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Abstract: Reference models (RMs) capitalize on the experience that key functions and
relationships determine a system’s main design structure which has to be
established before other design details can be settled. As such RMs can play
an important role in designing complex (distributed) systems, in allocating
design tasks to cooperating design teams and in facilitating their
communication. These roles are also eminent in standardization. This paper
discusses the need for precisely defined basic architectural concepts to
construct RMs, building on experience with designing the OSI-RM. We apply
these concepts in the design of a number of RMs for networked applications
that provide advanced e-services.
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1. INTRODUCTION

Suppose you contract an architect to design your house. You discuss the
size of the house and how it is situated on the premises. How rooms,
corridors, staircases, windows, bathrooms, balconies, doors, a roof, etc. will
be measured and put together. You agree on a master plan on the basis of
which the architect will produce detailed specifications.

How come that you communicate so efficiently about that master plan?
We suggest it is because you share a common frame of reference: you both
know the concepts of premises, situation, measure, room, balcony, staircase,
etc. You know their functions and their possible relations. Mentally, you
both use a reference model of a house. This reference model (RM) defines a
structure of major functions and how they are related while applying
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commonly known concepts. It provides an abstract design, ignoring many
details that will be filled in later such as construction details, materials to be
used and colors to be applied.

Likewise, the design of information systems will be more effective and
efficient if a suitable RM as a blueprint for information systems is taken as a
starting point. Suppose you want to design a system to support electronic
transactions. Then you have to answer questions such as: What services may
users expect from the system? What should be the building blocks of the
system? How should they interact? It would then be quite helpful if you also
have a RM that shows building blocks for managing transactions, for
providing financial and logistic services, etc., and that shows what
information these blocks exchange.

We introduce RMs for a broad range of networked applications:
structures of functional entities, implemented by software, that offer services
to distributed users while exchanging information via a network. Examples
are applications that enable users to trade by exchanging orders, bills, and
payments via an underlying network, or applications that allow users to
simultaneously access design drawings despite the fact that they are miles
apart, or applications that allow users to search through remote video
libraries and download a video. The majority of such services fall in one, or
are a combination of the following categories:

collaborative services;
transaction services;
content services.
Networked applications can become quite complex if you consider all the

details of functional definitions, message formats, programming schemas,
programming code, operating system calls, etc. RMs help you to master this
complexity by focusing first on the high level system design, suppressing
detailed design issues until this high level design has been settled. In fact
you follow the strategy of the architect of your house.

2. REFERENCE MODELS, THEIR NATURE AND
PURPOSE

A reference model provides people with a common reference to an
object, e.g. a distributed system, as a basis for their common understanding,
discussion, and further action. They are about models in the sense that they
describe essential aspects of systems while abstracting from details not
considered essential for the pursued goal. Typically the goal is to focus on
what systems should do, rather than how they can be constructed and operate
at the implementation level. We define a RM as a structure, or organization,
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of related functional entities that defines only globally the key functions and
key relationships of these entities. This means that RMs are incomplete
system designs in two respects:
1.

2.

The high abstraction level implies that functions and relationships are
defined only functionally and as implementation independently as
possible, leaving freedom for the individual manufacturer to choose his
own implementation strategy.
Key functions and relationships are defined only globally, leaving
freedom for design teams to complete the functional design by adding
design details that at the RM level are not considered key.
The latter requires some extra explanation since the term “key” is usually

intuitively, rather then explicitly applied. By a key we mean a characteristic
that largely determines the function of an entity, system or relation and
consequently has a large impact on the structure and further design of a
system. It means that extending the RM to a complete design by refining the
key functions can be done while preserving the structure and relationships
(interfaces) of these functions.

For example, when it is key that a service is connection oriented, it will appear that this
key requirement largely determines the nature of the service and the protocol that
implements it. The same applies when it is key that a service is reliable. At the protocol
level it will appear that protocol data unit (PDU) numbering is a derived key functional
element to achieve both connection orientation and reliability which completely
dominates the structure of the protocol.

The development of RMs is a design activity that should follow
qualitative design principles such as: do not link what is independent
(orthogonality), introduce functions in their most general form and avoid
slightly diverging alternatives (generality), do not introduce what is
immaterial (parsimony), and do not restrict what is inherent (propriety).

A RM serves several purposes, such as to act as a basis for:
understanding the essential user requirements and derived (key)
properties of the real world system (a networked application in our case)
that has to be developed;
formulating these properties in an initial high level design and preserving
the conformance between the service provided and the protocol
implementing this service;
communication between the users of the real world system and the RM
architect to communicate requirements and document their agreements;
communication between the RM architect and the designers of systems;
communication between different design teams that may work together
on a system design.
There exists an extensive literature about RMs, reference architectures,

and design patterns, their purpose, their form, the language in which they
should be expressed, etc. (see e.g. [2] , [7], [16], [17]). A well-known
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example is the RM for Open Systems Interconnection (OSI-RM) [11] which
globally defines the services and protocols of networks, and applications on
top of these networks (Figure 1).

Other well-established examples are the RM for Open Distributed
Processing (RM-ODP) [13], the Workflow RM of the Workflow
Management Coalition (WfMC) [9], and the Object Management Group’s
Object Management Architecture RM (OMA-RM) [14].

3. BASIC ARCHITECTURAL CONCEPTS AGAINST
A HISTORICAL BACKGROUND

To serve its purpose as a common reference, a RM must be “constructed
from” sound abstract and basic architectural modeling. This implies that
such concepts should model properties considered essential for real world
systems, that are precisely defined at the appropriate abstraction level, and
that can effectively be applied as basic building blocks to construct a high
level design. They should also be well understood and commonly supported.
Here is the “Achilles heel” of many RMs. Experience with the definition of
the OSI-RM, and its related services and protocols, has learned that whole
crowds of experienced designers were perfectly willing to believe in the
most bizarre and absurdly defined concepts as soon as some form of
abstraction comes into play. Correspondingly it is astonishing to observe
what confusion can be introduced in block diagrams while people are
believing that the mere use of it would ensure clarity and precision. Since
sound basic architectural concepts, apparently, are not so easily established,
we define below some architectural concepts that we will use for our RMs
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for networked applications. To underline that their definition is not so trivial
we contrast them with some bizarre interpretations that have circulated in the
OSI world.

In this section we use an intuitive graphical notation; in the sections
describing our reference models we use a more formal notation.

3.1 Service

We define a service as the (possible) behavior of a system as it can be
observed and experienced by its users. The service concept is of prime
importance since it defines precisely what benefit a system provides to its
users. Actually it defines a system’s “reason d’être”.

In the ISO-OSI standards meeting in November 1981 in Berlin there was a big fight
between those who wanted to have separate service standards and those who rejected this
idea and only wanted to consider a service definition as an informative addendum to a
protocol standard. The argument was that OSI aimed only at systems interconnection and
that only interconnection needed to be defined in a conformance testable way (by
monitoring the PDU exchanges). Service standards were considered not to be
conformance testable since they focus on user interaction (which apparently was
considered irrelevant) and would require testing the common behavior of products of
different manufacturers. The argument, of course, was nonsense, since one (i.e. ISO itself)
can proof the conformance of the protocol entity specification against the service
specification and then conformance test the protocol entity implementation against the
protocol entity specification. Fortunately the advocates of service standards won the
battle, however at a certain price: the service standard could not be published
independently from the protocol standard.

A service defines a system as a black box, i.e. it provides the most simple
but complete definition of the observable behavior while obscuring how the
system is internally constructed. See Figure 1.

In the early OSI documents a service was defined as “the functions of a layer, while using
the functions of all layers below. See Figure. Since the functions in an N-layer are the N-
protocol entities, this definition in fact confronts the users with the whole complexity of
all protocol entities below an N-service boundary. It took until the end of 1982 before this
definition was revised, following the work of the Formal Description Techniques (FDT)
Group.

3.2 Interaction Point or Service Access Point

In order to make use of a service, users have to interact with it. The fact
that a user can interact with a service can be formalized by the interaction
point (IP) concept, in OSI called the service access point (SAP) concept. The
formal semantics of an IP is basically the identification of the functional
entities that can interact. For an IP these entities are the user and the service
(provider). See Figure 1.
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Associated with IPs are the concepts of addresses and names. Generally
an address is considered as a physical or logical location, while a name is
considered as the identification of a specific user, the location of which is
left undefined.

3.3 Interaction Primitive or Service Primitive

The interaction of a user with a service is always in terms of one or more
“units of interaction”, called interaction primitives, or simply interactions
(Is). See Figure 1. In OSI they are called service primitives (SPs). The
semantics of an I is basically a unit of common activity, which in principle is
the same as a unit of common behavior, at an IP and resulting (with a certain
probability) in some data at some moment. Interacting parties may provide
different contributions to the I, and may have different use of and constraints
on the results. At the appropriate abstraction level only the existence of the I
and its attributes (the IP, the contributions, the results, the probability and
the time moment) need to be defined.



Reference Models for Advanced E-Services 375

Figure 2 shows a graphical way of illustrating a common activity, where
a surface indicates activity and a surface overlap indicates common activity.
The I can be defined by parameters and operations on them.

During the design and documentation of the OSI Transport Service, the design team (of
which the first author was a member) did not want to view the abstract notion that a
service primitive can be considered as a unit of common activity of two adjacent protocol
entities. Instead, service primitives were only understood as one-directional message
transfers, an interpretation many designers still have. Considering the establishment of a
SP as a unit of common activity would have allowed to define the connection endpoint
identifiers (CEIs) as a parameter of the SP whose establishment can be left to (protocol)
implementation. By not appreciating this advanced design concept, CEIs were left out of
the definition of SPs resulting in a politically agreed remark in the text of the standard
[12].

3.4 Abstract Interface

An abstract interface (AI) defines the possible Is at one interaction point
and their causal and parameter relationships. Whereas the IP is an abstract
(logical) location, the AI defines the common behavior at that location.

There is quite some confusion between the notions of an AI and a real interface (RI)
where many designers seem to only understand the latter. Where the AI is at the top
architectural level, such as at the RM level, a RI is always at the level of a real
implementation. In fact the same RI may be used in the implementation of a variety of
AIs. The notion of AI never played a dominant role in OSI.

3.5 Service Design

A service can be designed by defining the IPs, the possible Is at the IPs,
and all their causal and parameter relationships. Alternatively this can be
designed by first defining the AIs at different IPs and then adding the causal
and parameter relationships between the Is at the different AIs. The latter
makes use of a constraint-oriented specification style [22], in which local
and remote constraints on the service’s behavior are separated. This helps in
understanding complex systems, in deriving protocol entities from a service,
and in proving their conformance.

In order to show the causal relationships of interactions, time sequence
diagrams are often used. Although quite illustrative for simple situations, the
two dimensional drawing scheme is not suitable for more complex
relationships. For that purpose we better take resort to an architectural
specification language such as AMBER [5].

Continuing the discussion under 3.1: In OSI one did not want to speak of Service
Specifications in line with Protocol Specifications but only of Service Definitions. The
reason to speak about Definitions was that they were not supposed to be implemented. So
they were not specifications meant as prescriptions for implementation. This again was a
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misunderstanding since a service is implemented by implementing the protocol. A Service
is just one step in abstraction level (i.e. formulating the essential!) closer to the user. In
fact also an OSI Protocol Specification is not implementable directly, since only the OSI
Protocol Entity is, and its specification has to be derived first from the protocol standard
by the designer (see also the discussion in Section 3.6).

OSI service standards were defined by English text and illustrated by block diagrams and
time sequence diagrams. An example of the latter is shown in Figure 3a. To draw such
diagrams, so called OSI Service Conventions were prescribed according to Figure 3b.
Originally these conventions prescribed straight angled lines, as shown in Figure 3c,
where even the magnitude of the angle had the meaning to indicate “transfer speed”. This
idea was probably inspired by the advantageous use of rulers to draw such lines. Its
absurdness could only, after heavy debates, be convincingly demonstrated by showing the
effect of Expedited Data which can overhaul Normal Data. While the conventions would
prescribe a line with a larger positive angle for higher speed data transfer it actually
would result in a line with even a negative angle.

3.6 Service as a composition of Protocol Entities

In OSI it was said that a protocol renders a service. If so, then there
should be a direct relation between a service, and the protocol that
implements it. This can be easily obtained by defining that the composition
of the protocol entities renders the service. This is illustrated in Figure 4.

From the above it follows that the IPs of the protocol that are accessible
by the users are the same as the IPs (SAPs) of the service, which means that
the protocol entities that have these IPs (SAPs) are also involved in the
execution of Is at these IPs (SPs at these SAPs). Formally one can say that
the behavior of the composition of protocol entities, as observable at the IPs,
should conform to the service.
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Consistent with this approach, an OSI (N)-protocol should be defined as the composition
of the (N)-peer protocol entities in the (N)-layer and the underlying (N-1)-service of that
layer, where the latter can be seen as a particular entity (protocol entity according to
Figure 4), functionally quite different from the peer (N)-protocol entities and
interconnected to them via (N-1)-SAPs. See also Figure 5. In OSI, however, the attitude
was as if the (N)-peer protocol could be defined rather independent of the underlying (N-
1)-service. This was also reflected in the task assignments to the various subcommittees:
the Session Group did notdefine the Session Protocol and the Transfer Service, given the
Session Service, but defined the Session Service and the Session Protocol given the OSI-
RM.

Pre-occupied with the focus on the interconnection of open systems, OSI defined a
protocol only as the relationship between peer-to-peer protocol entities (i.e. entities in the
same layer). This led to the funny consequence that OSI protocol specifications never
defined the explicit relation between SPs and PDUs. This in spite of the fact that concepts
such as segmentation and reassembly, concatenation and separation, blocking and de-
blocking, splitting and recombination, and multiplexing and de-multiplexing were defined
in principle. Consequently, a conformance relationship between a service standard and a
protocol standard rendering this service could never been proved. Certain OSI officials
were even quite surprised that the FDT group wanted to formally specify both the (N)-
service and the (N)-protocol and proof their conformance, questioning why one should
make two different specifications of the same standard.

Saying that a service is a composition of protocol entities one could
easily be tempted to also say that a protocol is a decomposition of a service.
And frankly this use of words often occurs. However, the reader should be
warned that a protocol cannot be derived by simply decomposing a service.
The basic reason for this is that in a decomposition internal structure is
revealed that requires additional design choices. These choices are also
incurred by implementation concerns. Consequently a protocol is generally
much more complex than a service. We will not further elaborate on this
since it is beyond the scope of this paper.
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Layered Protocols

The notion of protocol as a decomposition of a service, as introduced
above, allows to define a protocol with an arbitrary structure. I.e. a structure
with an arbitrary, problem dominated composition of protocol entities like
we do hereafter in sections 5, 6 and 7. Frequently, like in the OSI-RM, we
find layered protocol structures. As mentioned in our example above we
achieve this by defining an (N)-protocol as the composition of the peer (N)-
protocol entities and an underlying (N-1)-service, where the latter can be
understood as an (N)-protocol entity with a specific nature. This allows to
define the (N-1)-service again as a composition of peer (N-1)-protocol
entities and an underlying (N-2)-service, as shown in Figure 5.

In so doing, a layered structure results that consists of a set of nested
services interconnected by layers of protocol entities. In fact, the OSI-RM
consists of 8 (not 7) nested services, from top to bottom starting with the
Applications Service and ending with the Medium Service, where the latter
is not further decomposed.

3.7

3.8 A Protocol Entity Considered as a Service

Considering a service as a composition of protocol entities poses the
question how such entities should be specified. The answer is simply by
specifying them in the same way as a service is specified. This view allows
one to consider a protocol entity as a service in its own right, however at a
lower abstraction level, implying that a protocol entity can again be
considered as a composition of lower level (protocol) entities. This view is
consistent with the view to consider an (N-1)-service as a composition of (N-
1)-protocol entities and a (N-2)-service.

This in fact gives us the basis of a top-down design methodology. It
proves the importance of the service concept as a black box that can also be
seen as a composition of lower level (protocol, or if you wish service)
entities.



Networked applications are top-level protocol entities that directly
interact with end users, corresponding to the OSI-RM application layer
entities. They provide application services, often called e-services, while
using network services. Inside application layer entities we do not
necessarily have again a layered (sub)structure, but generally have a specific
structure determined by the nature of the service to be provided. Some
networked applications, for example, exhibit a centralized control structure
as shown in the collaborative services of Section 5. Others may be structured
according to phases in a process as is the case for the transaction services
described in Section 6, or have a pipeline structure like the content services
of Section 7. We illustrate the quality of our decompositions with examples
that show interface-preserving refinements of some of these key functions.

Table 1 summarizes some characteristics of collaboration, transaction,
and content services, the basic service categories we discuss. It shows that
these categories are quite distinct.

The modeling approach we take evolved from the architectural concepts
we described in the previous sections. The language AMBER [5] was
designed as a specification language for business processes, with strong
roots in design and description techniques for telematics services and
protocols. The RSD modeling language [19] augments AMBER with concepts
for describing networked enterprises. In the following sections, we use (self
evident parts of) RSD to describe our models. These languages themselves
cannot be discussed as they are beyond the scope of this paper.

In the design of networked applications the people and organizations as
users of these applications play important roles. In the modeling process we
therefore start with identifying the necessary roles and next derive the
associated key functions from these roles. Our RMs, therefore, consist of
two types of sub-models.

The first sub-model is the role model (Figure 6) that defines which roles
are involved in delivering and using the service defined by the RM. A role
can be considered an abstract carrier of behavior (like end users, or service
provider in the OSI model) and is denoted by an octagon. Arrows between
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4. MODELING E-SERVICES



The second sub-model is the function model (Figure 7) that defines the
functions that together realize the behavior of a service. The responsibility
for performing a function is associated with one or more roles. An actor that
fulfils a role must carry out the associated functions or delegate this to
another actor.

A function can be further detailed as a composition of sub-functions.
Arrows between functions denote again the flow of information, goods or
money. Flows may split and join, depicted by diamonds and squares,
respectively; they enter and exit functions via triangular input and output
interfaces. The thickness of the arrows is used to distinguish between
different types of flows. Primary flows, e.g. the content delivered by a
Service, may be depicted by a thick arrow; secondary flows, e.g. control
flows, may be denoted by a thin arrow.

Figure 8 shows how functions and flows correspond to protocol entities
and interactions discussed in Section 3. Interactions may be refined to one or
more flows that indicate the direction of the exchange of information, goods
or money. The interaction between PE1 and PE2 in Figure 8, for example, is
split into two flows between Function 1 and Function 2. Flows may be
augmented with text.

The RMs described in the sections 5, 6 and 7 are described in much more
detail in [3]. Here, we zoom in on parts of the RMs that are illustrative for
our approach.

380 Digital Communities in a Networked Society

roles represent the service delivery or the flow of information, goods or
money.
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5. COLLABORATIVE SERVICES

Collaborative services are designed to support groups of interacting
people in their cooperative tasks. Examples of such cooperative settings are
teachers tele-educating students, physicians tele-consulting each other, tele-
conferencing board members, and engineers collaboratively working on
designs. Collaborative services typically allow people to invite others to a
virtual meeting, to communicate, share documents, share agendas, divide
and together carry out work, etc. In this paper we use the term conference as
a unit of abstraction, denoting a group of cooperating people that complete a
common task while supported by collaborative services.

The prime use of collaborative services is to bridge distance and time
between geographically dispersed collaborating people by allowing them to
communicate and access data at different moments in time. Ensuring that
users have consistent views of their collaboration and shared information is
an important aspect of this service. A shared whiteboard service, for
example, must provide mechanisms to ensure that all users can view the
same information, can see all updates, and can know who may change the
information. Typically, collaborative services exert a modest control over
the users in order to organize their cooperation. One user may play the role
of chairman and employ procedures to give the floor to others, interrupt
them, etc.

5.1 A Reference Model for Collaborative Services

In a collaborative setting each user (participant in a conference) has
access to collaboration support functions. These functions use a network for
interconnection. See Figure 9.

The clustering of collaborative support functions into functional building
blocks in our RM is based on the separation of concerns principle. Literature
on how people cooperate (e.g., [1, 6, 8]) indicates that cooperative settings



differ (in abstract terms) regarding four aspects: 1) the set of people that
cooperate, 2) the set of tools they use to communicate and access shared
information objects, 3) the set of rules they apply, and 4) the mechanism
they apply to start cooperation (denoted as conference enabling). On the
other hand, functions to start and end cooperation and to manage the set of
cooperating people are always present.

Based on this we define the following key functions, as indicated in
Figure 10: conference tools, to communicate and access shared information;
coordination, to define and enact rules; conference enabling, to bring people
together for cooperation; and conference management, to provide start and
stop conferences and to manage the set of cooperating people. Conference
management also keeps track of the conference tools that are in use and
specifies what coordination policy applies.

Conference tools allow participants in a conference to communicate or
collaborate using shared information objects. An audio conferencing tool
and a shared whiteboard are examples of conference tools. Coordination
defines and enacts the rules that may apply during a conference: the access
rights for using collaborative services. The main function of Conference
Enabling is to bring people together for cooperation, by providing awareness
about other users who can be invited to a conference, or about other ongoing
conferences that can be joined.

382 Digital Communities in a Networked Society
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As an example of interface preserving decomposition, we decompose the
Conference Management function (Figure 10) that is responsible for
providing services to users to manage an online conference. For a complete
description we refer to [3] and [18]. These services allow users to:

start and end conferences;
join and leave conferences;
invite people to a conference;
select the tools to use in a conference;
select the coordination policy that applies during the conference.
The specification of conference management sub-functions in Figure 11

adds detail (i.e. lower level functional entities) to the high-level description
in Figure 10. It shows how the specified interactions are provided by sub-
functions. For instance, users can interact with conference management to
indicate which tools should be active in a conference. Subsequently,
conference management can adjust the conference tools settings, taking into
account the tool capabilities and current tool settings.

The conference management function is furthermore responsible for
providing information regarding the conference and its participants to other
collaborative functions.

5.2 Conference Management
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6. TRANSACTION SERVICES

Transaction services support formal, and often legally traceable,
transactions between parties by organizing the exchange of pre-defined
messages in pre-defined orders. Their prime use is to exert legal, commercial
and financial commitments, and parties may be held liable when they fail to
follow them. A procurement may be organized, for example, as a request for
a product, leading to the indication of a price and followed by the acceptance
or rejection of the offer. Companies trade according to predefined
procedures such as: “you pay first, then I deliver”, or “I deliver, you pay in
two installments”, or “you order, I ship unless you cancel”, etc. The
procedures may be dictated by law or may have been agreed before in
negotiations, etc.

Typically, transaction services do not convey massive volumes of data
per transaction; rather they exchange simple messages like orders,
reservations, bills, payments, etc.

Commercial transactions occur over and over in the course of a business
day, and many different types of, so called, e-commerce services have
emerged recently including online marketing, searching, ordering, payment,
and after-sales support [20, 21]. Here, we will focus on e-commerce that
takes place around electronic marketplaces in a business-to-business setting.
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Figure 12 shows the basic roles involved in an e-marketplace and their
relations [10]. The primary user roles involved in any electronic trading
system are those of buyer and seller. Another essential role is the one of
marketplace operator as a front-end service provider. The latter is
responsible for offering a large spectrum of services to the buyer and seller.
All of these services are meant to support the fulfillment of the distinct
phases of a business transaction process.

Almost always, the provisioning of some parts of these services is
delegated or subcontracted to back-end service providers (e.g. providers of
logistics services, financial services, foreign trade services, communication
services, trust services). The services can be delivered either directly to the
users (like in the case of logistic services), or through the front-end service
provider, e.g. the marketplace operator (as in the case of trust services). Of
course each marketplace has its own particular role, flow structure, and
degree of complexity, and therefore various scenarios can be imagined to
describe a commerce system.

Let us now zoom in on the services provided by the market operator. The
central organizing principle of our RM (see Figure 13) is to group those
functions that occur within the same time frame and need the same
information. Any commercial transaction has three main phases:
information, negotiation and settlement. We therefore define three key
functions of the marketplace: Information Management, Negotiation and
Agreement Management, and Settlement and Fulfillment Management. Note
that we distinguish between the functionality of the two user roles: buyers
and sellers.

6.1 A Reference Model for E-Marketplaces
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Information Management deals with the acquisition, storage,
maintenance, provision, and presentation of information to buyers and
sellers. This function covers information areas such as general user
information and profiling, user offerings and user demands information,
administration and maintenance of electronic catalogues, search engines in
catalogues, marketing & advertising. This function is also responsible for the
provision of information regarding the selected products and the trading
parties to the function Negotiation and Agreement Management.

Once a user has decided to perform a transaction, the Negotiation and
Agreement Management function takes care of the negotiation process,
provides support for pricing mechanisms (auctioning, bidding, bartering,
exchange, etc.), and for the issuing and distribution of electronic contracts
and purchasing orders to the Settlement and Fulfillment Management
function.

The latter operates whenever an agreement over a commercial transaction
between two (or several) parties has been reached and has resulted in an
electronic contract or order. This function provides support for the transfer
of goods and money between the trading parties, and thus triggers the
financial and logistic completion of the transaction. Some of the tasks that
are covered by this function are invoicing, billing, and payment, tracing, and
tracking orders, coupling to the back-office (including legacy systems),
shipment facilitation or logistic services, etc.
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As an example of interface preserving decomposition, we now zoom in
on the Negotiation and Agreement Management function. Again, we use
functional decomposition according to the phases in the transaction as the
guiding principle in the RM. First, the seller and the buyer engage in a
negotiation process in the marketplace. This negotiation follows certain
procedures through which the price and other conditions are settled. Second,
once the price has been set, the negotiation ends, resulting in an agreement.
This also entails issuing a contract (or the purchasing order) describing the
terms of the transaction (products, amounts, prices, trading parties,
guaranties, penalties, etc.). In our RM, this commercial functionality is
embedded in the function Negotiation and Agreement Management (see
Figure 14). This consists of a number of sub-functions.

The Transactions Central Administration is responsible for the
information regarding the negotiation procedure, for controlling this
procedure, and for commanding, in case of agreement, the issuing of an
electronic contract (or purchase order). The inputs of this function are the
information about the trading parties and traded products received from the
information management functions, and, in case of dynamic pricing (such as
an auction) the bids and offers received from the Placing Bid function and
Placing Offer function of the buyer(s), and of the seller(s) respectively. In

6.2 Negotiation and Agreement Management



the case of dynamic pricing, these inputs are forwarded to the Dynamic
Pricing function where they are processed according to the rules of the
pricing algorithm. The results are sent back to the trading parties, through
the Transactions Central Administration function, and, eventually, a new
iteration can start.

When the price has been set, the Transaction Central Administration
provides all the necessary information to the Electronic Contracting &
Electronic Purchase-Ordering function. This initiates the issuing of an
electronic contract (or purchase order). This function is also responsible for
the storage of these documents, which is in fact the most important output of
the transaction central administration, and of the negotiation/agreement
management itself. They will be forwarded to the next main function of the
marketplace, the Settlement and Fulfillment Management.

Content services allow people to access and manipulate electronic
content such as: accessing digital video libraries, viewing video programs,
mixing parts of different video programs to compose a new program. The
primary use of content services is to give users access to large amounts of
data. Here, we will mostly discuss digital video disclosure because video is
in some respects the most demanding form of content manipulation. To
disclose video, we need a set of services for content production, a web
enabled distribution channel and a method to consume it. The particular
focus will be on video handling, data-interoperability, storage of high
volume content, semi-structured metadata and structured data for services
like metering, accounting, billing and payment ([15, pp. VI and 9]).

The main engineering problem of a multimedia system is to deal with the
fundamentally analogue nature of real sounds and images, and to extract the
meaningful information from the theoretically infinite amount of information
they contain. An important practical consideration is that for this reason
multimedia tends to be expensive. One has to process large amounts of data
while keeping track of financially important information like usage. In
content engineering, properties of data and the way data is represented and
stored are important architectural issues.
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7. CONTENT SERVICES

7.1 A Reference Model for Content Services

In the content supply chain from media producer to digital content
consumer, we identify four different roles to be played as shown in Figure 15.
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These roles perform consecutive steps in the ‘content pipeline’, from the
production to the consumption of the content. This, therefore, determines the
main structure of our RM. We decompose the content supply chain along the
same boundaries as in Figure 15, resulting in the key functions of Figure 16.

The function Media Production is responsible for producing media assets
(movies, music, pictures, texts, etc.), and metadata for these assets (e.g.
bibliographical data, background data).

Content Production transforms media assets and associated metadata into
digital content, by digitizing the media (if not digitally produced), and/or
transcoding it into various digital formats. Additionally, it adds metadata for
easy searching, data management, and business purposes, metadata and
watermarks for digital rights management, and web pages, links to other
pages and assets, advertisements etc.

Content Provision makes content available to end-users. It enforces
digital rights, obtains payment from end-users, and pays media producers for
the use of their content. Finally, Content Consumption provides functionality
for searching and retrieving of content, paying for content, authentication for
digital rights management, and possibly enjoying the content.
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7.2 Content Production

As an example of interface preserving decomposition, we further refine
the Content Production function. The full RM can be found in [15]. Content
production is typically done by service industries for both the media industry
and for content providers. The organizations involved are the organizations
that provide the technical infrastructure for media production (which may or
may not be owned by that media producer). The boundaries between media



390 Digital Communities in a Networked Society

production and content production are not entirely clear cut, and the
boundaries may blur even further if digital media become the default.

In decomposing the Content Production function, we use another
important organizing principle in RMs: the distinction between primary
functions, i.e., dealing with the content itself, and secondary functions,
which control and monitor these primary functions. This leads to the
decomposition shown in Figure 17.

The Content Production Street is the “factory” in which analog or digital
media assets and the corresponding metadata are transformed into content.
The Workflow Management function does job scheduling, job monitoring
and resource allocation inside the production street. The Accounting and
Billing function keeps track of resource consumption. The core functions of
the content production process are contained in the example decomposition



of the Content Production Street, shown in Figure 18. The sub-structure of
this function is very specific to the content production domain, but its
general organizing principle is that of a data-centric architecture, which is
very well suited to a data-intensive application such as content production.

We have taken collaborative, transaction, and content services as
categories of basic e-services from which, in principle, more complex e-
services can be composed. By focusing on the most important functional
aspects of a service we have shown that it is possible to define a high level,
main design structure for the networked application as a composition of key
functions and their relationships that supports this service and that can act as
a RM. The structure of this composition is very much determined by the
nature of the service to be provided. This main design structure has to be
established before other design details can be added. The architectural
quality of the compositions has been illustrated by showing interface
preserving decompositions of some key functions as examples of adding
design details.

The approach shows that RMs can play a significant role in designing
complex systems, in allocating design tasks to cooperating design teams and
in facilitating their communication. As such, RMs can also play a vital role
in standardization activities.

To serve its purpose as a common reference, we think it is of great
importance that a RM and its derived functions is built on sound
architectural modeling concepts that are not only generic, complete, and
consistent but also realistic abstractions of real world system properties, are
well understood and commonly supported. In that respect we strongly
support Brooks’ statement, “conceptual integrity is the most important
consideration in system design” [4]. Therefore we have outlined some
concepts we consider essential for architecting RMs and contrasted them
against some historical misjudgements.

Since e-services that are distributed across the Internet are relatively
advanced developments, the body of knowledge regarding their architecture
and design is still very much under development. This paper aims to
contribute to these developments.
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8. CONCLUSIONS
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