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Abstract

Road traffic noise is regarded as an environmental problem. The interaetioveen tyre and road surface,
the major noise source, is non-linear and needs to be described in the time dbmiée elements are used
more frequently in tyre/road noise models. However, to compute the vibratimhsadiated noise pattern of
a profiled tyre rolling on a road, contact models lack either accuracy aratlecelation times are high. The
Structural Dynamics and Acoustics group of the University of Twentedeasloped an alternative contact
algorithm. The contact condition, which states that there is no overlap betiheebodies, is satisfied
exactly while iteratively solving the equation of motion. Hence, there is no farecbntact elements or
contact parameters. The possibility to optimize and speed up the algorithmeugimgultigrid, is the major
advantage of the new approach. In this paper the contact algorithm lischpp a finite element model.
A friction model is applied in a transient calculation and the results are shde.examples show the
performance and possibilities of the algorithm.

1 Introduction

In modern society, traffic noise has become an important issue for meatdi.h& significant contributor to
this noise pollution is tyre/road noise, which is caused by the interaction betyreeand road surface. The
noise generating mechanisms have been identified, although there is idisarsthe relative importance of
these mechanisms. From experiments, it is known that spectra of tyrefisaddisplay a peak in the range
of 500-2000 Hz [8].

In order to predict and reduce tyre/road noise, different mathematida¢mpirical noise predicting models
have been developed during the last decades. The main similarity betweerathematical models is
that they can be separated in a tyre vibration model and a sound radiatial. nfdaund radiation has
been modelled analytically by equivalent sources and numerically, byf (gsgfmite elements or boundary
elements. The tyre vibration models range from analytical models, whererthgilyations are modelled
by means of a ring [1], shell [10] or plate [5], to humerical models basefinite elements. The finite
element-based models use approximations in circumferential direction by e.pmpéementation of the
Arbitrary Lagrangian Eulerian approach [6, 2] or by the use of waidsfinite elements [7]. The influence
of a realistic tread profile cannot be modelled because of these approximalibis requires a full three
dimensional model of the tyre. The current tyre models in the finite elemekaga®baqus are advanced,
i.e. itis possible to analyze treaded tyres. However, for tyre road nasmatbulation time is large, since the
calculation of frequencies up to 2000 Hz requires a very fine mesh aodiated large number of degrees
of freedom.

The currently used contact models for tyre/road noise lack either agycoraalculation speed. At the Struc-
tural Dynamics and Acoustics group of the University of Twente an altemaontact algorithm has been
developed. A characteristic feature of this algorithm is that, while iterativalyirgg the equation of mo-
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tion, the contact condition, i.e. the condition that there is no overlap betwedothes, is satisfied exactly.
Hence, there is no need for contact elements, contact parameterangagnultipliers, or regularization.
Another major advantage of the new approach is the possibility to use multigriccdseth speed up the
algorithm. In the field of elasto-hydrodynamic lubrication, multigrid and multilevehtéques are used
extensively to solve contact problems very fast [12, 13]. The prgbosntact algorithm is stable and robust.

The new contact algorithm has been successfully applied in a finite aiffefermulation, where the tyre was
modelled as a flexible ring [14]. In a recent paper, the contact algoritlapgked in a finite element model
[9] and frictionless normal contact has been validated with the Hertziati@oluln this paper, frictional
contact behaviour is discussed. The numerical model and the contagtratlyare explained in section 2. A
number of numerical experiments are presented in section 3.

2 Numerical model

For convenience tyre is modelled using a Lagrangian approach. Thisasdly be replaced in the future
by an updated Lagrangian approach to be able to describe large rottidtearge deformations in a more
advanced model [11]. In this section the finite element model, the contact mrudi¢he contact algorithm

are discussed.

2.1 Finite element model

The equation of motion reads

whereo is the symmetric Cauchy stress tensothe density,b the body forces andk the acceleration.
Constitutive equations are needed to couple the Cauchy stress tengbeatehsity to the kinematics of
the deformation. After integration over an arbitrary voluiie introduction of weight functionsv and
application of the divergence theorem, the weak form of equation 1 reads

/W'pfldVJr/VWZO'dV:/W'de+/W'tdS, 2)
|4 \% \% S

wheret = o - n is the traction vectom the outward unit normal vector arffithe boundary surface. The
problem now is discretized by dividing the domain in a number of elements. Eaotitact algorithm it is
preferable to use linear shape functions. Following the Galerkin apprtfae weight functions are chosen
equal to the shape functions. Then, the equation of motion can be writtesyasean of coupled, second
order differential equations in time

M + Cu + Ku = foy, 3

whereM is mass matrixC the damping matrixK the stiffness matrixu the nodal displacement vector,
andf., = f; + £, the external force vector; the sum of the nodal body forces and tradtion forces (see

the righthand side of equation 2). Equation 3 can be solved in time wheneniffimundary conditions are
applied. As a tyre cannot penetrate the road surface, we searclsétutaon of equation 3 subject to this
geometric constraint. This contact behaviour is described by the contdet mahe next section.

2.2 Contact model

Contact for finite elements is frequently studied in literature. For an overfieweader is referred to e.g.
[4]. The traction force; working on any surface can be split in a normal pressure comperasrt tangential
friction component- according to

fi=—pn+ T, (4)

wheren is the outward unit normal. Figure 1 presents the positive directions in thiaaanodel
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Figure 1: Positive directions in the contact model.

2.2.1 Contact condition

The contact condition is a constraint equation, specifying that the tyneotgmenetrate the road surface.
Denoting the distance between the tyre and the road as the ‘gap’ fugctidaviously

g >0, )

whereg is the perpendicular distance between a node of the tyre and the confacesun contact the gap
is equal tog = 0. Moreover there is assumed to be no adhesion between the two surfacesdat, i.e. the
contact forces can only be compressive

p=>0. (6)

2.2.2 Friction model

When the tyre is in contact with the road, the friction model determines whetbeyié sticks or slips.
Coulomb’s friction law states that the tangential traction is limited by the normal treaticording to

|| < plpl, (7)

wherey is the friction coefficient. In regions of stick Coulomb states < y/|p|, in slip regiongr| = u|p|.

Coulomb’s friction model is used in the contact algorithm because of its simpliniytlae existence of
analytical solutions, but the contact algorithm is not restricted to this frictiodemoThe static friction
models, like viscous friction and Stribeck friction, or more advanced dynaroiels can be applied as well.

The interaction between tyre and road surface is inherently non-linedrhas to be solved in the time
domain. The time domain is discretized and the contact algorithm used deswibexjuation 3 is solved
for every time step. In the next section we will discuss the algorithm in termsedirifte element model.

2.2.3 Contact algorithm

In each step, the contact algorithm uses relaxation to calculate an updatecfonode individually. The
applied algorithm has some similarities with the one used by Wu & Du [15], whedalrdisplacements
are used as well. The working of the contact algorithm can best be egglhinthe flowchart as given in
figure 2. For simplicity, the calculation steps in the algorithm are given for tidiec case. Consider an
arbitrary node. The algorithm first checks if the node is in contact. For nadescontact a nodal forc€

is calculated which is required to keep the node at that position, according to

f' =K/, (8)

wheref? andu’ contain a subset df andu respectively K% is the associated subset of matix(i < j).
The length off’ equals the number of degrees of freedom of nodEhe vector’ is a subset ofi with all
the entries that are associated with nedén a one-dimensional system for examdleandu’ are scalars
andK" is a vector.
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Figure 2: Flowchart of the contact algorithm.

The total external force consists of a body and traction component.Igtwthm checks if the pressugels
negative. In casg is positive (tensile), the node is released and the traction fariseset to zero; the node

is out of contact. Note that this not necessarily meansfthiatzero, since body forces can be present. The
displacement of the nodes out of contact is updated using Gauss-&dgckaition

1

i o~
u =u —|—KZ.Z.

(f' - Kw), (9)

whereii’ is the updated displacement vector of négda’ the original displacement vector of nodlef’ the
nodal external force vector arll*’ is a subset of the stiffness matrix, containing only the entries associated
with nodei. When a node has been displaced to a point below the surface, the rindmigact and put
back on the surfacgy(= 0). Nodes in contact are considered to stick on the surdapgori. Equation 7

is used to check whether this assumption is true. If the tangential traction isgioothe friction force is
maximal|r| = u|p|. The node slips along the surfage=€ 0) and the displacement is corrected in tangential
direction. In the next step, nodel is considered and the process continues until convergence lchgdea
for all nodes.

2.3 Time integration

In the previous section, the static case is considered. For dynamic simulatidritte implementation of
other friction models a discretization in the time domain is necessary. Undeyajgte contact conditions,
equation 3 is solved in time by a Newmark integration scheme. This implicit secdied stheme is com-
monly used in finite element calculations, because of its consistency, stabditgcaaracy. In a dynamic
calculation the contact algorithm calculates an update for the displacemeeatriewhtime stepu,,+1). The



VEHICLE NOISE AND VIBRATION (NVH) 4249

14¢

12

10

S
LT
e
S~
S
N

6,
UTALL7
i N
wi 4 st
2! e
n R
0
-10 8 6 4 -2 0 2 4 6 8 10
(a) Hertzian contact (b) Finite element mesh

Figure 3: Hertzian contact by an elastic cylinder on a rigid surface witmabforce P and tangential force
Q@ (a) and the undeformed finite element mesh (b).

acceleration and the speed at stefd follow from the previous time step andu,, 1 as

. 1 ) 1 ;
Upr1 = W <Un+1 —u, — At un> - (25 - 1) Up, (10)

U1 = ﬁ <un+1 - un> - <; - 1) W, — At <27ﬁ - 1) i, (11)

where At is the time stepy = % andg = i for unconditional stability. After the substitution of these
relations in equation 3 and application of the initial conditicing,; ; andii,+; can be solved for each time
step. The velocities and accelerations can be used in the friction models.

3 Results

Normal contact has been reviewed in an earlier paper [9], so this f@pesses on tangential loading and
friction. Two numerical experiments will be presented in this section, i.e. cesspn of a cylinder and a
bouncing ring. In the two-dimensional finite element simulations the cylinderiagcare modelled using
linear elastic material behaviour.

3.1 Loading of a cylinder

The loading of a cylinder on arigid surface can be a static or a quasi-stalilem, depending on the friction
model used. It can be solved when the normal and the tangential foecpeescribed (see figure 3).

3.1.1 Normal loading

To test the accuracy of numerical contact a non-trivial test is requdaeevhich the analytical solution
is available, such as a Hertzian contact [3]. The Hertzian contact fosnui@scribe the contact pressure
distribution between two cylinders (line contact) or between two spheras @tact).

The contact pressure between two cylinders is given by:

p=poyv/1—a2/a? (12)
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Figure 4: Pressure distribution in the contact patch, analyticaland numerical solutior.

wherep, is the maximum pressure;, the Cartesian coordinate along the contact, aride semi-contact
width. For an elastic cylinder on a flat rigid surface the maximum pregsuaad semi contact width are
given by
PE* 4PR . E

Po = ﬁ, a = m, where E* = ﬁ, (13)
where P is the normal load per unit lengttly* the effective Young’s modulus ang the radius of the
cylinder. A numerical simulation is performed with the subsequent paramedeissR = 10 mm, Young’s
modulusE = 210 - 10> MPa, Poisson’s rati6.3, a normal load per unit lengtR = 1.0 - 10* N/mm and
@ = 0. From equation 13 an analytical solution can be derived: maximum peggses 8571 N/mm and
semi-contact widtly = 0.7428 mm.

The lower half of the cylinder is modelled with 760 bilinear quadrilaterals antpcessed on a rigid surface,
which both can be considered as half-spaces, as given in figurer3a ffigtionless contacty( = 0), the
numerically and analytically derived contact pressure is depicted in figur€he numerical simulations
show a good correspondences to the Hertzian contact,pyith 8555 N/mm and0.73 < a < 0.80 mm
(e = 0.75 mm after interpolation). The numerical solution converges to the analytitdl@a Hence, the
contact algorithm is able to predict normal contact pressures in frict@olastact correctly.

In the next example friction is introduced, so the final solution becomes pgbndlent. The cylinder is
compressed by an increasing normal force in 10 equidistant steps ad auiface with Coulomb friction

(P = 1.0-10* N/mm, 1 = 0.5). The resulting stress distribution in the contact patch is given in figure 5,
where the direction of corresponds to figure 3. The results are according to expectationshe.geak

in the normal stress is somewhat higher and the contact width is slightly smattgaced to a frictionless
Hertzian contact. The shear stresses causes local slip (microslip) atrtterdof the contact patch [3]. The
slip direction is opposite to the shear forces working on the cylinder.

3.1.2 Tangential loading

The introduction of a tangential fora@, see figure 3, can increase the region where (micro)slip occurs,
and can lead to motion between the cylinder and the surface. For the retatilan between two bodies in
contact, a distinction has been made between sliding and rolling. In a situateye @flinders are in contact
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Figure 5: Stress distribution in the contact patghy) andr (x) for . = 0.5, compared to the Hertzian
theoryu =0 ().

and partial slip occurs, the shear stress in the contact patch can bibeesy [3].

ppo (Va* — :c2> /a, c<lz[<a slip 14)
T =
Upo \/a2—a:2—\/02—x2> /a, 0<|z|<e¢ stick,

where

C:awl_;?p' (15)

To prevent a sliding motion between the two cylindéps< ;P and successively < a. So, the sticking
region is located in the centre of the contact patch (see figure 6). Totalgsédists wher) > pP which

induces a relative velocity between the bodies in contact without rotationtr&y, rolling is the relative
angular velocity between two contacting bodies [3]. In case of tractiegmf elastic cylinders, the stick
region moves towards the leading edge of the contact patch. At the trailyyeg €lip occurs (see figure 7).

In the numerical simulations, the tangential forlge= 0.75,.P is applied to the cylinder, whereas all the
other parameters remain unchanged. The size of the stickczere5a. Two load scenarios are considered:

1. Subsequent loadingrhe normal forceP is increased in 10 steps; after that the tangential f6j¢ée
increased in 10 steps. This scenario is similar to a cylinder which is on thegialpping.

2. Initial loading. In 10 steps the force® and @ are increased simultaneously until the final load is
reached. This scenario is similar to a cylinder which is on the point of rotation.

The results of the first case are given in figure 6. The analytical soltdice completely sliding contact is
given as a reference. The numerical results differ from the analgidation of a sliding cylinder, because

the cylinder has rolled over and the stick area is moved towards the leadjjeg(eght). This can be
explained by the mesh distortion due to the tangential load. In the Hertziarythésrassumed that the
contact area and pressure distribution are not influenced by the taidead. The results of the second
case are given in figure 7. The analytical solution for a rolling contatvtdsen two cylinders is given as a
reference. When loa# and( are applied at the same time, the sticking zone moves towards the leading
edge. The influence of the tangential load on the contact pressutlajrexthe differences between the
numerical and the analytical solution.
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Hence, normal loading is described correctly, tangential loading resudtsbinations of finite rolling and
slip. The contact algorithm converges to the final solution. In the sulesggection a transient dynamic
analysis is presented.

3.2 Bouncing ring

To validate the contact algorithm in a dynamic analysis and to evaluate the wdloéiriction, an elastic

ring is considered. It is launched horizontally and due to gravity the ringbwilince on a rigid surface, as
depicted in figure 8. The ring has an outer radius of 0.5 m and an inneisraf0.2 m. At the initial time

step ¢ = 0 s), point A is located: = 0.5 m above the surface and the ring moves with a constant speed of
10 m/s in positiver-direction. The other parameters are: Young's modlus- 1000 Pa, Poisson'’s ratio

v = 0.3, the densityp = 1.0 kg/m?, and gravitational constagt = 9.81 m/s’. After startup, one second of
the ring’s movement is simulated with a time st&p = 0.01 s. Within the total period the ring has touched
the surface twice. As in the previous section, Coulomb’s friction model ieapwith . = 0 andp = 0.1.

In figure 8 the first two bounces of the ring on the surface are shovendeyies of snap shots. For point A,
which is located on the bottom of the ring, the displacemgntelocity «, and nodal forcef, are plotted
as a function of time. Concerning the time it takes for point A to touch the sirfae numerical solution
is similar to the analytical solutioh= /2h/g = 0.32 s. In the period of contact the velocity of A is zero
and the nodal force is positive (compressive on the ring). The comigates vibrations of the ring, which
explains the lower height of the ring at the second bounce. The influgrfcetion is shown in figure 9,
wherep = 0.1. In the contact zone a friction force is acting in the negativdéirection, which induces a
rotation in the ring. As a result of the rotation the ring bounces earlier cadparthe frictionless case. The
current Lagrangian finite element model is not able to model large rotatiorectly. In the tyre/road contact
model an advanced finite element model will be used to model large deform§tibjy The simulations of
the horizontal launch illustrate the working of the contact algorithm in dynaases, with slip and small
rotations. Although the dynamic results look promising, experimental validatiseeided and is in progress.

4 Conclusions

The new contact algorithm, in which the contact condition is satisfied exacgpiged in a two-dimensional
finite element formulation. The algorithm is robust and stable and converdles correct solution, without
the use of contact elements or contact parameters. Another major advafittge new approach is the
possibility to speed up the algorithm by using multigrid. The application of multigridiwithe finite
element formulation is necessary because of the large calculation times &tdujgancies. The description
of frictionless and frictional contact behaviour is validated by numericaligtions of a Hertzian contact.
Normal and tangential loading are considered with a Coulomb friction modelapplication is not limited
to static cases only, since the algorithm is successfully applied in a dynamic sanuldn the future,
multigrid will be coupled to finite elements and anisotropic material behaviour wdldaked. The final goal
is to compute the vibrations and radiated noise pattern of a profiled tyre roliagoad.

Acknowledgements

The support of TNO and Vredestein within this CCAR project is gratefulknawledged by the authors.



VEHICLE NOISE AND VIBRATION (NVH) 4253

45007
4000
3500r
3000r
2500r

2000r

|7 [N/mm]

1500-

1000

500r

slip

90.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8
x [mm]

Figure 6: Shear stress in the contact patch, numerical results in scénatibsequent loading). The
analytical solution for a sliding contact of a cylinder is given as a refar¢n ).
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Figure 8: Bouncing ring on a rigid surface at different time stepg.fet 0; displacement.,, velocity ,,
and nodal forcef,, as a function of time of point A.
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and nodal forcef,, as a function of time of point A.



4256 PROCEEDINGS OF ISMA2008

References

[1] F. Bohm. Mechanik des @telreifens.Ingenieur Archiy 32(2):82-101, 1966.

[2] M. Brinkmeier, U. Nackenhorst, and M. Ziefle. Finite element analy§isling tires — A state of
the art review. IrProceedings of International CTI Conference Automotive Tire Techgoftuttgart,
Germany, 2007.

[3] K.L. Johnson.Contact MechanicsCambridge University Press, UK, 1985.

[4] G. Kloosterman.Contact Methods in Finite Element Simulatiori3hD thesis, University of Twente,
Enschede, The Netherlands, 2002.

[5] W. Kropp. Ein Modell zur Beschreibung des Rollgeisches eines unprofiliertenii@elreifens auf
rauher Strassenobeéthe PhD thesis, Institutifr Technische Akustik, Berlin, Germany, 1992.

[6] U. Nackenhorst. The ALE-formulation of bodies in rolling contact -ditetical foundations and finite
element approactComputer Methods in Applied Mechanics and Engineeri®$:4299-4322, 2004.

[7] C.-M. Nilsson. Waveguide finite elements applied on a car tylghD thesis, Royal Institute of Tech-
nology, Stockholm, Sweden, 2004.

[8] U. Sandberg and J.A. Ejsmorityre/Road Noise Reference BodKFORMEX, Harg, SE-59040 Kisa,
Sweden, 2002.

[9] J.H. Schutte, Y.H. Wijnant, and A. de Boer. A contact solver suitablgyi@/road noise analysis. In
Proceedings of Acoustics'Q®aris, France, 2008.

[10] W. Soedel. On the dynamic response of rolling tires according to tleithabproximationsJournal of
Sound and Vibratiopd1(2):233-246, 1975.

[11] R.H.W. ten Thije.Finite Element Simulations of Laminated Composite Forming ProceB$gsthesis,
University of Twente, Enschede, The Netherlands, 2007.

[12] C.H. Venner.Multilevel solvers for the EHL line and point contact problen®hD thesis, University
of Twente, Enschede, The Netherlands, 1991.

[13] Y.H. Wijnant. Contact Dynamics in the field of Elastohydrodynamic LubricatiBhD thesis, Univer-
sity of Twente, Enschede, The Netherlands, 1998.

[14] Y.H. Wijnantand A. de Boer. A new approach to model tyre/roadacin InProceedings of ISMA2006
Leuven, Belgium, 2006.

[15] B. Wu and X. Du. Finite element formulation of radial tires with variablaesteaint conditionsCom-
puters and Structure$5(5):871-875, 1995.



