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ABSTRACT: Coupling optimisation algorithms to Finite Element (FEM) simulations is a very promising
way to achieve optimal metal forming processes. However, many optimisation algorithms exist and it is not
clear which of these algorithms to use. This paper compares an efficient Metamodel Assisted Evolutionary
Strategy (MAES), three variants of a Sequential Approximate Optimisation (SAO) algorithm, and two iterative
algorithms (BFGS and SCPIP). They are compared to each other and to reference situations by application to
two forging examples. It is concluded that both MAES and SAO outperform the iterative algorithms. Moreover,
they yield significant improvements with respect to the reference situations, which makes them both very
interesting algorithms for optimising metal forming processes.
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1 INTRODUCTION

During the last decades, Finite Element (FEM) simu-
lations of metal forming processes have become im-
portant tools for designing feasible production pro-
cesses. More recently, several authors recognised the
potential of coupling FEM simulations to mathemat-
ical optimisation algorithms to designoptimal metal
forming processes instead of onlyfeasibleones.

A way of optimising metal forming processes is using
classical iterative optimisation algorithms (Conjugate
gradient, BFGS, etc.), where each function evaluation
means running a FEM calculation. These algorithms
are well-known, but suffer from a number of disad-
vantages: they do not allow for parallel computing,
require difficult to obtain sensitivities, and may be
trapped in a local optimum.

Several authors have tried to overcome these disad-
vantages by applying genetic or evolutionary opti-
misation algorithms. Genetic and evolutionary algo-
rithms look promising because of their tendency to

find the global optimum and the possibility for paral-
lel computing. However, they are known to require
many function evaluations [1].

A third alternative is using approximate optimisation
algorithms such as Response Surface Methodology
(RSM) or Kriging (DACE). RSM is based on fitting a
lower order polynomial metamodel through response
points, Kriging interpolates exactly through these re-
sponse points. Approximate optimisation algorithms
allow for parallel computing, find global optima and
do not need sensitivities.

Which of the above algorithms to use for the op-
timisation of metal forming processes using time-
consuming FEM simulations is still not clear. This pa-
per compares an efficient evolutionary strategy, three
variants of a Sequential Approximate Optimisation al-
gorithm, and two iterative optimisation algorithms.
The algorithms are introduced shortly in Section 2.
They are compared to each other by applying them
to two forging examples in Section 3. Section 4 dis-
cusses the results of the comparison.



Figure 1: Metamodel Assisted Evolutionary Strategy

2 THE OPTIMISATION ALGORITHMS

2.1 Metamodel Assisted Evolutionary Strategy
(MAES)

The first algorithm is a Metamodel Assisted Evolu-
tionary Strategy (MAES) [1, 2], which is depicted in
Figure 1. Like any evolutionary algorithm, it com-
prises selection, recombination and mutation. As
mentioned in the introduction, the large disadvantage
of evolutionary algorithms is the necessity for per-
forming many function evaluations, i.e. many time-
consuming FEM simulations. This problem is over-
come by predicting the objective function values re-
quired by the evolutionary strategy first by fitting a
Kriging metamodel. Subsequently, only the best 20%
of the offspring individuals are evaluated by running
a FEM simulation. This significantly reduces the total
number of simulations that need to be performed for
optimisation.

2.2 Sequential Approximate Optimisation (SAO)

The approximate optimisation algorithm used for the
comparison is shown in Figure 2 [3, 4]. It comprises
a spacefilling Latin Hypercubes Design Of Experi-
ments (DOE) strategy, RSM and Kriging metamod-
elling and validation techniques, and a multistart SQP
algorithm for optimising the metamodels. The algo-
rithm allows for sequential improvement of the accu-
racy and can thus be denoted as a Sequential Approx-
imate Optimisation (SAO) algorithm.
Three variants of this SAO algorithm are taken into
account. They differ in the sequential improvement
strategy. The first variant (SAO) simply adds new
DOE points in a spacefilling way. The second and
third variants employ all the information obtained
during a previous iteration, i.e. the shape of the meta-
modelŷ (RSM or Kriging) and its standard deviation
s. For Kriging, ŷ andsare shown in Figure 3.
The second sequential improvement strategy (SAO-
MMF) selects the new DOE points that Minimise the
Merit Function:

fmerit = ŷ−w·s (1)

Figure 2: Sequential Approximate Optimisation [3, 4]

wherew is a weight factor. If one selectsw = 0, the
new DOE points equal the optima of the metamodel
ŷ. If w → ∞, the new DOE points are simply added
in a spacefilling way. We found thatw = 1 provides a
good compromise between both extreme cases.
The third sequential improvement strategy (SAO-
MEI) selects the new DOE points that Maximise the
Expected ImprovementE(I) [5]:

E(I) = ( fmin− ŷ)Φ
(

fmin− ŷ
s

)

+sφ
(

fmin− ŷ
s

)

(2)

in which again ˆy ands are used. fmin is the lowest
objective function value obtained in all previous iter-
ations andφ andΦ denote the probability density and
the cumulative distribution functions of the standard
normal distribution, respectively. Both SAO-MMF
and SAO-MEI tend to select new DOE points in the
region where the global optimum is predicted to be
(ŷ is small). Additional points are selected where no
points have been sampled before (s is large).

Figure 3: Sequential improvement employing metamodel
information of the previous iteration



Figure 4: (a) The preform; (b) The spindle; (c) Folding

3 APPLICATION TO FORGING

The optimisation algorithms introduced in the previ-
ous section are compared to reference situations and
each other by applying them to two forging examples.
Two iterative algorithms are also included in the com-
parison: a widely available BFGS algorithm and a
combination of Sequential Convex Programming and
an Interior Point method (SCPIP) [6].

3.1 Spindle

The first forging application is a spindle. The spindle
is produced in two steps: upsetting first results in a
preform (Figure 4(a)), which is subsequently forged
to the final spindle presented in Figure 4(b). In the
reference situation, it suffers from a folding defect as
can be seen from the Finite Element Model (FEM) of
the spindle in Figure 4(c). FORGE3r was used as FE
code.

An optimisation problem was modelled to solve this
folding problem. An objective functionΦfold was for-
mulated to minimise the folding potential, see [2]. For
the reference situationΦfold = 10.49. The three de-
sign variables are control points of a B-spline that is
used to describe the geometry of the preform and are
presented asP1,P2 andP3 in Figure 5.

The optimisation algorithms introduced in Section 2
and the iterative BFGS and SCPIP algorithms were
applied to solve the optimisation problem. The re-
sults are presented in Figure 6 and will be discussed
in Section 4 together with the results of the second
forging example.

Figure 5: The B-spline describing the geometry of the
preform of the spindle
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Figure 6: Convergence of the algorithms for optimising
the spindle

3.2 Gear

The second forging example is a gear. Its preform and
the final product after forging are presented in Figure
7. It will be tried to improve the gear forging process
with respect to the reference situation, which is the
forging process proposed by the forging company.

Objective functions have been formulated to improve
two things: the susceptibility to foldingΦfold and the
energy consumption needed for forming the gearΦene
[2]. They are combined to yield one total objective
function Φtot. Figure 8(a) presents the FE model of
the gear. Again FORGE3r is used as FE code. The
design variablesµ1,µ2 andµ3 describe the geometry
of the preform, which is visualised in Figure 8(b). Pa-
rameterµ4 follows from the design variables when de-
manding volume conservation.

The results of applying the optimisation algorithms
are summarised in Table 1. The table presents the
optimal objective function values for the different al-
gorithms and compares the improvement in folding
potential and energy consumption with respect to the
reference situation. Figure 9 presents the optimal pre-
form geometries obtained by the different algorithms.
The convergence behaviour of the optimisation algo-
rithms is shown in Figure 10.

Figure 7: A gear: (a) The preform; (b) The final product



Figure 8: (a) The 3D FE model of the gear; (b) The design
variables describing the geometry of the preform

4 DISCUSSION

Concluding this comparison between optimisation al-
gorithms, let us summarise the findings. For both
forging cases, the results were very similar. All algo-
rithms yielded better results than the reference situa-
tion. Moreover, Figures 6 and 10, and Table 1 show
that the local iterative BFGS and SCPIP algorithms
are outperformed by the other, global algorithms. For
the spindle, the iterative algorithms proved not to be
able to solve the folding defect and are insufficient.
Regarding Sequential Approximate Optimisation,
SAO-MMF and SAO-MEI are more effective than
SAO. For the spindle, SAO was not capable of fully
removing the folding defect, whereas SAO-MMF and
SAO-MEI solved the folding problem convincingly.
The Metamodel Assisted Evolutionary Strategy
(MAES) performed approximately equally well as
SAO-MMF and SAO-MEI. For both the spindle and
the gear, SAO-MEI yielded the best results, fol-
lowed closely by SAO-MMF and MAES, respec-
tively. However, the difference is very small. This
is demonstrated in Figure 9, where one can barely see
a difference between the optimal preform geometries
obtained by these three algorithms.

Figure 9: Preforms of the gear: (a) Reference; (b) BFGS;
(c) MAES; (d) SAO; (e) SAO-MMF; (f) SAO-MEI
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Figure 10: Convergence of the algorithms for optimising
the gear

In the end, it can be concluded that MAES, SAO-
MMF and SAO-MEI all are very promising optimi-
sation algorithms for the optimisation of metal form-
ing processes. They have been shown to eliminate the
folding defect for the spindle and have reduced both
the folding susceptibility of the gear and the energy
consumption needed for forging this part by approxi-
mately 10% as can be obtained from Table 1.

Ref. BFGS SCPIP MAES SAO MMF MEI
Φtot 1.19 1.157 1.123 1.079 1.091 1.076 1.068
Φene – – – -9.7% -8.7% -8.2% -9.4%
Φfold – – – -7.6% -6.6% -9.8% -9.8%

Table 1: Results of optimising the gear
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