high-level structure and behaviour
of a software system that an implementation should follow.
Because of this, software design techniques should leverage
the programming techniques that can be used for describing
behaviour and structure.

Aspect-oriented programming [1] has received considerable
interest, in particular as an extension of object-oriented pro-
gramming. However, current object-oriented software design
techniques, such as theUnified Modeling Language(UML)
[2], are not well suited to cope with aspect orientation and
evolving software requirements. Some of the problems that
may arise are discussed below:

� There are numerous design concepts (e.g. described by
Design Patterns[3]), which cannot all be offered as (de-
sign) language constructs. Language extension mecha-
nisms can be used to facilitate newly introduced design
concepts. Currently used extension mechanisms do not
offer a way to describe well-defined semantics for these
design concepts, however.

For example, we can treat Design Patterns as design con-
cepts. It is not feasible to present each design pattern as a
separate design language construct. When using UML, we
can use the stereotype extension mechanism to introduce the
syntactic part of a design pattern. However, it is not possible
to define the semantic part (i.e. how the application of the
design pattern affects the design) for the new stereotype.

� In current design approaches, the implementation seman-
tics (e.g. aspect, class, interface, method, etc.) of each de-
sign element need to be fixed when introducing the

design element, even though it may be difficult to choose
the exact semantics. When adding new design elements
and/or requirements, existing design elements may re-
quire adopting different implementation semantics. If
such a transformation is not possible, removal and re-
introduction of the design elements is required.

For example, UML represents design elements using a fixed
set of constructs (e.g. class, interface, method, etc.). It is not
possible to introduce design elements in UML without de-
termining their construct form. Consider a situation in which
we want to be able to exchange an existing method within an
object class with methods that follow a different strategy. We
can apply theStrategy design pattern[3](315) to achieve this,
but that requires changing the structure of the design.

� If the design does not map injectively to the implementa-
tion, automated translation from design to implementa-
tion is difficult and may be incomplete. Updates to the
design require separate updates to the implementation. If,
in addition, the structures of implementation and design
differ, a design update may cause a disproportional
amount of updates in the implementation. This is par-
ticularly well exemplified if the design represents cross-
cutting concerns that cannot be expressed in the
implementation language.

For example, the Java [4] programming language does not
natively support aspects. When modelling aspects in the de-
sign language, the aspects do not map proportionately to
Java. The Java implementation does not preserve the struc-
ture of the design. If the mapping from the design to the im-
plementation is not automated, a change to the aspect in the
design may require many changes in the implementation.

This paper is structured as follows: in the next section we
will present some further requirements. The approach to our
design technique will be discussed next, followed by an ex-
planation of the design language and the translation of this



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 2

design language. The design language and its translation will
both be illustrated by an example.

2. REQUIREMENTS

In addition to addressing the problems stated in the previous
section, we have defined a number of additional requirements
for our design language:

� Well-defined semantics of (design) language constructs:
in order to reason about the semantics of a design and to
automate implementation, the semantics of the design
language constructs must be well defined.

� Scalability of design concept representation: by express-
ing the semantics of a design concept in the design lan-
guage itself, we can recursively define design concepts.

� Comprehensibility and intuitiveness of the design: the de-
signs expressed in the design language are meant to be
comprehensible and intuitively clear.

� Design evolution: one should be able to introduce the de-
sign elements in an abstract way. The design elements
can gradually be refined to achieve an executable design.

3. APPROACH

This section describes the approach used to solve the prob-
lems and meet the requirements stated in the previous sec-
tions. Our design approach, calledCoCompose, will be
explained by discussing the language constructs (featuresand
concepts), automated implementation and the visualisation of
the language.

3.1 FEATURES AND CONCEPTS

CoCompose offers a mechanism, calledfeature, to represent
(abstractions of) design concepts, which allows the designers
to introduce new design concepts (e.g. relations or design
patterns), to be used within one or more concrete designs.
The definition of a feature can contain a description of the
structure of the design concept, again expressed in terms of
concepts and features. This means that features can be de-
fined recursively.

To avoid forcing designers to prematurely select a particular
implementation construct, our design language adopts the
generic notion ofconceptsto represent elements in a design.
Only when implementing the design, the concrete imple-
mentation constructs (e.g. aspects, object classes, methods,
interfaces, etc.) of those concepts are determined. Changing
concrete implementation constructs for concepts does not
change the design.

3.2 EXECUTABLE DESIGN

CoCompose designs are executable, in the sense that a (com-
plete) design can be translated into an executable language.
This translation can be fully automated, thereby allowing
each update of the design model to immediately result in an
updated implementation, regardless of the impact upon the
implementation. This is only possible because the elements
of the design language (most notablyconceptand feature),
have well-defined semantics. This differs from UML stereo-

types, for example, where the meaning of a stereotype is de-
fined outside the model.

The approach used for translation of CoCompose designs is
based uponDesign Algebra[6](150), which introduces tech-
niques for determining and selecting concrete (programming)
language constructs for implementing concepts (i.e. finding a
Design Space alternative).

Design Algebra introduces several techniques to reduce the
possible alternatives in the design space. Eventually that
should result in a balanced alternative that best meets the
qualities needed. CoCompose uses a method that is based
upon these techniques. It will be referred to as theTransla-
tion Processand is described in section 6.

3.3 VISUALISING DESIGN

To address the comprehensibility and intuitiveness of de-
signs, a visual representation of the language has been
adopted. The ability to apply abstractions of design concepts
(features) allows us to express a design at a high level of ab-
straction, hiding many details. This allows for the number of
design elements to stay at an acceptable level for human un-
derstanding.

4. THE COCOMPOSE DESIGN LANGUAGE

The CoCompose design language allows the designer to
model a software system using concepts. This design can
then be translated into a target (programming) language. The
design language elements will be discussed in the following
paragraphs.

4.1 CONCEPTS

Concepts are the basic language constructs for CoCompose.
They represent parts of a software system and can have rela-
tions to other concepts. CoCompose visualises concepts as
shown in Figure 1.

MetalLabel

Figure 1: A concept.

IMPLEMENTATIONS
Concepts can have implementations for several target lan-
guages and several concept forms. For example, a concept
can have an implementation as aMethod in Java. This im-
poses a constraint on the concept, which states that this con-
cept can only be implemented in Java and only as aMethod.
By specifying several (alternative) implementations, the con-
straints on the concept will be less strict.

If no implementations are specified for a concept, it is as-
sumed that features (described in the next paragraph) will
define all of its implementation.

4.2 FEATURES

Features are reusable abstractions of design concepts, such as
an Association relationor anObserver design pattern. They
can be applied to concepts to describe them and the relations
between them. Features have well-defined semantics, form



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 3

and constraints. The name, type, comments and specification
of the feature describe its semantics. The form is described
by the feature’s roles (explained below). The constraints re-
strict the possible applications of features (e.g. only to con-
cepts with certain properties).

A feature type represents a specific feature form and seman-
tics. Several feature instances of a type can exist. Feature in-
stances can be applied to concepts through roles (described
below). CoCompose visualises features as shown in Figure 2.

IsA : Inheritance

Parent [1..n]

Child [1..n]

Figure 2: A feature.

In Figure 2, a feature namedIsA, which is an instance of
feature typeInheritance, is shown. This particular feature
type defines two roles (as explained in detail below), named
Child and Parent. For each of the roles its multiplicity
(“[1..n]”) is shown. The icon is particular to the feature type.

A feature can be used to model (a/o):

• Constraints on concepts,
• Relations between concepts,
• Design patterns applied to concepts,
• Software components.

ROLES
Feature roles describe the role of concepts in a feature rela-
tion. Concepts that are related through a feature fill a role of
that feature.

For example, anInheritancefeature, as shown in Figure 2,
has two roles: aParentrole and aChild role. A concept that
fills a Parentrole will be the ancestor in an inheritance rela-
tion.

Like features, roles can have assigned constraints, which re-
strict the possible ways to fill the role. In addition to these
constraints, roles have specific multiplicity constraints. Mul-
tiplicity constraints specify how often a role can or must be
filled. Possible multiplicity constraints are “0..1”, “0..n”,
“1..1” and “1..n”.

SOLUTION PATTERNS
Features havesolution patternsto “solve” the feature to a
structure of concepts and features that represent the feature
semantics. This solution pattern is applied to the concepts
that fill the feature’s roles.

A solution pattern is expressed in the CoCompose language.
By being able to describe solution patterns, one can recur-
sively define CoCompose models. This will be shown in sec-
tion 5.

A solution pattern consists of adefault partand severalrole
parts. The default part is a fixed structure of CoCompose
language constructs that will be applied once for each feature
type. Each role part is a parameterised structure of CoCom-
pose language constructs that will be applied once for every
time that role is filled by a concept. In a solution pattern all
role parts are represented in a single model to show the rela-

tions between the role parts and the default part. Through the
use of features with solution patterns, high-level design ab-
stractions can be used in CoCompose designs, hiding the de-
tails through (possibly nested) features. Solution patterns are
used in the first step of the Translation Process, which is de-
scribed in section 6.

IMPLEMENTATION PATTERNS
In addition to solution patterns, features haveimplementation
patternsto translate the feature to a specific (target) language
(e.g. Java, C++). This implementation pattern is applied to
the concepts that fill the feature’s roles.

An implementation pattern is expressed in a specific lan-
guage; it describes an implementation for the feature in a
specific target language.

Like solution patterns, an implementation pattern consists of
a default part and severalrole parts. The default part is a
fixed structure of target language constructs that will be ap-
plied once for each feature type. Each role part is a param-
eterised structure of target language constructs that will be
applied once for every time that role is filled by a concept.

Implementation patterns are used in the last step of the
Translation Process, which is described in section 6.

5. EXAMPLE

Let us now consider an example CoCompose model of a
window manager for a graphical user interface with several
windowed controls.

MetalWindowManager

MetalSlider

MetalColorPanel

MetalLabel

update

MetalWinControlFactory : ObserverWinControlFactory

WindowManager [0..1]

Slider [0..1]

ColorPanel [0..1]

Label [0..1]

updateControl [0..n]

Figure 3: An example CoCompose model.

The model in Figure 3 shows a feature namedMetalWin-
ControlFactoryof the high-level feature typeObserverWin-
ControlFactory. This means thatMetalWinControlFactoryis
an application of the ObserverWinControlFactoryfeature
type to the conceptsupdate, MetalWindowManager, Metal-
Label, MetalColorPanelandMetalSlider. The application of
the feature is done through roles; each concept fills a role in
the application of the feature, as designated by connecting the
concepts to the roles using solid lines.

For example, theMetalWindowManagerconcept fills the
WindowManagerrole in the application of theMetalWin-
ControlFactory feature, which means that theMetalWin-
ControlFactory feature will impose WindowManager
functionality onMetalWindowManagerconcept.



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 4

Now that the top-level model is given, we can show how to
“solve” this feature by means of a solution pattern1. This so-
lution pattern is depicted in Figure 4.

WindowManager updateControl

Slider

ColorPanel

Label

ObservedWindowManager : WindowedControlFactory

SliderObserver : Observer
WindowManager [0..1]

Slider [0..1]

ColorPanel [0..1]

Label [0..1]

Observer [0..n]

Subject [1..1]

update [1..n]

Figure 4: The solution pattern for the ObserverWinControl-
Factory feature type.

Note that the larger circles in this model represent the roles of
the ObserverWinControlFactoryfeature type. These circles
are calledrole conceptsand will be filled by concepts when
the feature is applied. TheObserverdesign pattern has been
used in this model to addObserverfunctionality to theWin-
dowedControlFactoryfeature type. TheSliderObserverfea-
ture has the same colour as theSlider role concept to show
that this feature belongs to theSlider role part of the solution
pattern2.

The solution pattern for aWindowedControlFactoryfeature
type is given in Figure 5.

WindowManager

Slider

ColorPanel

Label

AbstractSlider

AbstractColorPanel

AbstractLabel

ColorPanelFactory : AbstractFactory

SliderFactory : AbstractFactory

LabelFactory : AbstractFactory

Factory [0..1]

Product [1..1]

AbstractProduct [1..1]

Factory [0..1]

Product [1..1]

AbstractProduct [1..1]

Factory [0..1]

Product [1..1]

AbstractProduct [1..1]

Figure 5: The solution pattern for the WindowedControl-
Factory feature type.

The model uses anAbstract Factorydesign pattern to enable
the window manager to create several windowed controls.
This is modelled by the application of several features of the
type AbstractFactory. The AbstractFactoryfeature type has
been applied for every product the factory needs to create.
Separate feature instances are needed here, because eachAb-
stractProductrelates to oneConcreteProduct.

1 In an actual design process, either an existing feature type is re-
used, or a feature type is introduced to abstract from details that
can be added at a later stage.

2 For every time theSlider role is filled, aSliderObserverwill be
generated.

The solution pattern for theAbstractFactoryfeature type is
depicted in Figure 6.

Factory Product

AbstractProduct

create

concreteCreate

CreateReturns

FactoryHas

OverridesCreate

IsAbstractProduct

Figure 6: The solution pattern for AbstractFactory.

It is based upon the solution given in [3](87). Note that the
Abstract Factoryrole has been left out, because the feature
encapsulates the abstract behaviour.

The solution pattern for theObserverfeature type is depicted
in Figure 7.

Subject

Observer

update

attach

detach

notify

AbstractObserver

SubjectHas

observer

observers

subject

ObserverHas

IsAbstractObserver

Figure 7: The solution pattern for Observer.

It is based upon the solution given in [3](293). Note that an
Abstract Subjectis not used in this solution pattern. The ab-
stract subject functionality issuperimposedto the Subject by
directly applying the features to the Subject role concept.

6. THE TRANSLATION PROCESS

A process for translating a CoCompose model into a target
(programming) language is needed in order to make the Co-
Compose language executable. The process used here con-
sists of three steps:

I. FLATTENING THE MODEL – Solve all the features that have
solution patterns. The result will be a lowest level model
that contains only those features with implementation
patterns expressed in the target language.

II. DETERMINE CONCEPT FORMS – For each concept, check
all filled feature roles for possible target language con-
struct forms. If implementations exist for this concept,
also check the possible target language construct forms of
those. Select the least complex form required from the
joint set of possible concept forms.

III. GENERATE IMPLEMENTATION – Translate each concept to
its concept form for the target language and apply the
concept implementation, if any. For each feature, apply



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 5

the implementation pattern for the selected concept
forms. The result is an implementation in the target lan-
guage.

Each of these steps will be explained in the next paragraphs.

6.1 FLATTENING THE M ODEL

Before one can translate a CoCompose model into a target
language, all dependencies and links should be reachable in
order to check them. To make this easier, one could flatten
the model to a lowest abstraction level model, which no
longer contains features without implementation patterns ex-
pressed in the target language.

For each feature it should be checked whether it has an im-
plementation pattern expressed in the target language. If no
such implementation pattern exists, the solution patterns will
have to be checked for eventual translation into the target
language1.

A solution pattern traversal mechanism is used for this. This
mechanism builds a tree of nodes represented by solution
patterns. The algorithm for building this tree is described be-
low in pseudo-code:

boolean CheckFeature(feature, tree)
// Checks if the feature will eventually translate to target.language

if feature.hasImplemPatternIn(target.language) then
return true;

else if feature.hasSolutionPattern() then
forall solution in feature.getSolutionPatterns()

tree.insert(solution);
if not CheckSolution(solution, tree) then

tree.remove(solution); // dead branch
else

return true;
end if;

end forall;
end if;

end CheckFeature;

boolean CheckConcept(concept)
// Checks if the concept will translate into target.language

if not concept.hasImplementations() then
return true;

else if concept.hasImplementationIn(target.language) then
return true;

end if;
return false;

end CheckConcept;

boolean CheckSolution(solution, tree)
// Checks if applying the solution pattern will result in a model
// that eventually translates to target.language

forall concept in solution.concepts
if not CheckConcept(concept) then

return false;
end if;

end forall;
forall feature in solution.features

if not CheckFeature(feature, tree) then
return false;

end if;
end forall;

1 This means checking whether the resulting model, after applying
the solution patterns, contains features with implementation
patterns expressed in the target language and concepts that have
either no implementation or an implementation expressed in the
target language

return true;
end CheckSolution;

The first step is to callCheckSolution using the model and an
empty tree as arguments. WhenCheckSolution returns true,
there is a valid tree for flattening the model in a way that it
can be translated to the target language. Thetarget in this al-
gorithm refers to the target environment, e.g. a Java source
path.

If the tree has been determined, the solution patterns in this
tree can be applied2. This will result in a model containing
only features having implementation patterns expressed in
the target language and concepts having either no implemen-
tation or an implementation expressed in the target language.

When a solution pattern is applied, first the default part is
applied once for every feature type. Note that this is done
globally and not per feature. Then, for each time a concept
fills a feature role, the role part is applied for that concept.
Below is the pseudo-code for applying a solution pattern:

ApplySolution(solution, target)
// Applies the solution pattern to the target environment

ApplyDefaultPart(solution, target);
forall role in solution.feature.roles

forall concept in role.getLinks()
ApplyRolePart(solution, target, role, concept);

end forall;
end forall;

end ApplySolution;

ApplyDefaultPart(solution, target)
// Applies the default part of the solution pattern

if not target.featureTypeApplied(solution.feature.type) then
target.insert(solution.getDefaultpart());

end if;
end ApplyDefaultPart;

ApplyRolePart(solution, target, role, concept)
// Applies the role part of the solution pattern for the given concept

target.insert(solution.getRolepart(role, concept));
end ApplyDefaultPart;

6.2 DETERMINE CONCEPT FORMS

When translating a CoCompose model into a target (pro-
gramming) language, the concepts will need to be translated
into constructs of that target language. The construct into
which a concept will be translated is called theconcept form
for that target language (this is calledproperty in [6]). It is
based upon the available implementation patterns of features,
for which the concept fills a role, and concept implementa-
tions, if any.

Each feature that has an implementation pattern in the target
language can have several role-part implementations for the
same role. Each role-part implementation for that role pro-
vides an implementation for a different concept form.

For example, theParent role of an Inheritancefeature may
have an implementation in Java for a concept form ofClass
or Interface. This is described as follows:

FParent = {Class, Interface}

2 Note that applying a path of solution patterns from the tree elimi-
nates flattening alternatives that might have been useful or even
better, depending on the result of the second step (Determine
Concept Forms). This problem will be addressed in the future.



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 6

A concept filling this role can now be implemented as one of
these concept forms. In a CoCompose model a concept will
often fill more than one role. Consider aSingleRelationfea-
ture, which models a one-way, one-to-one relation between
two concepts. It has anOwnerandPropertyrole. TheProp-
erty role has a solution in Java for a concept form ofClass,
Interfaceor Method1. This is described as follows:

FProperty= {Class, Interface, Method}

If a concept fills this role as well, the intersection of the con-
cept form sets for each role must be taken:

FConcept= FRole_1∩ … ∩ FRole_n

Which in this case results in:

FConcept= FParent ∩ FProperty= {Class, Interface}

If a concept has pre-defined implementations, the concept
forms of these implementations will have to be taken into
account as well. Otherwise, the concept form will be com-
pletely determined by the available solution patterns of the
feature types (InheritanceandSingleRelationin this case).

If there are multiple valid concept forms, one of them must
be selected. This selection process could be automated
through the use of heuristics. One straightforward heuristic is
a user-definedtranslation priority for all concept forms
available for a target language. This translation priority de-
termines what concept form will be chosen from a set of pos-
sible concept forms. The CoCompose translation priority
heuristic chooses the concept form with the highest defined
priority.

For example, in the Java language the priority of language
constructs can be described as follows:

CClass< CInterface< CMethod< CBasicType

This results in the described example concept being trans-
lated to anInterface, because it is considered the highest pri-
ority concept form possible. Of course, any other definition
of translation priority is possible.

6.3 GENERATE IMPLEMENTATION

To generate an implementation of the model in the target lan-
guage, the concepts should first be translated into the concept
forms that were determined in the previous step. Then, the
concept implementations for the selected concept form
should be applied to all concepts that have an implementa-
tion. Finally, the implementation patterns of the features for
the selected concept forms should be applied. Below is the
pseudo-code that describes this:

forall concept in model.concepts
target.insert(concept, concept.form);
if concept.hasImplemAs(concept.form) then

target.insert(concept, concept.getImplemAs(concept.form));
end if;

end forall;

forall feature in model.features
feature.applyImplemPattern(target);

end forall;

1 Note that the possible concept forms of a feature role may depend
on the concept form chosen to fill the other role. For example, a
Methodcan fill theOwnerrole of theSingleRelationas long as a
Methoddoes not fill thePropertyrole.

The algorithm forfeature.applyImplemPattern is variable and it
is defined externally.

7. APPLYING THE TRANSLATION PROCESS

TO THE EXAMPLE

Let us now see how the translation process works for the ex-
ample model shown in Figure 3. The example model will be
translated into a ConcernJ [5] implementation in order to
show the mapping to an Aspect Oriented programming lan-
guage. The translation process application will be explained
for each step. Note that the result of each step can be found in
the appendices.

7.1 FLATTENING THE M ODEL

The example model has one feature, of which the solution
pattern is described in CoCompose. This feature will be
solved in the first flattening iteration. The flattening step will
have to be repeated another two times to eliminate all Co-
Compose solutions. The flattening of the example model is
described in Appendix A.

7.2 DETERMINE CONCEPT FORMS

Now that all concepts are visible in the flattened example
model, the target language construct forms, to which the con-
cepts will translate, can be determined. The target language
in this case is ConcernJ, a programming language that facili-
tates Composition Filters and Aspect Orientation in Java. The
concept form translation priority heuristic can be described as
follows:

CConcern< CMethod< CBasicType

Note that only the concept forms used for the example are
described here. We can describe the deduction of a concept
form using the following template:

Feature1.Role � {Concern, Method, …}
…
Featuren.Role � {Concern, …}
Concept.Implementation � {Concern, …}
Concept.Forms = {Concern, Method, …} ∩ {Concern, …} = {Concern, …}
Concept.Form = Priority({Concern, …})

In the template, the possible concept forms of the feature
roles are determined first. Then the possible concept forms
for the concept implementations are determined. The inter-
section of these sets of possible concept forms is taken and
the concept form with the highest priority heuristic value is
chosen. For each concept the form and its deduction is given
in Appendix B.

Note that the concept form of the concept filling theProperty
role determines the possible concept forms for theOwner
role of a SingleRelationfeature. For example, if aMethod
fills the Propertyrole, aClasscan only fill theOwnerrole. If
a Classfills the Propertyrole, thenOwnercan be aClassor
a Method.

7.3 GENERATE IMPLEMENTATION

The ConcernJ concept implementations and feature imple-
mentation patterns will not be given here. Instead, the result-
ing ConcernJ implementation is given in Appendix C.



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 7

We will illustrate this step by focusing on the implementation
of the MetalSliderObserverfeature introduced in Appendix
A, Figure 8. This feature translates into a ConcernJconcern
construct, preserving part of the structure used in the Co-
Compose model. This shows ConcernJ can describe the ap-
plication of a feature. Afiltermodule is used to describe the
Subjectrole and theObserverrole. Theupdaterole is encap-
sulated in theAbstractObserverconcern.

8. RELATED WORK

In this section we briefly point to a selection of related work.

K. Czarnecki and U. Eisenecker have also used the notion of
concept and feature in [7] in the area ofDomain Engineering.
Concepts inConceptual Modelingdiffer from CoCompose
concepts in that they are not necessarily disjoint. Features in
Feature Modelingare meant to describe thepossibleproper-
ties of a single concept, unlike CoCompose features that de-
scribes theactualproperties of several concepts.

The idea of abstracting from programming language con-
struct forms is also used in the area of template/generic pro-
gramming. In [8], the word “concept” is also used to describe
an abstraction from a programming language construct. The
difference with CoCompose concepts is that these concepts
fully specify their own interface or common form. CoCom-
pose concepts can have their form imposed by features, thus
separating each aspect of the concept form in a dedicated
feature.

The Composition Patternsdesign approach introduced by S.
Clarke and R. Walker in [9] also uses parameterisation in
composing several UML models. The most important differ-
ence with CoCompose is that the application of a composi-
tion pattern is not described explicitly in the UML model that
uses it, but it is described separately by composition opera-
tors.

N. Noda and T. Kishi have researched the application of de-
sign patterns in [10]. They make a separation between the
Design PatternandApplication Core. A similar approach is
used by CoCompose, with the difference that theDesign
Pattern Applicationis, in turn, separated from the rest of the
design, orApplication Core.

9. DISCUSSION & C ONCLUSION

The concept-based approach that has been explained in this
paper improves stability of designs by postponing the choice
for specific language constructs. The recursive modelling of
concepts supports a focus on design semantics.

The feature mechanism can be used to model many design
concepts, ranging from aspects to design patterns. Because
feature solution patterns can be CoCompose models them-
selves (parameterised by the concepts that fill the roles of the
feature), features can be defined recursively. This allows for
composition of separate concerns.

By imposing semantics upon concepts through the use of
features, the concept semantics can be separated per concern.
The feature solution patterns allow for several solutions to be
defined for one feature. Choosing between several solution

patterns for application within the same context (same con-
cept forms, same target language) is not yet researched.

As this paper has shown, CoCompose maps well to an as-
pect-oriented programming language, such as ConcernJ. By
using feature implementation patterns expressed in other tar-
get languages, a mapping to other programming languages,
such as AspectJ [11], Hyper/J [12], Java or C++, can be made
as well. Of course, implementation pattern definition is more
straightforward for a programming language that already
supports several advanced composition mechanisms (such as
aspects, hyperslices, composition filters, etc.), since the
structure of the design can then be (partially) preserved.

10. ACKNOWLEDGEMENTS

We would like to thank Bedir Tekinerdogan and Joost Nop-
pen for reviewing this paper and their comments on this sub-
ject.

REFERENCES

[1] Aspect Oriented Software Development, http://www.aosd.net

[2] UML specification, OMG website, http://www.omg.org/uml.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison
Wesley Longman, Inc., Reading, Massachusetts, 1995, ISBN 0-
201-63361-2.

[4] Java, http://java.sun.com.

[5] L. Bergmans, M. Akşit, On the Role of Encapsulation in Aspect-
Orientation, University of Twente, Enschede, The Netherlands,
2001, to appear on http://trese.cs.utwente.nl.

[6] B. Tekinerdogan, Synthesis-Based Software Architecture
Design, PhD Thesis University of Twente, Enschede, The
Netherlands, 2000, ISBN 90-365-1430-4.

[7] K. Czarnecki, U. Eisenecker, Generative Programming: Meth-
ods, Tools, and Applications, Addison Wesley, 2000, ISBN 0-
201-30977-7.

[8] J. Willcock, J. Siek, A. Lumsdaine, Caramel: A Concept Repre-
sentation System for Generic Programming, Indiana University,
Bloomington, USA, in OOPSLA2001 C++ Template Workshop.

[9] S. Clarke, R. Walker. Composition Patterns: An Approach to
Designing Reusable Aspects, in proceedings of the 23rd Interna-
tional Conference on Software Engineering (ICSE), Toronto,
Canada, May 2001.

[10]N. Noda, T. Kishi, Implementing Design Patterns Using Ad-
vanced Separation of Concerns, NEC Corporation, Japan, in
OOPSLA 2001 workshop on Advanced Separation of Concerns
in Object-Oriented Systems.

[11]G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.
Griswold, An Overview of AspectJ, University of British Co-
lumbia, Vancouver, Canada, Xerox Palo Alto Research Center,
Palo Alto, USA, University of California, San Diego, USA, in
Proceedings of ECOOP 2001, pp. 327-353, 2001.

[12]H. Ossher, P. Tarr, Multi-Dimensional Separation of Concerns
and The Hyperspace Approach, IBM T.J. Watson Research
Center, Yorktown Heights, USA, in Software Architectures and
Component Technology, Kluwer, 2000, ISBN 0-7923-7576-9.



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 8

APPENDIX A: T HE FLATTENED M ODEL FOR THE EXAMPLE

This appendix shows the application of the first step of the Translation Process, the flattening, applied to the example. Three itera-
tions are needed to achieve a fully flattened model.

MetalWindowManager

MetalSlider

MetalColorPanel

MetalLabel

update

ObservedMetalWindowManager : WindowedControlFactory
(from MetalWinControlFactory)

MetalSliderObserver : Observer
(from MetalWinControlFactory)WindowManager [0..1]

Slider [0..1]

ColorPanel [0..1]

Label [0..1]

Observer [0..n]

Subject [1..1]

update [1..n]

Figure 8: The example model after the first flattening step.

MetalWindowManager

MetalSlider

MetalColorPanel

MetalLabel

update
AbstractSlider

(from WindowedControlFactory)

AbstractColorPanel
(from WindowedControlFactory)

AbstractLabel
(from WindowedControlFactory)

attach
(from Observer)

detach
(from Observer)

AbstractObserver
(from Observer)

notifyupdate
(from MetalSliderObserver)

MetalSliderFactory : AbstractFactory
(from ObservedMetalWindowManager)

MetalColorPanelFactory : AbstractFactory
(from ObservedMetalWindowManager)

MetalLabelFactory : AbstractFactory
(from ObservedMetalWindowManager)

observer
(from Observer)observers

(from Observer)

subjectMetalSlider
(from MetalSliderObserver)

ObserverHas
(from Observer)

IsAbstractObserver
(from Observer)

MetalSliderHas
(from MetalSliderObserver)

Factory [0..1]

Product [1..1]

AbstractProduct [1..1]

Factory [0..1]

Product [1..1]

AbstractProduct [1..1]

Factory [0..1]

Product [1..1]

AbstractProduct [1..1]

Figure 9: The example model after the second flattening step.

MetalWindowManager

MetalSlider

MetalColorPanel

MetalLabel

update

AbstractSlider
(from WindowedControlFactory)

AbstractColorPanel
(from WindowedControlFactory)

AbstractLabel
(from WindowedControlFactory)

attach
(from Observer)

detach
(from Observer)

AbstractObserver
(from Observer)

notifyupdate
(from MetalSliderObserver)

concreteCreateMetalSlider
(from MetalSliderFactory)

createAbstractSlider
(from MetalSliderFactory)

concreteCreateMetalColorPanel
(from MetalColorPanelFactory)

createAbstractColorPanel
(from MetalColorPanelFactory)

concreteCreateMetalLabel
(from MetalLabelFactory)

createAbstractLabel
(from MetalLabelFactory)

observer
(from Observer)observers

(from Observer)

subjectMetalSlider
(from MetalSliderObserver)

ObserverHas
(from Observer)

IsAbstractObserver
(from Observer)

MetalSliderHas
(from MetalSliderObserver)

MetalWindowManagerHas
(from MetalSliderFactory)

CreateReturnsAbstractSlider
(from MetalSliderFactory)

OverridesCreateAbstractSlider
(from MetalSliderFactory)

IsAbstractSlider
(from MetalSliderFactory)

MetalWindowManagerHas
(from MetalColorPanelFactory)

CreateReturnsAbstractColorPanel
(from MetalColorPanelFactory)

OverridesCreateAbstractColorPanel
(from MetalColorPanelFactory)

IsAbstractColorPanel
(from MetalColorPanelFactory)

MetalWindowManagerHas
(from MetalLabelFactory)

CreateReturnsAbstractLabel
(from MetalLabelFactory)

OverridesCreateAbstractLabel
(from MetalLabelFactory)

IsAbstractLabel
(from MetalLabelFactory)

Figure 10: The example model after the third and last flattening step.



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 9

APPENDIX B: CONCEPT FORMS FOR THE

EXAMPLE

This appendix shows the second step of the Translation Proc-
ess, concept form determining, applied to the example. Note
that the concept forms for the conceptsconcreteCreate-
MetalColorPanel, concreteCreateMetalLabel, createAb-
stractColorPanel, createAbstractLabel, AbstractColorPanel,
AbstractLabeland MetalLabel are omitted, because it does
not contribute in additional explanation.

METALWINDOWMANAGER

MetalWindowManagerHas.Owner � {Concern} (3x)
MetalWindowManager.Forms = {Concern}
MetalWindowManager.Form = Priority({Concern}) = Concern

CONCRETECREATEMETALSLIDER

MetalWindowManagerHas.Property � {Concern, Method}
OverridesCreateAbstractSlider.NewMethod � {Method}
concreteCreateMetalSlider.Implementation � {Method}
concreteCreateMetalSlider.Forms = {Concern, Method} ∩ {Method} ∩

{Method} = {Method}
concreteCreateMetalSlider.Form = Priority({Method}) = Method

CREATEABSTRACTSLIDER

OverridesCreateAbstractSlider.OldMethod � {Method}
CreateReturnsAbstractSlider.Originator � {Method}
createAbstractSlider.Forms = {Method} ∩ {Method} = {Method}
createAbstractSlider.Form = Priority({Method}) = Method

ABSTRACTSLIDER

CreateReturnsAbstractSlider.Result � {Concern, BasicType}
IsAbstractSlider.Parent � {Concern}
AbstractSlider.Forms = {Concern, BasicType} ∩ {Concern} = {Concern}
AbstractSlider.Form = Priority({Concern}) = Concern

METALSLIDER

subjectMetalSlider.Property � {Concern, Method}
MetalSliderHas.Owner � {Concern}
observers.Owner � {Concern }
IsAbstractSlider.Child � {Concern}
MetalSlider.Forms = {Concern, Method} ∩ {Concern} ∩ {Concern} ∩

{Concern} = {Concern}
MetalSlider.Form = Priority({Concern}) = Concern

METALCOLORPANEL

IsAbstractObserver.Child � {Concern}
IsAbstractColorPanel.Parent � {Concern}
MetalColorPanel.Forms = {Concern} ∩ {Concern} = {Concern}
MetalColorPanel.Form = Priority({Concern}) = Concern

UPDATE

ObserverHas.Property � {Concern, Method}
subjectMetalSlider.Owner � {Concern, Method}
update.Forms = {Concern, Method} ∩ {Concern, Method} = {Concern,

Method}
update.Form = Priority({Concern, Method}) = Method

NOTIFYUPDATE

MetalSliderHas.Property � {Concern, Method}
notifyupdate.Implementation � {Method}
notifyupdate.Forms = {Concern, Method} ∩ {Method} = {Method}
notifyupdate.Form = Priority({Method}) = Method

ATTACH

MetalSliderHas.Property � {Concern, Method}
observer.Owner � {Concern, Method}
attach.Implementation � {Method}
attach.Forms = {Concern, Method} ∩ {Concern, Method} ∩ {Method} =

{Method}
attach.Form = Priority({Method}) = Method

DETACH

MetalSliderHas.Property � {Concern, Method}
observer.Owner � {Concern, Method}
detach.Implementation � {Method}
detach.Forms = {Concern, Method} ∩ {Concern, Method} ∩ {Method} =

{Method}
detach.Form = Priority({Method}) = Method

ABSTRACTOBSERVER

observers.Property � {Concern}
observer.Property � {Concern, Method}
ObserverHas.Owner � {Concern}
IsAbstractObserver.Parent � {Concern}
AbstractObserver.Forms = {Concern} ∩ {Concern, Method} ∩ {Concern}

∩ {Concern} = {Concern}
AbstractObserver.Form = Priority({Concern}) = Concern

APPENDIX C: SOURCE CODE OF THE

TRANSLATED EXAMPLE IN CONCERNJ

This appendix shows the third step of the Translation Proc-
ess, code generation, applied to the example. Note that the
implementation ofAbstractLabel, MetalLabel, MetalColor-
PanelFactoryandMetalLabelFactoryis omitted, because it
does not contribute in additional explanation.

concern MetalWindowManager begin
implementation in java file "MetalWindowManager.jwf";

end concern MetalWindowManager;

public class MetalWindowManager {
public MetalWindowManager() {
}

// Further implementation…
}

concern AbstractSlider begin
implementation in java file "AbstractSlider.jwf";

end concern AbstractSlider;

public class AbstractSlider {
public AbstractSlider() {
}

// Further implementation…
}

concern AbstractColorPanel begin
implementation in java file "AbstractColorPanel";

end concern AbstractColorPanel;

public class AbstractColorPanel {
public AbstractColorPanel() {
}

// Further implementation…
}

concern MetalSlider begin
implementation in java file "MetalSlider.jwf";

end concern MetalSlider;

public class MetalSlider {
public MetalSlider() {
}

// Further implementation…
}

concern MetalColorPanel begin
implementation in java file "MetalColorPanel.jwf";

end concern MetalColorPanel;

public class MetalColorPanel {
public MetalColorPanel() {
}



USING A CONCEPT-BASED APPROACH TOASPECT-ORIENTEDSOFTWAREDESIGN

PAGE 10

// Further implementation…
}

concern AbstractObserver begin
implementation in java file "AbstractObserver.jwf";

end concern AbstractObserver;

public class AbstractObserver {
public AbstractObserver() {
}

// Further implementation…
}

concern MetalSliderFactory begin
filtermodule factoryModule begin

methods
createAbstractSlider() : AbstractSlider;

end filtermodule factoryModule;

filtermodule productModule begin
internals

abstractSlider : AbstractSlider;
inputfilters

disp : Dispatch = { true => abstractSlider.* };
end filtermodule productModule;

superimposition begin
selectors

factory := Set(MetalWindowManager);
product := Set(MetalSlider);

methods
factory <- { createAbstractSlider };

filtermodules
product <- { productModule };

end superimposition;

implementation in java file "MetalSliderFactory.jwf";
end concern MetalSliderFactory;

public class MetalSliderFactory {
public AbstractSlider createAbstractSlider() {

return new MetalSlider();
}

}

concern Observer begin
filtermodule subjectModule begin

internals
observers : Vector;

methods
getObservers() : Enumeration;
attach(observer : AbstractObserver);
detach(observer : AbstractObserver);

end filtermodule subjectModule;

filtermodule observerModule begin
internals

abstractObserver : AbstractObserver;
inputfilters

disp : Dispatch = { true => abstractObserver.* }
end filtermodule observerModule;

superimposition begin
selectors

subject = Set(MetalSlider);
observer = Set(MetalColorPanel, MetalLabel);

methods
subject <- { attach, detach };

filtermodules
subject <- { subjectModule };
observer <- { observerModule };

end superimposition;

implementation in java file "MetalSliderObserver.jwf";
end concern MetalSliderObserver;

public class MetalSliderObserver {
public Enumeration getObservers() {

return observers.elements();
}

public void attach(AbstractObserver observer) {
observers.add(observer);

}

public void detach(AbstractObserver observer) {
observers.add(observer);

}

}

concern MetalSliderObserver begin
filtermodule abstractObserverModule begin

methods
update(subjectMetalSlider : MetalSlider);

end filtermodule abstractObserverModule;

filtermodule subjectModule begin
methods

notifyupdate();
end filtermodule subjectModule;

superimposition begin
selectors

abstractObserver = Set(AbstractObserver);
subject = Set(MetalSlider);

methods
abstractObserver <- { update };
subject <- { notifyupdate };

filtermodules
abstractObserver <- { abstractObserverModule };
subject <- { subjectModule };

end superimposition;

implementation in java file "MetalSliderObserver.jwf";
end concern MetalSliderObserver;

public class MetalSliderObserver {
public void update(MetalSlider subjectMetalSlider) {
}

public void notifyupdate() {
AbstractObserver observer;
Enumeration obs = getObservers();
while (obs.hasMoreElements())
{

observer = (AbstractObserver) obs.nextElement();
observer.update(this);

}
}

}


