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Abstract
Road traffic noise is regarded as an environmental problem. The interaction between tyre and road surface,
the major noise source, is non-linear and needs to be described in the time domain. Finite elements are used
more frequently in tyre/road noise models. However, to compute the vibrationsand radiated noise pattern of
a profiled tyre rolling on a road, contact models lack either accuracy or thecalculation times are high. The
Structural Dynamics and Acoustics group of the University of Twente hasdeveloped an alternative contact
algorithm. The contact condition, which states that there is no overlap between the bodies, is satisfied
exactly while iteratively solving the equation of motion. Hence, there is no needfor contact elements or
contact parameters. The possibility to optimize and speed up the algorithm, usinge.g. multigrid, is the major
advantage of the new approach. In this paper the contact algorithm is applied to a finite element model.
A friction model is applied in a transient calculation and the results are shown.The examples show the
performance and possibilities of the algorithm.

1 Introduction

In modern society, traffic noise has become an important issue for mental health. A significant contributor to
this noise pollution is tyre/road noise, which is caused by the interaction between tyre and road surface. The
noise generating mechanisms have been identified, although there is discussion on the relative importance of
these mechanisms. From experiments, it is known that spectra of tyre/road noise display a peak in the range
of 500–2000 Hz [8].

In order to predict and reduce tyre/road noise, different mathematical and empirical noise predicting models
have been developed during the last decades. The main similarity between themathematical models is
that they can be separated in a tyre vibration model and a sound radiation model. Sound radiation has
been modelled analytically by equivalent sources and numerically, by use of (in)finite elements or boundary
elements. The tyre vibration models range from analytical models, where the tyre vibrations are modelled
by means of a ring [1], shell [10] or plate [5], to numerical models based on finite elements. The finite
element-based models use approximations in circumferential direction by e.g. an implementation of the
Arbitrary Lagrangian Eulerian approach [6, 2] or by the use of waveguide finite elements [7]. The influence
of a realistic tread profile cannot be modelled because of these approximations. This requires a full three
dimensional model of the tyre. The current tyre models in the finite element package Abaqus are advanced,
i.e. it is possible to analyze treaded tyres. However, for tyre road noise the calculation time is large, since the
calculation of frequencies up to 2000 Hz requires a very fine mesh and associated large number of degrees
of freedom.

The currently used contact models for tyre/road noise lack either accuracy or calculation speed. At the Struc-
tural Dynamics and Acoustics group of the University of Twente an alternative contact algorithm has been
developed. A characteristic feature of this algorithm is that, while iteratively solving the equation of mo-
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tion, the contact condition, i.e. the condition that there is no overlap between the bodies, is satisfied exactly.
Hence, there is no need for contact elements, contact parameters, Lagrange multipliers, or regularization.
Another major advantage of the new approach is the possibility to use multigrid methods to speed up the
algorithm. In the field of elasto-hydrodynamic lubrication, multigrid and multilevel techniques are used
extensively to solve contact problems very fast [12, 13]. The proposed contact algorithm is stable and robust.

The new contact algorithm has been successfully applied in a finite difference formulation, where the tyre was
modelled as a flexible ring [14]. In a recent paper, the contact algorithm isapplied in a finite element model
[9] and frictionless normal contact has been validated with the Hertzian solution. In this paper, frictional
contact behaviour is discussed. The numerical model and the contact algorithm are explained in section 2. A
number of numerical experiments are presented in section 3.

2 Numerical model

For convenience tyre is modelled using a Lagrangian approach. This caneasily be replaced in the future
by an updated Lagrangian approach to be able to describe large rotationsand large deformations in a more
advanced model [11]. In this section the finite element model, the contact model and the contact algorithm
are discussed.

2.1 Finite element model

The equation of motion reads
∇ · σ + b = ρü, (1)

whereσ is the symmetric Cauchy stress tensor,ρ the density,b the body forces and̈u the acceleration.
Constitutive equations are needed to couple the Cauchy stress tensor andthe density to the kinematics of
the deformation. After integration over an arbitrary volumeV , introduction of weight functionsw and
application of the divergence theorem, the weak form of equation 1 reads∫

V
w · ρüdV +

∫
V
∇w : σ dV =

∫
V

w · bdV +
∫

S
w · t dS, (2)

wheret = σ · n is the traction vector,n the outward unit normal vector andS the boundary surface. The
problem now is discretized by dividing the domain in a number of elements. For the contact algorithm it is
preferable to use linear shape functions. Following the Galerkin approach, the weight functions are chosen
equal to the shape functions. Then, the equation of motion can be written as asystem of coupled, second
order differential equations in time

Mü + Cu̇ + Ku = fext, (3)

whereM is mass matrix,C the damping matrix,K the stiffness matrix,u the nodal displacement vector,
andfext = ft + fb the external force vector; the sum of the nodal body forces and nodal traction forces (see
the righthand side of equation 2). Equation 3 can be solved in time when sufficient boundary conditions are
applied. As a tyre cannot penetrate the road surface, we search for asolution of equation 3 subject to this
geometric constraint. This contact behaviour is described by the contact model in the next section.

2.2 Contact model

Contact for finite elements is frequently studied in literature. For an overviewthe reader is referred to e.g.
[4]. The traction forceft working on any surface can be split in a normal pressure componentp and tangential
friction componentτ according to

ft = −pn + τ , (4)

wheren is the outward unit normal. Figure 1 presents the positive directions in the contact model
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Figure 1: Positive directions in the contact model.

2.2.1 Contact condition

The contact condition is a constraint equation, specifying that the tyre cannot penetrate the road surface.
Denoting the distance between the tyre and the road as the ‘gap’ functiong, obviously

g ≥ 0, (5)

whereg is the perpendicular distance between a node of the tyre and the contact surface. In contact the gap
is equal tog = 0. Moreover there is assumed to be no adhesion between the two surfaces incontact, i.e. the
contact forces can only be compressive

p ≥ 0. (6)

2.2.2 Friction model

When the tyre is in contact with the road, the friction model determines whether the tyre sticks or slips.
Coulomb’s friction law states that the tangential traction is limited by the normal traction according to

|τ | ≤ µ|p|, (7)

whereµ is the friction coefficient. In regions of stick Coulomb states|τ | < µ|p|, in slip regions|τ | = µ|p|.
Coulomb’s friction model is used in the contact algorithm because of its simplicity and the existence of
analytical solutions, but the contact algorithm is not restricted to this friction model. The static friction
models, like viscous friction and Stribeck friction, or more advanced dynamicmodels can be applied as well.

The interaction between tyre and road surface is inherently non-linear, and has to be solved in the time
domain. The time domain is discretized and the contact algorithm used describeshow equation 3 is solved
for every time step. In the next section we will discuss the algorithm in terms of the finite element model.

2.2.3 Contact algorithm

In each step, the contact algorithm uses relaxation to calculate an update for each node individually. The
applied algorithm has some similarities with the one used by Wu & Du [15], where nodal displacements
are used as well. The working of the contact algorithm can best be explained by the flowchart as given in
figure 2. For simplicity, the calculation steps in the algorithm are given for the static case. Consider an
arbitrary nodei. The algorithm first checks if the node is in contact. For nodesi in contact a nodal forcef i

is calculated which is required to keep the node at that position, according to

f i = Kijuj , (8)

wheref i anduj contain a subset off andu respectively;Kij is the associated subset of matrixK (i < j).
The length off i equals the number of degrees of freedom of nodei. The vectoruj is a subset ofu with all
the entries that are associated with nodei. In a one-dimensional system for example,f i anduj are scalars
andKij is a vector.
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Figure 2: Flowchart of the contact algorithm.

The total external force consists of a body and traction component. The algorithm checks if the pressurep is
negative. In casep is positive (tensile), the node is released and the traction forceft is set to zero; the node
is out of contact. Note that this not necessarily means thatf i is zero, since body forces can be present. The
displacement of the nodes out of contact is updated using Gauss-Seidelrelaxation

ūi = ũi +
1

Kii

(
f i −Kijũj

)
, (9)

whereūi is the updated displacement vector of nodei, ũi the original displacement vector of nodei, f i the
nodal external force vector andKii is a subset of the stiffness matrix, containing only the entries associated
with nodei. When a node has been displaced to a point below the surface, the node isin contact and put
back on the surface (g = 0). Nodes in contact are considered to stick on the surfacea priori. Equation 7
is used to check whether this assumption is true. If the tangential traction is too high, the friction force is
maximal|τ | = µ|p|. The node slips along the surface (g = 0) and the displacement is corrected in tangential
direction. In the next step, nodei+1 is considered and the process continues until convergence has reached
for all nodes.

2.3 Time integration

In the previous section, the static case is considered. For dynamic simulationsand the implementation of
other friction models a discretization in the time domain is necessary. Under appropriate contact conditions,
equation 3 is solved in time by a Newmark integration scheme. This implicit second order scheme is com-
monly used in finite element calculations, because of its consistency, stability and accuracy. In a dynamic
calculation the contact algorithm calculates an update for the displacement in the new time step (un+1). The
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Figure 3: Hertzian contact by an elastic cylinder on a rigid surface with normal forceP and tangential force
Q (a) and the undeformed finite element mesh (b).

acceleration and the speed at stepn+1 follow from the previous time stepn andun+1 as

ün+1 =
1

β∆t2

(
un+1 − un −∆t u̇n

)
−

(
1
2β

− 1
)

ün, (10)

u̇n+1 =
γ

β∆t

(
un+1 − un

)
−

(
γ

β
− 1

)
u̇n −∆t

(
γ

2β
− 1

)
ün, (11)

where∆t is the time step,γ = 1
2 andβ = 1

4 for unconditional stability. After the substitution of these
relations in equation 3 and application of the initial conditions,u̇n+1 andün+1 can be solved for each time
step. The velocities and accelerations can be used in the friction models.

3 Results

Normal contact has been reviewed in an earlier paper [9], so this paperfocusses on tangential loading and
friction. Two numerical experiments will be presented in this section, i.e. compression of a cylinder and a
bouncing ring. In the two-dimensional finite element simulations the cylinder andring are modelled using
linear elastic material behaviour.

3.1 Loading of a cylinder

The loading of a cylinder on a rigid surface can be a static or a quasi-static problem, depending on the friction
model used. It can be solved when the normal and the tangential forces are prescribed (see figure 3).

3.1.1 Normal loading

To test the accuracy of numerical contact a non-trivial test is requiredfor which the analytical solution
is available, such as a Hertzian contact [3]. The Hertzian contact formulas describe the contact pressure
distribution between two cylinders (line contact) or between two spheres (point contact).

The contact pressure between two cylinders is given by:

p = p0

√
1− x2/a2, (12)
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Figure 4: Pressure distribution in the contact patch, analytical (—) and numerical solution (⋄).

wherep0 is the maximum pressure,x the Cartesian coordinate along the contact, anda the semi-contact
width. For an elastic cylinder on a flat rigid surface the maximum pressurep0 and semi contact widtha are
given by

p0 =

√
PE∗

πR
, a =

√
4PR

πE∗ , where E∗ =
E

1− ν2
, (13)

whereP is the normal load per unit length,E∗ the effective Young’s modulus andR the radius of the
cylinder. A numerical simulation is performed with the subsequent parameters: radiusR = 10 mm, Young’s
modulusE = 210 · 103 MPa, Poisson’s ratio0.3, a normal load per unit lengthP = 1.0 · 104 N/mm and
Q = 0. From equation 13 an analytical solution can be derived: maximum pressure p0 = 8571 N/mm and
semi-contact widtha = 0.7428 mm.

The lower half of the cylinder is modelled with 760 bilinear quadrilaterals and compressed on a rigid surface,
which both can be considered as half-spaces, as given in figure 3. For a frictionless contact (µ = 0), the
numerically and analytically derived contact pressure is depicted in figure4. The numerical simulations
show a good correspondences to the Hertzian contact, withp0 = 8555 N/mm and0.73 < a < 0.80 mm
(a = 0.75 mm after interpolation). The numerical solution converges to the analytical solution. Hence, the
contact algorithm is able to predict normal contact pressures in frictionless contact correctly.

In the next example friction is introduced, so the final solution becomes path dependent. The cylinder is
compressed by an increasing normal force in 10 equidistant steps on a rigid surface with Coulomb friction
(P = 1.0 · 104 N/mm, µ = 0.5). The resulting stress distribution in the contact patch is given in figure 5,
where the direction ofτ corresponds to figure 3. The results are according to expectations, i.e.the peak
in the normal stress is somewhat higher and the contact width is slightly smaller compared to a frictionless
Hertzian contact. The shear stresses causes local slip (microslip) at the borders of the contact patch [3]. The
slip direction is opposite to the shear forces working on the cylinder.

3.1.2 Tangential loading

The introduction of a tangential forceQ, see figure 3, can increase the region where (micro)slip occurs,
and can lead to motion between the cylinder and the surface. For the relativemotion between two bodies in
contact, a distinction has been made between sliding and rolling. In a situation where cylinders are in contact
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Figure 5: Stress distribution in the contact patch,p (⋄) andτ (∗) for µ = 0.5, compared to the Hertzian
theoryµ = 0 (—).

and partial slip occurs, the shear stress in the contact patch can be described by [3].

τ =

 µp0

(√
a2 − x2

)
/a, c ≤ |x| ≤ a slip

µp0

(√
a2 − x2 −√

c2 − x2
)

/a, 0 ≤ |x| ≤ c stick,
(14)

where

c = a

√
1− Q

µP
. (15)

To prevent a sliding motion between the two cylinders,Q < µP and successivelyc < a. So, the sticking
region is located in the centre of the contact patch (see figure 6). Total sliding exists whenQ > µP which
induces a relative velocity between the bodies in contact without rotation. Contrary, rolling is the relative
angular velocity between two contacting bodies [3]. In case of tractive rolling of elastic cylinders, the stick
region moves towards the leading edge of the contact patch. At the trailing edge, slip occurs (see figure 7).

In the numerical simulations, the tangential forceQ = 0.75µP is applied to the cylinder, whereas all the
other parameters remain unchanged. The size of the stick zonec = 0.5a. Two load scenarios are considered:

1. Subsequent loading. The normal forceP is increased in 10 steps; after that the tangential forceQ is
increased in 10 steps. This scenario is similar to a cylinder which is on the pointof slipping.

2. Initial loading. In 10 steps the forcesP andQ are increased simultaneously until the final load is
reached. This scenario is similar to a cylinder which is on the point of rotation.

The results of the first case are given in figure 6. The analytical solutionfor a completely sliding contact is
given as a reference. The numerical results differ from the analyticalsolution of a sliding cylinder, because
the cylinder has rolled over and the stick area is moved towards the leading edge (right). This can be
explained by the mesh distortion due to the tangential load. In the Hertzian theory it is assumed that the
contact area and pressure distribution are not influenced by the tangential load. The results of the second
case are given in figure 7. The analytical solution for a rolling contact between two cylinders is given as a
reference. When loadP andQ are applied at the same time, the sticking zone moves towards the leading
edge. The influence of the tangential load on the contact pressure, explains the differences between the
numerical and the analytical solution.
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Hence, normal loading is described correctly, tangential loading results incombinations of finite rolling and
slip. The contact algorithm converges to the final solution. In the subsequent section a transient dynamic
analysis is presented.

3.2 Bouncing ring

To validate the contact algorithm in a dynamic analysis and to evaluate the influence of friction, an elastic
ring is considered. It is launched horizontally and due to gravity the ring willbounce on a rigid surface, as
depicted in figure 8. The ring has an outer radius of 0.5 m and an inner radius of 0.2 m. At the initial time
step (t = 0 s), point A is locatedh = 0.5 m above the surface and the ring moves with a constant speed of
10 m/s in positivex-direction. The other parameters are: Young’s modulusE = 1000 Pa, Poisson’s ratio
ν = 0.3, the densityρ = 1.0 kg/m3, and gravitational constantg0 = 9.81 m/s2. After startup, one second of
the ring’s movement is simulated with a time step∆t = 0.01 s. Within the total period the ring has touched
the surface twice. As in the previous section, Coulomb’s friction model is applied with µ = 0 andµ = 0.1.

In figure 8 the first two bounces of the ring on the surface are shown bya series of snap shots. For point A,
which is located on the bottom of the ring, the displacementuy, velocity u̇y and nodal forcefy are plotted
as a function of time. Concerning the time it takes for point A to touch the surface, the numerical solution
is similar to the analytical solutiont =

√
2h/g = 0.32 s. In the period of contact the velocity of A is zero

and the nodal force is positive (compressive on the ring). The contactinduces vibrations of the ring, which
explains the lower height of the ring at the second bounce. The influenceof friction is shown in figure 9,
whereµ = 0.1. In the contact zone a friction force is acting in the negativex-direction, which induces a
rotation in the ring. As a result of the rotation the ring bounces earlier compared to the frictionless case. The
current Lagrangian finite element model is not able to model large rotations correctly. In the tyre/road contact
model an advanced finite element model will be used to model large deformations [11]. The simulations of
the horizontal launch illustrate the working of the contact algorithm in dynamic cases, with slip and small
rotations. Although the dynamic results look promising, experimental validation isneeded and is in progress.

4 Conclusions

The new contact algorithm, in which the contact condition is satisfied exactly, isapplied in a two-dimensional
finite element formulation. The algorithm is robust and stable and convergesto the correct solution, without
the use of contact elements or contact parameters. Another major advantage of the new approach is the
possibility to speed up the algorithm by using multigrid. The application of multigrid within the finite
element formulation is necessary because of the large calculation times at highfrequencies. The description
of frictionless and frictional contact behaviour is validated by numerical simulations of a Hertzian contact.
Normal and tangential loading are considered with a Coulomb friction model. The application is not limited
to static cases only, since the algorithm is successfully applied in a dynamic simulation. In the future,
multigrid will be coupled to finite elements and anisotropic material behaviour will beadded. The final goal
is to compute the vibrations and radiated noise pattern of a profiled tyre rolling on a road.
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Figure 6: Shear stress in the contact patch, numerical results in scenario1, subsequent loading (⋄). The
analytical solution for a sliding contact of a cylinder is given as a reference (—).

x [mm]

|τ|
[N

/m
m

]

slip stick

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

3500

4000

4500
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Figure 8: Bouncing ring on a rigid surface at different time steps forµ = 0; displacementuy, velocity u̇y

and nodal forcefy as a function of timet of point A.
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and nodal forcefy as a function of timet of point A.

VEHICLE NOISE AND VIBRATION (NVH) 4255



References
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