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Abstract This paper discusses a mixed lubrication model in order to predict the Stribeck
curve for starved lubricated line contacts. The model is an extension of the mixed
lubrication model of Gelinck and Schipper [1]. In order to build the starved
Stribeck curve model, the contact model of Greenwood and Williamson [2] and
the EHL film thickness for starved line contacts making use of the assumption
of Johnson et al. [3] is combined. The starved solution to be implemented in
the EHL component is obtained by fitting numerical data of Wolveridge et al.
[4] who computed the starved film thickness for smooth line contacts. Calcula-
tions are presented for different oil supply layer thickness over roughness values.
For values of oil layer thickness over roughness ratio (hoil/σs ) larger than ap-
proximately 6, the Stribeck curve and separation do not change. If the oil layer
thickness over roughness ratio is in the range of 6 to 0.7 friction starts to increase
and the film thickness decreases. When the oil layer thickness over roughness
ratio is less than approximately 0.7 the Stribeck curve tends to transform into a
straight line and separation stays on the same value as in the BL regime.

Keywords: Stribeck curve, starved lubrication, mixed lubrication, film thickness, oil layer
thickness over roughness ratio.

1. INTRODUCTION

One of the developments in design is to reduce the size of the components in
constructions while transmitting the same or even higher loads, resulting in
severe operational contact conditions. This means that the contact between the
different components do not operate anymore under (elasto-) hydrodynamic
lubrication (EHL) conditions but mixed lubrication (ML) or even boundary
lubrication (BL) is more likely to occur. Therefore, the Stribeck curve is an
important tool to determine in which lubrication regime a contact operates. In
Gelinck and Schipper [1] a model is presented in order to predict the Stribeck
curve for line contacts. This model is based on the combination of the Green-
wood and Williamson [2] contact model and the full film theory using the
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mixed lubrication model of Johnson et al. [3]. With this model one is able to
predict friction and determine the transitions between the different lubrication
regimes i.e. (Elasto-) Hydrodynamic Lubrication (EHL), Mixed Lubrication
(ML) and Boundary Lubrication (BL). This model is based on the assumption
that enough lubricant is supplied to the contact, e.g. fully flooded conditions.
However, in many applications the amount of lubricant available is not suf-
ficient and the contacts operate under starved lubrication conditions. For a
designer it is very important to know the friction and the transitions between
the different lubrication regimes (EHL, ML and BL) under starved lubrication
conditions.

In the literature much attention is paid to starvation, however, the investiga-
tions were conducted for the full-film situation (no contact takes place between
the opposing surfaces) with the emphasis on the inlet boundary conditions and
cavitation. Most of these investigations were applied to the circular contact
situation. For the starved line contact situation, a few were published, for in-
stance Wolveridge et al. [4].

In the work of Wolveridge et al. [4] a correction on the film thickness for-
mula for line contacts due to starvation is presented. Combining this modified
film thickness relation for starved line contacts with the model of Gelinck and
Schipper [1] will result in a mixed lubrication model for starved line contacts.

In this article the consequences of starvation on friction depicted in the gen-
eralised Stribeck curve due to change in film formation are discussed.

2. MIXED LUBRICATION MODEL

The total normal load FT is shared by the hydrodynamic action and the inter-
acting asperities:

FT = FC + FH , (1)

where FC is the load carried by the asperities and FH the load carried by the
hydrodynamic component. Therefore, friction in mixed lubrication is a sum-
mation of the friction due to asperity interaction (boundary lubrication) and
friction due to shearing the lubricant.

2.1 Load Carried by Asperity Interaction

Greenwood and Williamson [2] showed that the load carried by the asperities
is given by:

pa(x) = 2

3
nβσs

√
σs

β
E′F3/2

(
h(x)

σs

)
(2)

with h the separation between two surfaces, n the density of the asperities, β

the average radius of the asperities, and σs the standard deviation of the height
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distribution of the asperities. F3/2(h) is defined as:

F3/2(h) =
∫ ∞

h

(s − h)3/2 φ(s) ds, (3)

where φ(s) is the height distribution of the asperity summits. In this paper a
Gaussian height distribution of the asperities has been assumed:

φ(s) = 1√
2π

e−1/2s2
. (4)

The elasticity modulus used in Equation (2) is defined as:

2

E′ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
(5)

with Ei the elasticity modulus of the surfaces and νi the Poisson’s ratio.
In Gelinck and Schipper [1] the pressure distribution was calculated on the

basis of Equation (2), making the nominal pressure p[h(x)] due to the de-
formed asperities consistent with the gap h[p(x)] resulting from the bulk de-
formation. A relation for the central (maximum) pressure pC compared to its
smooth value as characterising the complete pressure distribution is derived:

PC

pHertz
=
[
1 + (

a1n
′ a2σS ′ a3Wa2−a3

)a/4
]1/a4

(6)

in which pHertz is the maximum Hertzian pressure (for the other parameters the
reader is referred to the Appendix).

2.2 EHL Component

Based on EHL calculations Moes [7] derived a fit in dimensionless form for
the central film thickness in an EHL line contact:

HC =
[(

H
7/3
RI + H

7/3
EI

)3/7s +
(
H

7/2
RP + H

7/2
EP

)2/7s
]s−1

(7)

with

s = 1

5

(
7 + 8 exp

[
−2

HEI

HRI

])
. (8)

HRI ,HEI ,HRP and HEP are the dimensionless film thickness asymptotes for
respectively the Rigid-Isoviscous, Elastic-Isoviscous, Rigid-Piezoviscous and
Elastic-Piezoviscous situation as described in the Moes-diagram. The reader is
referred to the Appendix, Gelinck and Schipper [1] or to Moes [7] for further
details of the Moes diagram and the asymptotes.
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2.3 The Model

According to Johnson et al. [3] the total pressure in an ML contact can be
divided into an EHL component and a BL component.

Two coefficients γ1 and γ2 according to Johnson et al. [3] are defined:

γ1 = FT

FH

, γ2 = FT

FC

. (9)

It is shown by Johnson et al. [3] and Gelinck and Schipper [1] that the results
of the EHL and BL calculations can be combined in the ML regime, if E′ is
replaced by E′/γ1, FT by FT /γ1 and n by n · γ2. For the EHL component this
results in:

HC =
[
γ S

1

(
H

7/3
RI + γ

14/15
1 H

7/3
EI

)3/7S +
(
H

7/2
RP + H

7/2
EP

)2/7S
]1/S

(10)

with

s = 1

5

(
7 + 8 exp

[
−2

HEI

HRI

· γ
−2/5
1

])
(11)

and for the BL component is:

pC

pHerz
= [

1 + (a1n
′ a2 σs ′ a3Wa2−a3γ

a2
2 )a4

]1/a4 1

γ2
. (12)

As the load increases or the surface becomes smoother, pC approaches the
Hertzian pressure corresponding to the fraction of load carried by the asperit-
ies.

With the equations given so far the fractions of load of the BL component
and the EHL component can be calculated.

2.4 Friction Force

The total friction force Ff for a certain velocity is the sum of the balanced fric-
tion forces of the interacting asperities and the shear force of the hydrodynamic
component:

Ff =
N∑

i=1

∫∫
ACi

τci dACi
+
∫∫
AH

τH dAH (13)

with N the number of asperities in contact, ACi the area of contact of a single
asperity, i; τCi the shear stress at the asperity contact i; AH the contact area
of the hydrodynamic component; and τH the shear stress of the hydrodynamic
component.

The coefficient of friction fCi
of a single asperity can be written as:

fCi
= τCi

pCi

(14)
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with pCi
the normal pressure of a single asperity. According to Briscoe et

al. [8] the ratio of the shear strength and the local contact pressure is nearly
constant and therefore the coefficient of friction is approximately constant for
all asperity contacts. Thus the first term in Equation (13) can also be written
as:

N∑
i=1

∫∫
ACi

τCi dACi
= fCFC, (15)

where FC is the total normal load carried by the asperities. The value of fC is
determined from experiments.

For the shear force in the lubricant film the Eyring model is used:

τH (γ̇ ) = τ0 · arcsinh

(
ηγ̇

τ0

)
, (16)

where η is calculated according to the Roelands equation, the pressure used to
calculate the viscosity is the average pressure of the hydrodynamic component,
γ̇ is the shear rate (νdif/h, νdif is the difference in velocity of the two surfaces
or sliding velocity) and τ0 is the Eyring shear stress.

The coefficient of friction can now be written as:

f = Ff

FT

=
fCFC + ∫∫

AH

τH (γ̇ ) dAH

FT

. (17)

Combining this result with Equation (16) results in the coefficient of friction
for Stribeck curves:

f =
FCFC + τ0 AH arcsinh

(
ηνdif

hτ0

)
FN

. (18)

3. THE STARVED MODEL

In Figure 1 a two dimensional representation of the starved contact situation
is presented in which hoil is the supplied oil layer thickness and h′

oil is the
oil layer thickness when the surface tension is taken into account; xi and x′

i

are the lubricant inlet lengths belonging to the aforementioned lubricant layer
thicknesses; h∗, b and V are the starved film thickness, half contact width and
the velocity respectively.

The surface tensions depend on the properties of the lubricant and the sur-
face, Tian and Bhushan [10]. In this paper hoil and h′

oil are taken equal. Ac-
cording to Crook [11] the oil layer thickness in the converging entry is given
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Figure 1. A schematic representation of starved situation.

with good approximation by:

hoil = h∗
[

1 + 4
√

2

3
φ3/2

]
, (19)

where φ is a nondimensionless coordinate:

φ = b1/3xi

/
(2Rh∗)2/3 (20)

in which R is the contact radius.
The ratio β between the film thickness for the starved (h∗) and fully flooded

condition (h) is derived by Wolveridge et al. [4], based on computational solu-
tions of Orcutt and Cheng [9], as a function of the dimensionless lubricant inlet
length ψi:

h∗

h
= H ∗

C

HC

= β = f (ψi), (21)

where
ψ(i) = b13xi

/
(2Rh)2/3. (22)

In order to implement the numerical solution of Wolveridge et al. in Gelinck
and Schipper’s model an analitical solution is needed.

The numerical solutions are well fitted by the following equation:

β = h∗

h
= 2

π
arctan (2.7 · ψi) (23)

as may be seen in Figure 2. If in the EHL component of the mixed lubric-
ation model, the film thickness formula is replaced by the fitted starved film
thickness formula (23), the starved mixed lubrication model is completed.

In the next section the results of the presented starved Stribeck model for
two different sets of roughness parameters are presented.
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Figure 2. The approximation of numerical solutions of Wolveridge et al. [4].

Table 1. Parameters used for calculations.

Property Value Reference Value Reference
Case 1 Case 2

n 1 · 1011 m−2 13.0 · 109 m−2

β 1 · 10−5 m 2.6 · 10−6 m
σs 0.05 · 10−6 m 0.487 · 10−6 m
Ra 0.0565 · 10−6 m 0.55 · 10−6 m
B 10.0 · 10−3 m 12.7 · 10−3 m
E′ 231 · 109 Pa 231 · 109 Pa
R 20.0 · 10−3 m 19.0 · 10−3 m
η0 0.0202 Pa·s 0.0374 Pa·s
α 2.0 · 10−8 Pa−1 2.0 · 10−8 Pa−1

τ0 2.5 · 106 Pa 2.5 · 106 Pa
fc 0.13 0.13
FN 1000 N 1000 N

4. RESULTS OF STARVED STRIBECK CURVE
CALCULATIONS

The Stribeck curve for starved lubrication conditions can now be calculated by
varying the velocity. Two sets of surface parameters in combination with the
supplied oil layer thickness are used to show their influence on friction under
starved conditions. The parameters used are presented in Table 1.

The surface parameters of reference case 1 are of a spur gear transmission
and the parameters of reference case 2 are are taken from Johnson and Spence
[12].
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Figure 3. Stribeck curve (a) and separation (b) for reference case 1.

Figure 4. Stribeck curve (a) and separation (b) for reference case 2.

The results of the calculation of the Stribeck curve and the separation for the
two reference cases performed for different oil layer thickness over rougness
ratios, hoil/σs are given in Figures 3 and 4.

The tendency of the starved Stribeck curve and the corresponding separation
as a function of oil layer thickness ratio hoil/σs can be described as follows:

• when the oil layer thickness (hoil) is larger than, say, 6 times the standard
deviation of summits heights (σs) the Stribeck curve and separation do
not change compared to the fully flooded condition.
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• if the oil layer thickness ratio (hoil/σs) is between 6 and, say, 0.7 the
friction level in the EHL and ML regimes starts to increase and the sep-
aration decreases, Figures 3b and 4b. The mixed lubrication regime be-
comes less steep in this range of oil layer thickness over roughness ratio.
The transition from BL to ML and from ML to EHL respectively oc-
curs approximately at the same transition velocity only the friction level
changes (Figures 3a and 4a). The Stribeck curve for starved lubricated
contact “pivots” at the transition ML/BL as the ratio of hoil/σs decreases.

• for values of oil layer thickness over roughness ratio’s (hoil/σs) less than
∼ 0.7 the Stribeck curve tends to transform into a straight line, Fig-
ures 3a and 4a and the separation stays on the same level as in the BL
regime, Figures 3b and 4b.

Similar results have been found for point contacts by Liu [5].

5. CONCLUSIONS

A model has been developed in order to calculate the starved Stribeck curve
and separations in the mixed lubrication regime. The model is a combination
of the Gelinck and Schipper mixed lubrication model and numerical calcula-
tions for starved smooth lubricated line contacts of Wolveridge et al. [4]. The
surface tensions which give a thicker film and heat development which give
lower film are neglected, however in real contacts these two main effects may
compensate each other.

The calculations have been performed for two sets of roughness parameters.
In terms of oil layer thickness over roughness ratio (hoil/σs) the results show
the same trend for the two reference cases. For values of oil layer thickness
over roughness ratio (hoil/σs) larger than approximately 6 the Stribeck curve
and separation do not change. If oil layer thickness over roughness ratio is in
the range of 6 to 0.7 the friction starts to increase and the film thickness de-
creases. When the oil layer thickness over roughness ratio is less than approx-
imately 0.7 the Stribeck curve tends to transform into a straight line (constant
friction level) and separation stays at the same value as in BL regime.

APPENDIX

In Equation (6) the dimensionless numbers n′, σ ′
s and W , as well as the values

of the constants ai were used. These numbers are defined as:

n′ = 342

π
nR
√

βR, σ ′
s = π

8

σs

R
and W = FT

BE′R
.

The values of the parameters ai in eq. (6) are a1 = 0.953, a2 = 0.0337,
a3 = −0.442 and a4 = −1.70, respectively.
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In Equation (7) the function fit of the Moes-diagram is given. The asymp-
totes in the Moes-diagram are given as:

HRI = 3M−1, HRP = 1.287L2/3

HEI = 2.621M−1/5 and HEP = 1.31M−1/8 L−3/4

in which

HC = h

R

(
E′R
η0ν+

)1/2

, M = FT

BE′R

(
E′R
η0ν+

)1/2

L = αE′
(

E′R
η0ν+

)−1/4

,

where h is the film thickness and ν+ is the sum velocity.
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