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Abstract. Much research has been done on the motion of heavy particles in simple vortex
flows. In most of this work, particle motion is investigated under the influence of fixed vor-
tices. In the context of astrophysics, the motion of heavy particles in rotating two-dimensional
flows has been investigated; the rotation follows from the laws of Kepler. In the present paper,
the motion of heavy particles in potential vortex flow in a circular domain is investigated. The
vortex describes a circular trajectory due to the presence of the boundary, so that a steadily
rotating flow is obtained. In order to isolate the effect of particle inertia, only Stokes drag is
taken into account in the equation of motion. The numerical simulations are based on a one-
way coupling. They show that small heavy particles accumulate in an ellitpic region of the
flow, counterrotating with respect to the vortex. When the particle Stokes number exceeds a
threshold, depending on the vortex configuration, particles are expelled from the circular do-
main. A stability criterion for this particle accumulation is derived analytically. These results
are qualitatively comparable to those obtained by others in astrophysics.

1 Introduction

Gas-particle separators are used in some industrial processes. Their purpose is to
separate liquid droplets or small heavy particles from gas flows. In general the sep-
arators consist of a cylindrical tube containing a region of high vorticity. In some
applications this region of high vorticity has a helical shape. The goal of the present
research is to determine the influence of this coherent structure of vorticity on the
properties of heavy particle separation.

The configuration of a steady helical vortex filament in a cylindrical tube is
sketched in Figure 1. The three-dimensional (potential) velocity field for this situ-
ation was first derived by Alekseenko et al. [1]. The calculation of this velocity field
is far from trivial due to the torsion of the helical vortex filament.

If, however, the pitch of the helix is sufficiently large compared to the tube ra-
dius, the contribution due to the three-dimensionality of the helical vortex filament
can be neglected. In this limit, the velocity field reduces to a superposition of a con-
stant axial velocity and a time-dependent two-dimensional flow in the cross-sectional
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Fig. 1. Typical configuration of gas-liquid separator.

plane, moving with velocity U (see Figure 1). Here, we use this two-dimensional ap-
proximation. The two-dimensional flow is characterized by an eccentrically placed
point vortex in a circular domain. The vortex rotates at constant angular velocity due
to its self-induced motion.

The motion of heavy particles in dilute suspensions has received much attention
in the past two decades. Investigations (e.g. [5–7]), have reported the motion of small
heavy particles in elementary vortex flows. Most of them focussed on the motion of
particles near fixed vortices. The general conclusion is that heavy particles are ex-
pelled from regions of high vorticity and tend to accumulate in regions of high strain.
The particle segregation was shown to be highest for particles whose relaxation time
corresponds to a typical time scale of the flow [4]. This causes also the effect of
preferential concentration observed in turbulent flows [11].

The motion of heavy particles in two-dimensional rotating flows has been invest-
igated in the context of planet formation from the solar nebula [3, 10]. The solar
nebula is a collection of gas particles situated on a large disk, which rotates follow-
ing the laws of Kepler. The turbulent flow in the solar nebula is approximately two-
dimensional, so that large coherent vortex structures are likely to occur. Provenzale
[10] gives a good overview of the motion of heavy particles in a two-dimensional
flow field with a finite vorticity distribution. Chavanis [3] makes an analytical es-
timate of the time it takes to capture a heavy particle in an anticyclonic vortex, by
assuming the flow to be a superposition of a prescribed elliptic patch of uniform
vorticity and a steadily rotating Keplerian disk.

In this paper we investigate the motion of heavy particles in closed circular do-
mains containing a point vortex. The presence of the boundary gives rise naturally to
a steadily rotating flow field [9]. The focus in this paper will be on the accumulation
of particles in certain flow regions due to their inertia. In order to isolate the effect
of the particle inertia, the simulations are based on a one-way coupling. Gravity is
neglected, since it is typically a minor effect in industrial gas-liquid separators. A sta-
bility criterion for particle accumulation is derived for any steadily rotating flow field
which can be expressed in terms of a stream function. It is shown that the general
results correspond to those obtained by Chavanis [3], Provenzale [10] and others.

The paper is organized as follows. In Section 2 we present the dynamical equa-
tions governing the motion of a point vortex on a unit disk. Besides, we give the
equation of motion of passive tracers in such flow, and the equation of motion of
heavy particles. In Section 3 we present the numerical results of motion of heavy
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particles in a circular domain containing one vortex; analysis is used to explain the
results for the trajectories of heavy particles in such flows. Finally, a summary and
conclusions are given in Section 4.

2 Dynamical equations

The goal of the present research is to investigate the motion of heavy particles in
a flow of one vortex on a disk. The governing equations are related to the motion
of the point vortex under its self-induced velocity, to the motion of passive tracers
in the flow and to the motion of small heavy particles in such flows. The equations
governing these three types of motion are presented in this section.

2.1 Point vortex motion on a unit disk

Flows with N point vortices are singular solutions of the 2D Euler equations and can
be seen as a Hamiltonian system. If the velocity field is divergence-free (∇ · u =
0), the motion of passive tracers is governed by a stream function Ψ which plays
the role of a Hamiltonian. It is well-known [9] that the motion of point vortices is
Hamiltonian, too.

We consider the example of one point vortex on a disk. All variables are made
dimensionless by the vortex strength and the cylinder radius. The distance from the
vortex to the disk center is denoted by rv . In order to satisfy the boundary condition
(zero normal velocity on the circular boundary), a counter-rotating image vortex is
placed outside the domain, on a distance 1/rv ([9]).

The Hamiltonian, governing the motion of the vortex, becomes:

H = 1

4π
ln
[
1 − x2

v − y2
v

]
, (1)

so the motion of the vortex is:

ẋv = ∂H

∂yv
= 1

2π

( −yv
1 − x2

v − y2
v

)
, ẏv = − ∂H

∂xv
= 1

2π

(
xv

1 − x2
v − y2

v

)
. (2)

This shows that the vortex moves on a circle of constant radius
√
x2
v + y2

v = rv with
constant angular velocity. This angular velocity is here called θ̇v and is given by:

θ̇v = 1

2π

(
1

1 − r2
v

)
. (3)

2.2 Passive tracers in bounded vortex flow

The time-dependent stream function governing the motion of passive tracers reads:

Ψ (x, y, t) = − 1

4π
ln

(x − xv)
2 + (y − yv)

2(
x − (xv/r2

v )
)2 + (y − (yv/r2

v )
)2 . (4)
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Then, the velocity of passive tracers follows from:

U = ∂Ψ

∂y
, V = −∂Ψ

∂x
. (5)

The stream function can be simplified by applying the following coordinate trans-
form:

ξ(x, y, t) ≡ x cos θv + y sin θv,

η(x, y, t) ≡ −x sin θv + y cos θv.

This means that a reference frame is chosen that rotates with the vortex. In this frame,
we define:

Ψ (ξ(x, y, t), η(x, y, t)) ≡ Ψ (ξ(x, y, t), η(x, y, t), 0) = Ψ (x, y, t). (6)

Substituting the expression for Ψ and the coordinate transform into Equation (5)
yields:

U = sin θv
∂Ψ

∂ξ
+ cos θv

∂Ψ

∂η
, (7)

V = − cos θv
∂Ψ

∂ξ
+ sin θv

∂Ψ

∂η
. (8)

Besides, it is easily derived that the velocity in the co-rotating frame, denoted by
(υ, ν) satisfies:

υ = U cos θv + V sin θv + θ̇vη, (9)

ν = −U sin θv + V cos θv − θ̇vξ. (10)

In order to obtain a stream function Ψ̂ in the co-rotating frame such that:

υ = ∂Ψ̂

∂η
, ν = −∂Ψ̂

∂ξ
, (11)

we define:

Ψ̂ (ξ, η) ≡ Ψ (ξ, η)+ 1

2
θ̇v(ξ

2 + η2). (12)

The total stream function Ψ̂ then reads:

Ψ̂ (ξ, η) = 1

2
θ̇v
(
ξ2 + η2)2 − 1

4π
ln

(ξ − rv)
2 + η2

(rvξ − 1)2 + r2
v η

2 , (13)

where, for convenience, the vortex is placed on the positive ξ -axis. Contour lines of
the stream function are plotted in Figure 2 (see also [9], p. 135). The boundary of the
circular domain is a streamline of the flow, as it should be in order to guarantee zero
wall-normal velocity on the boundary.
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Fig. 2. Contour lines of stream function
describing the motion of passive tracers in
a one-vortex system, plotted in the frame
rotating with the vortex; rv = 0.5. H1 and
H2 are hyperbolic stagnation points, E is
an elliptic stagnation point.

Fig. 3. Poincaré sections of 2 slipping
particles in one-vortex system. rv = 0.5;
St = 0.5.

Stagnation points correspond to critical points of the stream function, i.e. points
where the flow velocity is zero. The Hessian, which is defined as:

H ≡ Ψ̂ξξ Ψ̂ηη − Ψ̂ 2
ξη, (14)

is used to determine the character of the stagnation point (the subscripts indicate dif-
ferentiation). With the Hessian in the stagnation point denoted by H0, the following
classification can be made:

H0 < 0 ⇔ saddle point (hyperbolic point),
H0 > 0 ⇔ extremum (elliptic point).

(15)

With help of Equation (12), the Hessian can also be rewritten in terms of the stream
function Ψ (ξ, η). Since ∇2Ψ (ξ, η) = 0 (irrotational flow), it follows that:

H = −Ψ 2
ξξ − Ψ

2
ξη + θ̇2

v . (16)

From this it follows that if θ̇v = 0, which corresponds to the instantaneous flow field
in the quiescent frame, only hyperbolic stagnation points exist. If, on the other hand,
θ̇v > 0, then also an elliptic stagnation point may arise. This elliptic stagnation point
is always counter-rotating (anticyclonic) with respect to θ̇v .

An example of a rotating point vortex flow field with both hyperbolic and elliptic
stagnation points is shown in Figure 2. This is the flow field induced by one single
point vortex in a circular boundary, plotted in the frame rotating with the vortex. In
this frame, the streamlines are independent of time.

2.3 Motion of heavy particles

Using the one-vortex flow as the background flow field, we now consider the motion
of heavy particles in such a flow. The particles in relevant applications (such as small
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iced droplets in gas-liquid separators) are small and to good approximation spherical.
In most relevant applications of gas-liquid separators, the influence of gravity can be
neglected. For the sake of simplicity, effects of inter-particle collisions are not taken
into account. The particles are assumed not to influence the gas flow, so the approach
presented here is based on a one-way coupling.

At the beginning of the simulation, the particles are assumed to have the same
velocity as the local gas flow. The particles are allowed to cross the circular boundary,
but this does not have a significant effect on the results: a particle that has left the
domain does not enter it again.

The dynamical equations for small spherical particles have been established by
Maxey and Riley [8]. Under the assumptions above they reduce to the following
equation, which reads in a quiescent frame and in dimensionless form:

dxp

dt
= up, (17)

dup

dt
= 1

St
(ug − up). (18)

where xp and up are the position and the velocity of the particle respectively, ug is
the velocity of the gas. The parameter St is the Stokes number. This is the particle re-
laxation time made dimensionless with respect to the vortex strength and the cylinder
radius:

St ≡ τp�

R2 . (19)

Particles with St = 0 will react instantaneously to changes in the flow and will thus
behave as passive tracers, whereas particles with St → ∞ will be insensitive to the
flow field.

In the rest of this paper, it turns out to be practical to rewrite the equations of
motions in a rotating reference frame:

dξp

dt
= υp, (20)

dυp

dt
= 1

St
(υg − υp)+ 2θ̇v ∧ υp + θ̇2

v ξp, (21)

where ξ and υ denote the position and the velocity in the rotating frame. The two
additional terms on the RHS, which depend on the rotation rate θ̇v , are the Coriolis
force and the centrifugal force.

Consider the trajectories of two particles, which are initially very close. The ini-
tial differences in position and velocity are small and therefore denoted by δξp and
δυp, respectively. Now, the 4-dimensional separation vector R ≡ [δξp, δυp]T is
introduced (see also [2]). If the separation between the two trajectories is small, the
time development of the separation vector can be expressed in the following form:

d

dt
R(t) = MR(t), (22)
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where the matrix M reads:

M =

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 1

1
St

∂υg
∂ξ

+ θ̇2
v

1
St

∂υg
∂η

− 1
St

2θ̇v
1
St

∂νg
∂ξ

1
St

∂νg
∂η

+ θ̇2
v −2θ̇v 1

St

⎞⎟⎟⎟⎠ . (23)

Clearly, the separation vector can only be used in smooth flows for which the gradi-
ent of the velocity field exists. This will be no problem in our test cases. When all
eigenvalues of the matrix M have a real part smaller than zero, the separation vector
goes to 0 for t → ∞. This means that the two particles converge towards each other.

3 Results: heavy particle motion in a bounded one-vortex flow

Now we investigate the motion of heavy particles in bounded vortex flows. Each
particle is traced individually by using a fourth-order Runge–Kutta method. First,
the equations of motion (Equation 18) are integrated using a fixed time step. Sub-
sequently, the same integration is done with half of the time step. This procedure
is repeated until the difference between two subsequent solutions is below a certain
preset level.

In Figure 3, two different particle trajectories are plotted for the case rv = 0.5.
One particle, released on (ξ, η) = (0.25,−0.2), is quickly expelled from the circu-
lar boundary and moves increasingly far away from the origin. The other particle,
released on (ξ, η) = (0, 0), is trapped in one particular attraction point within the
circular domain.

This behavior is better perceptible when the positions of a group of heavy
particles in the course of time are considered. In this case, we have taken 7495
particles which are uniformly distributed over the circular domain at the start of the
simulation (t = 0). The particle positions are plotted in the frame rotating with the
vortex in Figure 4. Clearly, many particles accumulate in the same point. This means
that in physical space the particles approach to a circular trajectory periodic with the
vortex motion.

The particle accumulation within the circular boundary occurs for a wide variety
of initial conditions for the particle position. As an illustration, the particle trapping
efficiency P , defined as:

P ≡ (number of particles with r < 1 for t → ∞)

(total number of initially uniformly distributed particles)
× 100%, (24)

is calculated for three different configurations of a bounded one-vortex flow: rv is
taken 0.3, 0.5 and 0.7, respectively. The results are plotted in Figure 5.

For the particle accumulation to occur, two conditions must be met: firstly, a fixed
point of the dynamical equations (20) and (21) can be found, and secondly, the fixed
point has to be stable, thus attracting particles. Both conditions will be treated in the
remainder of this section.
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Fig. 4. Distribution of heavy particles in one-vortex system; St = 0.6.

Fig. 5. Percentage of particle trapping as a function of St , for three different vortex
configurations.

3.1 Location of fixed points in co-rotating frame

A trapped particle, rotating with the same speed as the vortex, has zero velocity in
the co-rotating frame. Hence, the RHS of Equations (20) and (21) goes to 0 for such
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a particle in the fixed point, say ξ∗. In order for this to happen, the Stokes drag has
to balance the centrifugal acceleration:

(υg(ξ
∗))+ Stθ̇2

v ξ∗ = 0. (25)

From this equation, it follows immediately that for small Stokes numbers also υg

has to be small. Consequently, in the limit of St ↓ 0 the fixed point is situated near
a stagnation point of the gas velocity in the co-rotating frame. The only reasonable
candidate for this is the elliptic stagnation point situated on the negative ξ -axis, since
the hyperbolic stagnation points are unstable by definition.

3.2 Stability of fixed points in co-rotating frame

Now a linear stability analysis is made of the particle approaching the fixed point ξ∗.
If the particle is close enough to the attraction point, its equation of motion can be
approximated by:

d

dt
R∗ = MR∗, (26)

where R∗ is a vector denoting the separation between the attracted particle and the
fixed point:

R∗ ≡ [ξp − ξ∗,υp]T . (27)

The matrix M is given in Equation (23). In this case, the matrix can be evaluated in
the fixed point.

If the real parts of all eigenvalues λ1, . . . , λ4 of M are negative, the fixed point
ξ∗ is called stable. The eigenvalues read:

λ1,2,3,4 =
−1 ±

√
1 − 4θ̇2

v St
2 ± 4St

√−H∗

2St
, (28)

where H∗ denotes the Hessian, defined in Equation (14), evaluated in the fixed point.
For small Stokes numbers, the fixed point is situated close to the elliptic stagnation
point, so that H∗ > 0. Then, the eigenvalues can be approximated by:

λ1,2,3,4 � −1 ± 1

2St
+ St

(
H∗ − θ̇2

v

)± i
√

H∗. (29)

Using the property of the total Hessian in a steadily rotating reference frame, given
in Equation (16), we obtain:

λ1,2,3,4 � −1 ± 1

2St
− St

{
Ψ

2
ξξ + Ψ

2
ξη

}
± i

√
H∗. (30)

Hence, for small Stokes numbers, the real part is always smaller than 0, indicating
that the fixed point is stable and does attract particles. So, if a counter-rotating el-
liptic stagnation point exists in some steadily rotating reference frame, small heavy
particles are attracted to it.
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When the Stokes number becomes larger, the fixed point will be situated further
away from the center of the elliptic island. Then, particles have too much inertia
and will be expelled from the domain. Hence, the number of particles trapped inside
the domain decreases with increasing Stokes number. This behavior is visible in
Figure 5.

Please note that the stability analysis above is not only restricted to the flow in-
duced by a point vortex in a circular domain, but can as well be applied to an other
incompressible inviscid flow, as long as it is steady in some steadily rotating refer-
ence frame. Examples of this comprise the motion of vortices on a regular polygon
on an infinite plane or on a disk (whose origin coincides with the barycenter) or
an approximation of the flow field on a Keplerian disk as given by Chavanis [3].
Chavanis prescribes an anticyclonic vortex region a priori; in our case, the elliptic
island is formed naturally just by the presence of a cyclonic vortex. Still, the res-
ults found here are qualitatively in correspondence with those obtained by Chavanis:
small heavy particles are attracted towards a fixed point in a steady anticyclonic is-
land.

4 Conclusions

In this paper, the trajectories of heavy particles in a bounded point vortex flow have
been calculated numerically. The simulations are based on a one-way coupling. The
results reveal that heavy particles may accumulate in certain regions where the cent-
rifugal and the drag forces acting on the particles balance each other, thus causing an
equilibrium trajectory.

A linear stability analysis shows that particles are always attracted to a fixed
point, as long as the Stokes number is below a critical value, depending on the par-
ticular flow properties. The analysis is shown to be valid not only for point vortex
flows but also for any steadily rotating flow field which can be expressed in terms of
a stream function.

These results can also be relevant for the swirling pipe flow discussed in Sec-
tion 1. Small inertial particles tend to accumulate in regions far away from the hel-
ical vortex filament, but inside the pipe. Although many other effects play a role in
the particle motion on small scales, the inertia is believed to be a dominant effect in
macro-scale motion of particles in this situation.
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