Micromechanics of the elastic behaviour of granular materials

N.P. Kruyt Department of Mechanical Engineering University of Twente

L. Rothenburg Department of Civil Engineering University of Waterloo

Overview

- Micromechanics: stress, strain and work
- Discrete Element Simulations
- Variational principles
- Upper and lower bounds; uniform strain and stress
- Statistical theory
- Statistics from DEM simulations
- Conclusions

Micromechanics

Objective: relation macroscopic and microscopic characteristics

Macroscopic level

Microscopic level

stress

strain

- contact force
- contact relative displacement

$$\Delta_i^{pq} = u_i^q - u_i^p$$

Contact geometry

Stress

In boundary terms

$$\overline{\sigma}_{ij} = \frac{1}{S} \int_{S} \sigma_{ij} dS = \frac{1}{S} \int_{S} \frac{\partial}{\partial x_{k}} (x_{i} \sigma_{kj}) dS$$
$$= \frac{1}{S} \int_{B} n_{k} x_{i} \sigma_{kj} dS = \frac{1}{S} \sum_{\beta \in B} X_{i}^{\beta} f_{j}^{\beta}$$

In contact terms

Equilibrium conditions

$$\sum_{q} f_j^{pq} + f_j^{\beta} = 0$$

$$\sum_{p \in A} \sum_{q} X_{i}^{p} f_{j}^{pq} + \sum_{\beta \in B} X_{i}^{\beta} f_{j}^{\beta} = 0$$
$$\sum_{\beta \in B} \int_{\beta} f_{j}^{\beta} x_{i}^{\beta} = \sum_{c \in S} f_{j}^{c} l_{i}^{c}$$

Micromechanical stress

$$\bar{\sigma}_{ij} = \frac{1}{S} \sum_{c \in S} f_j^c l_i^c$$

Strain

In boundary terms

$$\overline{\alpha}_{ij} = \frac{1}{S} \int_{S} \frac{\partial u_i}{\partial x_j} dS = \frac{1}{S} \int_{B} u_i n_j ds = e_{jk} \frac{1}{S} \int_{B} u_i t_k ds$$
$$= e_{jk} \frac{1}{S} \int_{B} u_i \frac{dx_k}{ds} ds = -e_{jk} \frac{1}{S} \int_{B} \frac{du_i}{ds} x_k ds = -e_{jk} \frac{1}{S} \sum_{\alpha \in B} \Delta_i^{\alpha} X_k^{\alpha}$$

In contact terms

Compatibility conditions

$$\sum_{s} \Delta_i^{rs} + \Delta_i^{r\alpha} = 0$$

Network connecting particle centres

$$\sum_{r} \sum_{s} \Delta_{i}^{rs} X_{j}^{r} + \sum_{r} \Delta_{i}^{r\alpha} X_{j}^{r} = 0$$
$$\sum_{\alpha \in B} \Delta_{i}^{\alpha} X_{j}^{\alpha} = \sum_{c \in S} \Delta_{i}^{c} g_{j}^{c}$$
$$\overline{\alpha}_{ij} = \frac{1}{S} \sum_{c \in S} \Delta_{i}^{c} h_{j}^{c}$$
$$h_{j}^{c} = -e_{jk} g_{k}^{c}$$

Polygon s

$$h_i^{rs}$$
 g_i^{rs}
Polygon r

Work

$$\frac{1}{S}\sum_{c \in S} f_i^c \Delta_i^c = \sigma_{ij} \varepsilon_{ij}$$

Geometry

$$\delta_{ij} = \frac{1}{S} \sum_{c \in S} l_i^c h_j^c$$

Uniform strain and stress

$$\Delta_i^c = \varepsilon_{ij} l_j^c \qquad f_i^c = \sigma_{ij} h_j^c$$

Geometrical considerations

Coordination number $\Gamma = 3$

Packing density
$$\cong \frac{\pi}{\Gamma \tan \frac{\pi}{\Gamma}}$$

Summary of micromechanics

Particle	Connecting relation	Polygon
$\sum_{q} h_i^{pq} = 0$	$\delta_{ij} = \frac{1}{S} \sum_{c \in S} h_i^c l_j^c$	$\sum_{s} l_i^{rs} = 0$
$\sum_{q} f_i^{pq} = 0$	$f_i^c = S_{ij}^c \Delta_j^c$	$\sum_{s} \Delta_{i}^{rs} = 0$
$\sigma_{ij} = \frac{1}{S} \sum_{c \in S} f_i^c l_j^c$	$\sigma_{ij}\varepsilon_{ij} = \frac{1}{S}\sum_{c \in S} f_i^c \Delta_i^c$	$\varepsilon_{ij} = \frac{1}{S} \sum_{c \in S} \Delta_i^c h_j^c$

Elastic contact constitutive relation

No particle rotation!

$$S_{ij}^{c} = k_{n}n_{i}^{c}n_{j}^{c} + k_{t}t_{i}^{c}t_{j}^{c}$$

$$f_{n}^{c} = k_{n}\Delta_{n}^{c}$$

$$f_{t}^{c} = k_{t}\Delta_{t}^{c}$$

$$k_{t}$$

Discrete Element Method simulations

- isotropic assemblies with 50,000 disks
- wide lognormal PSD
- coordination numbers $4 \le \Gamma \le 6$
- stiffness ratios $0 \le k_t/k_n \le 1$
- periodic boundaries
- compressive and shearing loading

Extremum principles

Minimum potential energy principle

 f_{i}^{*c} , Δ_{i}^{*c} compatible, no equilibrium

 f_i^c , Δ_i^c compatible, equilibrium

$$\frac{1}{2} \sum_{c \in S} f_i^c \Delta_i^c \le \frac{1}{2} \sum_{c \in S} f_i^* \Delta_i^c \Delta_i^*$$

Minimum complementary energy principle

 f_{i}^{*c} , Δ_{i}^{*c} equilibrium, not compatible

 f_i^c , Δ_i^c equilibrium, compatible

Then
$$\frac{1}{2} \sum_{c \in S} f_i^* \Delta_i^c \Delta_i^* \leq \frac{1}{2} \sum_{c \in S} f_i^c \Delta_i^c$$

Take $\Delta_{i}^{*c} = \epsilon_{ij} l_{j}^{c}$: uniform strain

Upper bound $\varepsilon_{ij}L_{ijkl}\varepsilon_{kl} \le \varepsilon_{ij}L_{ijkl}^{\varepsilon}\varepsilon_{kl} = \varepsilon_{ij}\left(\frac{1}{S}\sum_{c \in S}S_{ik}^{c}l_{j}^{c}l_{l}^{c}\right)\varepsilon_{kl}$

Take $f_{i}^{*c} = \sigma_{ij}h_{j}^{c}$: uniform stress

Lower bound $\sigma_{ij}M_{ijkl}\sigma_{kl} \le \sigma_{ij}M_{ijkl}^{\sigma}\sigma_{kl} \equiv \sigma_{ij}\left(\frac{1}{S}\sum_{c \in S}S_{ik}^{-1c}h_{j}^{c}h_{l}^{c}\right)\sigma_{kl}$

Orientational averaging

Uniform strain $\Delta_i = \epsilon_{ij} l_j$

 $\sigma_{ij} = \frac{1}{S} \sum_{c \in S} f_j^c l_i^c = \frac{M}{S} \sum_{\theta_g} E(\theta_g) \Delta \theta \overline{f_j l_i}(\theta_g) = m_S \int_{0}^{2\pi} E(\theta) \overline{f_j l_i}(\theta) d\theta$ Contact density

Overall average $\langle w(\theta) \rangle = m_S \int_{0}^{2\pi} E(\theta) \overline{w(\theta)} d\theta$

Statistical potential energy principle

Minimize potential energy
$$\langle \frac{1}{2} \Delta_i S_{ij} \Delta_j \rangle$$

Subject to constraints $\varepsilon_{ij} = \langle \Delta_i h_j \rangle$ $\langle f_i \Delta_i \rangle = \sigma_{ij} \varepsilon_{ij}$
Gaussian distributions $\overline{\Delta_n^2(\theta)} = \overline{\Delta_n(\theta)}^2 + \sigma_n^2(\theta)$
 $\overline{\Delta_t^2(\theta)} = \overline{\Delta_t(\theta)}^2 + \sigma_t^2(\theta)$

Disorder $\chi \equiv \langle k_n \sigma_n^2 + k_t \sigma_t^2 \rangle = \alpha (1 - \alpha) \varepsilon_{ij} (L_{ijkl}^{\varepsilon} - L_{ijkl}^{\sigma}) \varepsilon_{kl}$

Choose α for *maximum* disorder, then

$$L_{ijkl} = \frac{L_{ijkl}^{\varepsilon} + L_{ijkl}^{\sigma}}{2}$$

Observations from DEM simulations

Geometry

Moduli

Simulations

Comparison of theory and simulations

Displacements

Micromechanics of the elastic behaviour of granular materials

Probability density functions

Energy ratios

$$E_n = \frac{1}{2} \langle k_n \overline{\Delta_n^2} \rangle \qquad E_n = \frac{1}{2} \langle k_t \overline{\Delta_t^2} \rangle$$

\bigcirc

Conclusions

- two regimes: uniform strain and uniform stress
- upper and lower bound for moduli
- uniform strain assumption is only correct for dense systems
- statistical theory gives average of uniform strain and stress; appropriate for loose systems
- Gaussian probability functions for normal and tangential components of relative displacements
- no equipartition of energy

Uniform field moduli

$$\frac{K^{\varepsilon}}{k_n} = \frac{m_S}{4}\overline{l_n^2} \qquad \qquad \frac{G^{\varepsilon}}{k_n} = \frac{m_S}{8}\left(1 + \frac{k_t}{k_n}\right)\overline{l_n^2}$$
$$\frac{K^{\sigma}}{k_n} = \frac{k_t/k_n}{m_S(\lambda \overline{h_n^2} + \overline{h_t^2})} \qquad \qquad \frac{G^{\sigma}}{k_n} = \frac{2k_t/k_n}{m_S(1 + k_t/k_n)(\overline{h_n^2} + \overline{h_t^2})}$$

Theoretical generalised strain

$\zeta_n^K = \frac{1}{2} + \frac{K^{\sigma} \overline{h_n}}{k_n} \overline{\overline{l_n}}$	Compression
$\zeta_n^G = \frac{1}{2} + \frac{G^{\sigma} \overline{h_n}}{k_n \overline{l_n}}$	Shear
$\zeta_t^G = \frac{1}{2} + \frac{G^{\sigma} \overline{h_n}}{k_t \overline{l_n}}$	Shear

Influence of rotation; shear modulus

22

Particle size distribution

Micromechanics of the elastic behaviour of granular materials

View publication stats