
M.J. van Sinderen and L.J.M. Nieuwenhuis (Eds.): PROMS 2001, LNCS 2213, pp. 222-237, 2001.
© Springer-Verlag Berlin Heidelberg 2001

On the End-User QoS-Awareness of a Distributed
Service Environment•

I. Widya1, R.E. Stap2, L.J. Teunissen3, and B.F. Hopman4

1CTIT University of Twente, P.O.Box 217, Enschede, the Netherlands
widya@cs.utwente.nl

2TNO-FEL Twente, Enschede, the Netherlands
stap@fel.tno.nl

3KPN Research, Groningen, the Netherlands
l.j.teunissen@kpn.com

4PTS Software, Bussum, the Netherlands
 frank.hopman@pts.nl

Abstract. A lot of attention has been given to network quality of service and
efforts to make layers on top of the network also QoS-aware increase
noticeably. This paper explores QoS-aware service provisioning at a level close
to end-user’s perception. It shows how end-user oriented QoS requirements
have been elaborated in a high level design onto QoS support of a distributed
service platform and how realized QoS can be monitored. A GameHall has been
used as the application context for which validation of the explored and applied
concepts and models for QoS specification and monitoring have been exercised.

1 Introduction

Along with the functionality of an on-line service, the quality of the service
determines the service usability and utility, both of them influencing the likelihood of
use of the service. Provisioning of QoS may therefore be a significant success factor
to distributed service environments and a service provider may benefit from this
provisioning to distinguish its services from other service providers.

This paper addresses some of the QoS provisioning issues described in the
literature, e.g. [Me98, Au98]. In particular, it addresses the issue of specification,
establishment and feedback of QoS at a level close to the user’s perception, for
example in accordance with a specified service level agreement [Ve99]. This paper
exemplifies a procedure for this provisioning in a distributed service environment,
particularly, in the context of a GameHall demonstrator that runs on a distributed
service platform [Ba99].

For the specification of QoS at different layered levels of the distributed service
environment and for the mapping of the specified or derived QoS parameters across
those levels, this paper applies a (nested) user-provider model for QoS specification
that has been elaborated in the project AMIDST [Si98, He00]. This model, in turn, is
based on the ISO QoS Framework [IS97]. Complexity of QoS mappings (see e.g.
[Na95, Xu00, Si00]) is mostly avoided by a heuristic approach that only uses first
order relevance between parameters of the different levels. This approach is feasible

• This work has been sponsored by the Dutch Ministry of Economic Affairs within the project FRIENDS.

On the End-User QoS-Awareness of a Distributed Service Environment 223

within the reserved time span of the work and is sufficient for our demonstrator
purposes. It simplifies QoS mapping considerably, i.e. it enables the use of mapping
tables.

In the context of this work, the GameHall demonstrator is used as a vehicle to
integrate the developed application oriented QoS framework into the service platform
and to demonstrate the ability of this platform in differentiating resource allocations
between the different types of games and end-user categories. In particular, the
GameHall demonstrates the establishment and the monitoring of QoS. This
monitoring is for the purpose of proactively informing the end-users on realized QoS
to facilitate these users with service predictability [Bo99, Sa00] and the service
accountability, which denotes the ability of the service to settle the benefit-cost factor
up in accordance with realized performance.

This paper is organized as follows. Section 2 describes the business model of the
demonstrator that provides the application domain context for the provisioning of
QoS. Section 3 explains a procedure for QoS specification at interfaces and the
mapping of QoS between these interfaces. Section 4 describes the provisioning and
monitoring of QoS in the distributed service environment. Finally, Section 5 provides
the conclusions of this work.

2 The Applied Business Model

This section describes the business model of the GameHall that has been used as the
environment to exercise QoS provisioning, in particular the specification and the
monitoring of QoS.

G a m e H a ll

U s e r

G a m e H a ll
M a n a g e r

S L A

G u e s t M e m b e r

= e n t ity

= a s s o c ia tio n

= s p e c ia l is a t io n

V is ito r

Fig. 1. The business model as a context for QoS provisioning

The GameHall offers to end-users different types of games, for example card-, chess-
and car racing games. Like in the business model used in the Telecommunication
Information Networking Architecture (TINA) [Ya97], the GameHall business model
(Fig. 1) identifies the different stakeholders and expresses the relationship between
these stakeholders. Each stakeholder has a different role in dealing with the use,
control or provisioning of QoS. In the figure, the GameHall User represents a client
and the GameHall manager is one of the representatives of the GameHall service
provider.

In the model, users are categorized in different (sub-)roles. This yields different
QoS requirements for the games in the GameHall. On one side, different requirements
due to the different types and nature of the games and, on the other side, due to the

224 I. Widya et al.

different end-user roles. The Service Level Agreement (SLA) models the kind of
relationship between the users and the provider, it will accommodate users
satisfaction better since it specifies what users may expect [Ve99]. Moreover, the
model is also used as a mean to make end-users aware of the different QoS facilities
for different end-user roles, e.g. to provide fairness of charging.

As the GameHall is used as a context to elaborate the QoS framework that spans
over user-oriented to system- and network-oriented QoS, we discuss this model
further.

2.1 GameHall Users

Three user roles have been introduced in the GameHall demonstrator:
� Guest: a guest of the GameHall may try some games. QoS support for this role is

limited and the options to play games at advanced levels are also restricted;
� Visitor: a visitor pays for the played games and therefore gets better facilities than

non paying guest;
� Member: a user with a subscription and who’s (playing) profile is stored in the

GameHall. As a regular GameHall customer, this role typically needs and expects
a higher game performance than the other two roles.

To accommodate the different QoS needs at user level, QoS of games are categorized
in values like “gold’, “silver”, or “bronze”. GameHall users either are provided with a
fixed setting of QoS or may choose between alternative settings, which have been
pre-selected by the GameHall manager in accordance with the SLA associated to the
role of the user.

To satisfy the users even better, users will receive feedback of achieved QoS from
the provider. In this demonstrator, feedback is given in the form of a traffic light,
which stays green as long as the agreed QoS is realized. It turns to orange or red in
case the quality of service degrades or drops completely.

2.2 GameHall Service Provider

Two service provider roles have been introduced, the GameHall manager and the
GameHall deployer. At the applied level of granularity, the deployer is not visible in
the model shown in Fig. 1. This due to the role of the deployer that at the applied
level of abstraction has no direct association to the GameHall users, but complements
the role of the manager.

� GameHall manager
The GameHall manager has the responsibility of issues related to the SLA, for
example the implementation of the business (commercial and marketing) policy
for the GameHall. The manager instantiates and fine-tunes the QoS
configurations of the games that have been defined by (possibly third party)
GameHall deployers.

The GameHall manager, for example, may apply a policy that gives members
a higher serving priority than others. Paying users, moreover, may get better
performance of selected games or get more reliable games than non-paying
guests or members that only try new games.

On the End-User QoS-Awareness of a Distributed Service Environment 225

� GameHall deployer
The responsibility of the deployer is to define the constraints for QoS profiles,
QoS specification and mapping with respect to the nature of the games and, if
appropriate, to the technical restrictions or capacity of the provider. For example,
the deployer specifies all invariant aspects of games with respect to QoS.

2.3 Service Level Agreements

A service level agreement is a mean to specify the relationship between the GameHall
service provider and the end-users who have different membership roles. A definition
for a service level agreement is for example [Ve99]:

"A service level agreement (SLA) is an explicit statement of the expectations and
obligations that exist in a business relationship between two organisations: the
service provider and the customer1.”

Typically, an SLA contains [Ve99]:
� the type and nature of the service and the expected performance level of the

service,
� the process of monitoring and reporting of realized service level,
� and many other aspects like management, other customer care and accounting

aspects.
This paper elaborates on user-oriented QoS which settings are dependent on the role
of the users and the type and nature of the games (Section 3). It also discusses a
mechanism for monitoring delivered QoS (Section 4). Other customer care,
management or accounting aspects are beyond the scope of this paper.

3 The Applied QoS Specification Framework

Establishment of QoS in a layered architecture includes the specification of QoS at an
interface and the mapping down through the interfaces of the underlying layers until
computing system or network resources can be determined for allocation. In this
paper, we apply a user-provider model [Ha99, He00] to match at the interface the
needed QoS by user entities to the QoS capabilities offered by the provider (Fig. 2).

The QoS interface model, shown in Fig. 2, originates from ISO QoS Framework
[IS97] and has been elaborated in the project AMIDST [Si98]. User requirement in
respect of QoS (abbr. as urQoS) represents the QoS of a user-to-user interaction. In
this model, urQoS is in principle independent of the (middleware) provider that
mediates the interaction between the peer users. The provider may however advertise
its QoS capabilities in terms of QoS characteristics (denoted as midQoS in Fig. 2) and
values or value ranges that it can support. Typically, a QoS characteristic is a
quantifiable quality aspect of services, e.g. reliability or swiftness. In this paper, an
aggregation of these characteristics and associated value ranges is called a QoS class.
A provider may offer several QoS classes, each class optimised to a certain category
of services, e.g., QoS classes suitable for chess up to car racing games.

1 This paper does not distinguish between customer and end-user stakeholders.

226 I. Widya et al.

3.1 QoS Specification Model at Interfaces

Specification of QoS at a user-provider interface therefore involves the translation of
the required urQoS into a QoS class offered by a provider. To facilitate this, we use
the concept QoS requirement [IS97] that specifies the qualifiers (e.g. maximum,
mean) and the required values of the associated provider’s characteristic. In this
translation, a user entity may accept losses in accuracy of the translation or may
choose between alternative QoS classes offered by one or more providers.

Service User

Service Provider

midQoS
Class

QoS Requirement
associated to a QoS char.

midQoS characteristic

user-to-user interaction

Example:

UrQoS:
Interactivity = “moderate”

QoSrequirement_wrt_swiftness:
 “> (100ms.)-1”

MidQoS characteristic range:
(1s.)-1 <swiftness < (10 ms.)-1

User Requirements QoS
(urQoS)

Fig. 2. User-provider model to specify QoS at interfaces

3.2 Layered QoS Model

In a layered architecture, a provider has to map the required midQoS characteristics
and values mentioned earlier further downwards to QoS characteristics available at
underlying interfaces (Fig. 3). In doing so, midQoS characteristics not only map
“vertically” to lower level characteristics, e.g. QoS characteristics of local system
components (sysQoS) and network elements (netQoS). In addition, some “horizontal”
mapping may also be needed for peer capability matching, for example, to select and
configure multimedia compression devices (e.g. MPEG-1 and MPEG-2) in a
compatible manner. The triple headed arrow in the middleware layer in Fig. 3 models
this multiparty mapping.

On the other hand, the double-headed arrow in the middleware layer models the
peer-to-peer interactions that have to be QoS aware as well. These QoS needs before
(multimedia) data is encoded and compressed are called media format level QoS and
denoted as mfQoS in the figure. Furthermore, the QoS mapping in the layer may
generate additionally the need for complementary peer-to-peer support such as
retransmission protocols to increase reliability.

On the End-User QoS-Awareness of a Distributed Service Environment 227

sys-/net-QoS

midQoS

mfQoS

perceivedQoS

e.g.
� predictability of application quality
� ability to settle benefit-cost factor up (accountability)

User’s abstraction
of Application

Human
Computer
Interface

Application-ware

Middleware

Underlying Computing Systems & Network Platform

urQoS

Fig. 3. Layered QoS Model for specification and monitoring

User-level QoS in the GameHall context:
As observed among others in [Bo99, Sa00, He00], QoS expected by users depends on
the context of the use of the application. This so-called task context is characterised
by the type of the application, the task of the invoked application for the user (i.e. the
purpose of using the application) and the user role. In the GameHall demonstrator, the
task context is characterised by the user role (i.e. guest, visitor or member), the type
and nature of the game (e.g. a chess or a highly interactive car racing game) and the
task (e.g. to try a game out or to play in a competition).

In our pursue to improve the attractiveness of the games in respect of QoS to the
users, several articles from various disciplines have been studied:
� Models to predict the likelihood of use of distributed applications in a learning

related context have been investigated in the educational science [Co00]. The so-
called 3G model2 of Kappetijn expresses this likelihood in terms of three aspects.
Though not a fully appropriate translation, one of the aspects translates to benefit
or pay-off. The other two aspects translate to ease of use and pleasure,
attractiveness or one’s engagement of use;

� In the area of stock investments, predictability of the performance of investment
funds is an important aspect for investors. Investors also need an ability to settle
up with these funds in accordance with the expectations and realized performance
[Ba00];

2 The 3G stand for the Dutch words “gewin”, “gemak” and “genot”.

228 I. Widya et al.

� QoS studies in the human factors area among others identify feedback and also
predictability as important QoS aspects for users [Bo99, Sa00].

Inspired by the previously mentioned studies, the GameHall demonstrator addresses
the following task context dependent QoS aspects at user level (denoted by
‘perceivedQoS’ in Fig. 3):

� predictability of application quality:

The demonstrator facilitates members to use a higher QoS setting compared to
other user roles. On the other hand, paying users will be provided with more
constant quality (e.g. higher reliability) than non-paying users. This GameHall
policy is to better fulfill predictability of game quality as expected by end-users
in respect to their task context.

� accountability that expresses the ability to settle up in accordance with realized
QoS:

In addition to the previously discussed policy, charges of used services will be
adapted in case of drops in realized QoS. We believe that this ability to settle
benefit-cost factor up will improve user satisfaction. However, one may argue
whether this accountability is a quality characteristic or a kind of a “what-if”
element of a QoS specification for the case that the commitment of the provider
in respect to predictability is not met.

� task context dependent provider feedback:

A QoS feedback mechanism will support the predictability and the ability to
settle benefit-cost factor up. GameHall users will be facilitated by a monitoring
component that displays a measure of realized QoS in the form of a traffic light
positioned at the human computer interface HCI in Fig. 3. The setting of the
traffic light depends on the task context of the user. That is, green signals for a
GameHall guest and for a member generally mean different realization of QoS in
respect to allocated computing system or network resources.

Applicationware QoS characteristics:
In this paper, we adopt the following urQoS dimensions introduced in [He00] and
validate them for the GameHall case.

� Availability: UrQoS availability is the quality aspect of the peer-to-peer
interaction of being present or ready for immediate use. In this paper, availability
associates to both the instantiation and the use of a game, thus spanning over the
whole lifetime of the game instantiation.

� Fidelity: UrQoS fidelity is the quality aspect of a peer-to-peer interaction of being
good enough with respect to the task, such as the use of false colours to highlight
important items. This urQoS dimension will not be elaborated further in the
GameHall demonstrator.

� Integrity: UrQoS integrity is the quality aspect of the peer-to-peer interaction in
maintaining the correctness of the interaction in respect to the source. In a car
racing game, high integrity will preserve image resolution and synchronisation of
the moving scene and the steer movements.

On the End-User QoS-Awareness of a Distributed Service Environment 229

� Interactivity: UrQoS interactivity is the quality aspect of the peer-to-peer
interaction of being responsive. In this paper, interactivity associates to the
services (i.e. methods) of a game after instantiation of the game, and not to the
responsiveness of the instantiation of the game itself (availability). It is clear that
urQoS dimensions are not necessarily orthogonal.

� Regulatory: UrQoS regulatory is the quality aspect of the peer-to-peer interaction
of being in conformance with the rules, the law, or the established usage in the
application domain. In a GameHall, regulatory means the conformance to the
rules of the games, for example, to ensure equal opportunity to win a game even
in the case that the environment is heterogeneous.

Middleware QoS characteristics:
The QoS capabilities of a middleware provider that offers services to application
components may be expressed in terms of classes of QoS characteristics, including
the (ranges of) supported values. One may also specify QoS using a language for QoS
that support specification of measurement units [Fr98]. The following list describes
some of the midQoS characteristics introduced in [Ha99]:

� accessibility: MidQoS accessibility is the quality aspect of a service that
represents the degree of being capable of serving a request. It may be expressed
as a probability measure denoting the success rate or chance of a successful
service instantiation at a point in time.

� accuracy: MidQoS accuracy is the quality aspect of a service that represents the
degree of conformity to the true value, an ICT standard or a well-accepted
custom (e.g. video accuracy value “VCR” or “studio-TV”, which specification
may refer to the CCIR.601 standard).

� reliability: MidQoS reliability is the quality aspect of a service that represents the
degree of being capable of maintaining the service and service quality.

� Other described midQoS characteristics are linkage unity (the degree of parts
being linked as a complex whole, e.g. synchronisation of multimedia), swiftness
(the degree of how immediately or quickly something is done), and urgency (the
degree of being important for immediate attention or processing).

Platform QoS characteristics:

QoS characteristics associated to the underlying platform are denoted as comQoS,
netQoS and sysQoS. They represent the QoS aspects of the communication session
layer (Fig. 4), the network platform and the computing system elements, respectively.

The applied distributed service platform, upon which the demonstrator runs
contains a Load Balancer component that among others supports sysQoS
characteristics like priority (i.e. the scheduling priority of a process in a computing
node) and workload accessibility (i.e. the chance a request to schedule a game
component in a computing node be accepted). The platform also supports comQoS
characteristics associated to multimedia streams and is therefore closely related to
mfQoS introduced in the layered model (Fig. 3), but defined at an intermediate level
interface (Fig. 4). For video streams, the platform supports width and height
dimensions of a frame, frame-rate, quantisation bits/pixel, colour-depth and delay.

230 I. Widya et al.

Audio related comQoS characteristics supported are the number of audio channels,
sampling frequency, quantisation, and delay. NetQoS characteristics are delay and bit-
rate.

QoS Mapping:
For the demonstrator, we use a heuristic approach to by-pass the complexity of
mapping of QoS characteristics across layers (see e.g. [Na95, Xu00, Si00] for QoS
mappings). At user level, the GameHall manager typically determines the urQoS
values of the games in accordance with its policies and service level agreement.
Further, a simple benefit functions relates realized urQoS to the earlier mentioned
traffic light that provides QoS feedback to users.

At the level of the middleware service, a subset of urQoS dimensions often relates
to a subset of midQoS characteristics. An urQoS value may also map to a whole range
of alternative values of midQoS characteristics forming a subspace in an offered QoS
class. We have similar situations in the mapping of midQoS to netQoS and sysQoS
characteristics, especially if special resources such as multimedia coding devices are
involved.

Though these QoS mappings are generally M:N relations, we nevertheless apply
translation tables that are mainly suitable for 1:N mappings. To enable this, the most
dominant relation between the QoS parameters will only be taken into account. This
paper does not address horizontal capability matching aspects nor the protocols that
may be needed to complement QoS mappings such as retransmission protocols.

4 Implementation of the QoS Framework into the Demonstrator

This section discusses the incorporation of the QoS framework into the distributed
service environment. First, the applied QoS specification and mapping procedure will
be discussed. Then, the QoS extension of the service environment will be explained in
brief. Thereafter, the monitoring mechanism to provide user feedback will be briefly
described.

4.1 Implementation of QoS Specifications and Mappings

As was discussed earlier, the QoS settings of games depend on the task context and
are constrained by the SLA. In the case of the demonstrator, we use tables to
implement QoS specification at interfaces and to map QoS across layers.

It is the responsibility of the GameHall deployer to define the templates of the QoS
specification tables, the constraints between the QoS values in the table cells, and the
list of values that a GameHall manager can use in a succeeding configuration step.
Table 1 exemplifies the constraints of urQoS dimensions of a chess game that can be
played at different skill levels and players settings. The constraints are for example Ai

���i+1; Ci = {“only_once_semantic”, Xi} with movement-to-speech synchronisation
tolerance Xi ���i+1 for i = {1,..,3}, and Z specifying an equal QoS setting for involved
players for fairness of the play.

On the End-User QoS-Awareness of a Distributed Service Environment 231

Table 1. Chess user requirements in the deployers’ perspective.

CHESS Game Availability Interactivity Fidelity Integrity Regulatory

Level 2 A1 B1 “don’t care” C1 “don’t care”with
computer Level 1 A2 B2 “don’t care” C2 “don’t care”

other user A3 B3 “don’t care” C3 Z

simul A4 B4 “don’t care” C4 Z

A GameHall manager has the responsibility to instantiate the templates in accordance
with the SLA and its policy. Table 2 exemplifies the availability of the chess game for
the different user roles. It shows what a user may expect in respect of playing quality.
In this example, a guest player may only play against the computer at skill level 1.
The table also shows that members may select between two QoS settings.

Table 2. Example QoS availability settings per role.

AvailabilityCHESS

Guest Visitor Member

Level 1 “ch_bronze” “ch_bronze” “ch_bronze_premier” or
“ch_silver_premier”

with
computer

Level 2 “ch_bronze” “ch_bronze_premier” or
“ch_silver_premier”

other user “ch_silver” “ch_silver_premier” or
“ch_gold_premier”

simul “ch_gold_premier”

The availability values in Table 2 are partially ordered string typed values that may
also be expressed using a QoS language, see e.g. [Fr98, He00]. These values map
further downwards to midQoS characteristics like accessibility, reliability and
swiftness of invocations (Table 3). As expected, QoS values at higher levels are more
specific to the type of the game and task context, values at lower levels are typically
more generic, that is, the prefix “ch_” specific for chess games can be omitted in the
lower level values.

Table 3. Example availability to reliability and accessibility translation table.

CHESS Availability Accessibility Reliability

“ch_bronze” “moderate” “moderate”

“ch_bronze_premier” “high” “moderate”

“ch_silver” “moderate” “high”

“ch_silver_premier” ”high” “high”

“ch_gold_premier “premier” “premier”

232 I. Widya et al.

Other QoS mappings can be elaborated in a similar way. One may indeed raise the
question when mappings of string typed values ever ends or become concrete for the
implementation. A downward mapping stops if it reaches values which interpretation
have been specified in technical terms in a standard or are known from human factor
studies (e.g. 44.1 KHz sampling rate, 16 bits/sample quantisation for uncompressed
“CD” quality audio, 80 ms for a tolerable audio-video lip-synchronisation and 40 ms
for a moderate lip-synchronisation [St93]).

4.2 QoS Extension of the Distributed Service Environment

This section briefly describes the high-level component architecture of the distributed
service platform that has been extended with QoS. A time-sequence diagram related
to the establishment of QoS for a game is used to explain the QoS extension of the
platform.

As mentioned earlier, the distributed service platform is based on TINA [Ba99].
With respect to the layered QoS model (Fig. 3), the Service Session layer of the
platform (Fig. 4) relates to the Application-ware layer in Fig. 3. The Communication
and Connectivity Session layers relate to the Middleware layer and the Network layer
(including the end-terminals) relates to the computing system and network platform in
Fig. 3.

sysQoS

urQoS

FCC

LNBM

Game Service
Session layer

LQM

CSM
CQM

SSM
SQM

TLA

TCSM

ssUAP USM
UQM

Layer network
layer

SF

midQoS

Access
Session layer

= additions for QoS awareness

midQoS

Communication
Session layer

DB

LB

= Creation

= QoS parameter dataflow

task context,
selected

 = platform specific component

e.g. RSVP related
QoS parameters

urQoS, players
mapping tables

consumer
premise

service & connectivity
provider

comQoS

UA PA

task context,
selected

sysQoS

urQoS

netQoS

FQM

 = TINA component

FCC = Flow Connection Controller

PA = provider agent

LNBM = Layer Network Binding Manager

SSM = Service Session Manager

TCSM = Terminal Communication
 Session Manager

TLA = Terminal Layer Adaptor

UA = User Agent

ssUAP = service session User APplication

USM = User Session Manager

CSM = Communication Session Manager SF =Service Factory

Legenda TINA components:

Fig. 4. Component architecture to provision a QoS service session

On the End-User QoS-Awareness of a Distributed Service Environment 233

Some of the components in Fig. 4 are specific to the service platform [Ba99]. The
database component DB contains information needed by the platform to provide the
services to the users. It among others contains the user profiles and the QoS tables
discussed earlier. The component LB is a load balancing component specific to the
platform. This component does not only perform load balancing (including midQoS
to sysQoS mappings), it also creates other TINA components, therefore, acting as a
component factory. Though possibly not fully TINA complaint, these peculiarities are
not significantly relevant in the context of this work that focus on QoS establishment
and monitoring.

Moreover, the GameHall demonstrator is realized as one of the services of the
distributed service environment, this enables accommodation of other demonstrators
in the service environment. However, this means that a game is a sub-service of the
GameHall service. Instantiation of a game will therefore by-pass several steps of the
Access Session.

The QoS extensions are represented by different QoS Manager components
(abbreviated as xQM with the prefix “x” = S, C, L, U standing for Session,
Communication, Layer-network or User, respectively (Fig. 4)). These components are
responsible for all QoS issues of the containing component. The call-outs that label
the component interactions expose the conveyed QoS characteristic level. For clarity,
the figure only depicts relevant components of a single party involved in the
establishment of a multiparty service session.

Fig. 5 shows a time-sequence diagram of a game invocation after the instantiation
of the GameHall service (i.e. after the user identified him/herself and received a list of
games, including the settings in accordance to his/her role, and players who are also
in the GameHall). This means that the service session User Application (ssUAP) and
the User Agent (UA) of the GameHall service session have been instantiated.

ssUAP
(GameHall

service session)

UA

SF DB LB SSM
(SQM)

USM
(UQM)

CSM
(CQM)

createService
(taskcontext,
selected gameQoS,
players)

getPolicies
(taskcontext
gameQoS,
players)

SLA(urQoS)

createComponent
(midQoS)

create

create

SLA(urQoS)

createStream
(midQoS)

urQoS/midQoS

create

taskcontext
/urQoS

Component interface method invocation Create component instance

Create multiple component instances

createComponent
(midQoS)

createService
(taskcontext,
selected gameQoS,
players)

urQoS
/midQoS

midQoS
/sysQoS

midQoS
/sysQoS

QoS mapping

Fig. 5. Service session establishment in respect of QoS

234 I. Widya et al.

A game session establishment procedure (see Fig. 5):
� In response to a user request for a game, the originating site ssUAP of the

GameHall service session sends a createService request transparently via the
Provider Agent (PA) to the UA. The request conveys the task context, the invited
players (in case of a multi-party game) and the required game QoS in case a set
of QoS settings are offered to the user.

� The UA forwards the request to the Service Factory (SF). The SF retrieves from
the database (DB) component the urQoS dimensions and values, which are
associated to the task context and the required game QoS, and the relevant
urQoS/midQoS mapping tables. The SF uses these tables to compute the QoS
settings of the components that will be created (Fig. 5).

� In the platform, the SF asks the Load Balancer (LB) to create the session layer
components involved in the game, i.e. the Service Session Manager (SSM) and
the User Session Manager (USM) of all parties. The LB component transforms
the received midQoS parameters to sysQoS parameters that will be used to create
the applicable components. In the user domain the PA creates the ssUAP of the
game session. In the current version, creation of this ssUAP in the user premise is
not yet QoS supported.

� The SF also informs (via SSM) the created USMs about the agreed urQoS to
enable control of the traffic light (see also the section on QoS monitoring).

� For the establishment of QoS aware communication connections, the SSM maps
the urQoS to midQoS parameters and provides these in the request to the LB to
enable derivation of the sysQoS parameters and to create the CSM using these
parameters. The CSM is responsible for the further processing of the midQoS
parameters to a specific QoS aware network implementation, e.g. yielding an
RSVP reserved stream that is supported by end-to-end QoS.

4.3 QoS Monitoring in the Distributed Service Environment

The main objective for the monitoring of the QoS performance is the implementation
of the task context dependent feedback to the end-user. The following considerations
have influenced the designed feedback mechanism:
� minimal monitoring-related interactions at the boundary between the user

premises and the provider domain, therefore isolating provider ‘s measurement
data flow within the provider’s domain;

� reuse of components that receive QoS mapping tables during QoS establishment;
and

� keep the design open for extensions in which a trusted third party performs (parts
of) the monitoring.

As shown by the component architecture in Fig. 6 and the time-sequence diagram in
Fig. 7, realized QoS performance information flows in the reversed direction of the
signalling during the QoS establishment phase, traversing the components involved in
the downwards QoS mapping. Method invocation is applied to transfer the
information for the reasons listed above.

On the End-User QoS-Awareness of a Distributed Service Environment 235

FCC

LNBM

Service
Session layer

LQM

comQoS

urQoS

CSM
CQM

SSM
SQM

TLA

TCSM

ssUAP USM
UQM

Layer network
layer

midQoS

Access
Session layer

= TINA component

= Additional components
for User QoS

midQoS

Communication
Session layer

Connectivity
session layer

LB

= realized QoS parameter dataflow = non TINA component

e.g. RSVP related
QoS parameters

netQoS

FQM

Fig. 6. Component architecture to monitor a QoS service session (with call-outs representing
realized QoS values)

The figures also show the control of the traffic light by the UQM component of the
USM. In particular, the differences in realized and required urQoS values, conditional
to the type and nature of the game, the skills level selected and the user role, are
equally weighted by a benefit function and then signalled to the traffic light. In case
of not complying with the service level agreement, the provider may decrease a
charging meter or adapt the QoS provisioning. The latter is however a challenging
issue for further research.

ssU A P
(game session)

USM
(UQM)

SSM
(SQM)

C SM
(C QM)

LN BM
(LQM)

TLA

e.g.
reservationError

(rsvpQoS)

m idQoS/urQoS

realizedQoS
(com QoS)

realizedQoS
(midQ oS)

realizedQoS
(urQoS) realizedQoS

(trafficlight
 signal)

LB

realizedQoS
(midQoS)

C om ponent interface method invocation

Q oS mapping

FCC
(FQM)

realizedQoS
(netQoS)

netQoS/comQ oS

rsvpQoS/netQoS

comQ oS/midQ oS

Fig. 7. Service session QoS monitor

236 I. Widya et al.

5 Conclusions and Outlooks

In the context of a GameHall, we have exercised a QoS development trajectory
starting from QoS specification at a level close to user’s perception towards its high-
level implementation onto a distributed service platform. To make this work feasible
within the time-span of the collaboration project that develops the platform and the
GameHall, we have explored and applied existing concepts and models for QoS
specification and have used a heuristic design approach. This latter to avoid derivation
or implementation of complicated M-to-N QoS mapping mechanisms. This work is to
be considered as a validation exercise of the applied concepts and models and is a
preliminary step to get experience to develop more advanced techniques for QoS
specification and mechanisms for mapping of QoS.

The described model to specify QoS at interfaces has been successfully applied at
several levels of the layered architecture of the service environment, at a level close to
end-users’ perception up to network-oriented levels. Within the layered framework,
one may therefore apply similar techniques or mechanisms for QoS negotiation or
mapping.

This paper works out user-oriented QoS issues which settings are dependent on the
context of the users’ task, determined by the role of the users, the purpose of the task
and the type and nature of the games. It turns out that a lot of attention has to be put in
task analysis in order to capture required QoS that should improve likelihood of
service usage. To increase the satisfaction of the end-users, further (human factors)
study has to be done on the relation between the required and the perceived QoS in
accordance with the task context and established service level agreement.

Establishment of QoS in a layered architecture includes the specification of QoS at
an interface and the mapping down through the interfaces of the underlying layers
until computing system or network resources can be reserved. Several times we have
experienced difficulties of QoS mappings, especially the reversed mapping of several
QoS parameters to a QoS parameter one level higher, despite the simplified (table
based) mapping approach applied. Further exploration of (research results of) M-to-N
mappings, for example in combination with QoS specification languages, for the
provisioning of end-user QoS is another interesting challenge.

This paper also discusses an elementary mechanism to monitor delivered QoS for
end-users feedback. In the future, a third party that objectively appraises service
performance may perform these monitoring of services. This approach also enables
the benchmarking of services of different providers. This situation is anticipated,
since the developed architecture distinguishes between provisioning and monitoring
of services.

Other customer care issues, like accounting aspects and QoS control and
management to maintain agreed QoS guarantees, are beyond the scope of this paper.
Further study on the linkages between QoS policies, accounting and billing of
delivered services is a necessity to enable commercial exploitation of QoS aware
services.

On the End-User QoS-Awareness of a Distributed Service Environment 237

References

[Au98] C. Aurrecoechea, A.T. Campbell and L. Haw, ”A Survey of QoS Architectures”,
Multimedia Systems Journal, Special Issue on QoS Architectures, May 1998;

[Ba99] H.J. Batteram, J-L. Bakker, J.P.C. Verhoosel, and N.K. Diakov, “Design and
Implementation of the MESH Services Platform”, Proceedings of TINA’99
Conference, Oahu, Hawaii, April 1999;

[Ba00] B. Bakker, “Een kroon op het fonds: nieuwe beleggingsfondsengids 2000 van Nyfer”,
in newspaper attachment “Geld Telt”, NRC Handelsblad, Oct. 21st 2000 (in Dutch);

[Bo99] A. Bouch and M.A. Sasse, “Network Quality of Service – An Integrated Perspective”,
Proc. RTAs ’99, Vancouver, June 1999;

[Co00] B. Collis and N. Pals, “A Model for Predicting an Individual’s Use of a Telematics
Application for a Learning-Related Purpose”, International Journal of Educational
Telecommunications, 6(1), pp. 63 – 103, 2000;

[Fr98] S. Frølund and J. Koistinen, “Quality-of-service Specification in Distributed Object
Systems”, Distributed Systems Engineering, 5, 1998, pp. 179 – 202;

[Ha99] A. van Halteren et al., “QoS architecture”, Amidst project deliverable D.3.1.2, 1999,
http://amidst.ctit.utwente.nl/workpackages/wp3/index.html;

[He00] C. Hesselman, I. Widya, A.T. van Halteren, and L.J.M. Nieuwenhuis, “Middleware
support for media-streaming establishment driven by user-oriented QoS
requirements”, Proceedings of the Interactive Distributed Multimedia Systems and
Telecommunication Services (IDMS2000), Enschede, the Netherlands, Oct. 2000, pp.
158 – 171, Springer Verlag LNCS 1905;

[IS97] ISO/IEC JTC1/SC21 N13236, “Information Technology – Quality of Service –
Framework”, Geneva, 1997;

[Me98] J. de Meer and A. Hafid, “The Enterprise of QoS”, tutorial presentation at the
Middleware Conference, Sep. 1998, Lake District, U.K., http://www.fokus.gmd.de
/research/cc/tip/employees/jdm/private/jdmPubList1998.html;

[Na95] K. Nahrstedt and J.M. Smith, “The QoS Broker”, IEEE Multimedia, 2(1), pp. 53 – 67,
1995;

[Sa00] M.A. Sasse, “User-centred quality of service: why value is everything ..”, slides at
QofiS 2000, Berlin, Sep. 2000, http://www.fokus.gmd.de/events/qofis2000/slides
/27ix00/s012-user-and-market/sasse.pdf;

[Si00] F. Siqueira and V. Cahill, “Quartz: A QoS Architecture for Open Systems”, The 20th

IEEE Int. Conf. On Distributed Computing Systems, pp. 197 – 204, Taipei, Taiwan,
April 2000;

[Si98] M. van Sinderen, “AMIDST Application of Middleware in Services for Telematics”,
http://amidst.ctit.utwente.nl, 1998;

[St93] R. Steinmetz, “Human Perception of Media Synchronization”, IBM European
Networking Center, IBM – Technical report no 43 9310, 1993;

[Ve99] D. Verma, “Supporting Service Level Agreements on IP networks”, Macmillan
Technical Publications, ISBN 1-57870-146-5, 1999;

[Xu00] D-Y. Xu, D-D. Wichadakul, and K. Nahrstedt, “Multimedia Service Configuration
and Reservation in Heterogeneous Environments”, The 20th IEEE Int. Conf. On
Distributed Computing Systems, pp. 512 – 519, Taipei, Taiwan, April 2000;

	1 Introduction
	2 The Applied Business Model
	2.1 GameHall Users
	2.2 GameHall Service Provider
	GameHall manager
	GameHall deployer

	2.3 Service Level Agreements

	3 The Applied QoS Specification Framework
	QoS Specification Model at Interfaces
	3.2 Layered QoS Model
	User-level QoS in the GameHall context:
	Applicationware QoS characteristics:
	Middleware QoS characteristics:
	Platform QoS characteristics:
	QoS Mapping:

	4 Implementation of the QoS Framework into the Demonstrator
	4.1 Implementation of QoS Specifications and Mappings
	4.2 QoS Extension of the Distributed Service Environment
	4.3 QoS Monitoring in the Distributed Service Environment

	5 Conclusions and Outlooks
	References

