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Abstract 

This paper presents an algorithm for the spectral factoriza- 
tion of a para-Hermitian polynomial matrix. The algorithm 
is based on polynomial matrix to state space and vice versa 
conversions, and avoids elementary polynomial operations 
in computations; It relies on well-proven methods of nu- 
merical linear algebra such as Schur decompositions. Key- 
words: Subspace methods, Numerical methods, Linear sys- 
tems. 

1 Introduction 

Polynomial matrices play an important role in linear systems 
and control theory. The present algorithm for the spectral 
factorization of a diagonally reduced para-Hermitian poly- 
nomial matrix 2 is useful in control with quadratic cost func- 
tionals. We look for a square polynomial matrix Q and a sig- 
nature matrix J such that 

The roots of Q all lie in the open left-half plane and the col- 
umn degrees of Q equal the half-diagonaldegrees of 2. Suf- 
ficient but not necessary for the existence of such a factor- 
ization is that 2 has no roots on the imaginary axis. If the 
factorization (1) exists such that Q has the correct column 
degrees then the factorization is said to be canonical. 

A square polynomial matrix Z is para-Hermitian if Z* = Z 
where the adjoint Z* is the polynomial matrix defined by 
Z*(s) = ZH(-s). The m x m para-Hermitian Z is diago- 
nally reduced if there exist half-diagonaldegrees SI, SZ, . . . , 
S,, so that the leading diagonal coeficient matrix 

ZL = lim D-'(-s)z(s)D-'(s) (2) 
/ b I + ~  

exists and is nonsingular. D is the diagonal matrix D(s )  = 
diag(ssl, ssz, . . . , ssm). 

If 2 is not diagonally reduced then it may be made so by a 
symmetric unimodular transformation [ 11. Other algorithms 
for spectral factorization are described in [2,3]. The present 
algorithm is simpler, and does not require elementary poly- 
nomial operations. 

'This paper is a part of the COPEFWICUS Project CP 93:2424 in coop- 
eration with the Institute of Information Theory and Automation in Prague, 
Czech Republic. 

2 The algorithm 

The algorithm for (1) is viewed as a special case of Z = SR, 
where S has all its roots in the open right-half plane and R 
has all its roots in the open left-half plane. Additionally, R 
is column reduced, the column degrees of R equal the half- 
diagonal degrees of 2, and S has a special form S = R*K-', 
with K a constant real nonsingular symmetric matrix. That 
is, (1) is initially sought in a form 

Z(S) = R * ( ~ ) K - ~ R ( s ) .  (3) 
1. Find &x(t)  = Ax(t), w ( t )  = Cx(t) as an observ- 
able state-space realization of the differential equation 

2. Use Schur transformation to transform the coordinates of 
therealization ( A ,  C) such that 

z (5) w ( t )  = 0. 

c = [ Cl cz ] U, 
where All has all its roots in the open left-halfplane and A22 
has all its roots in the open right-half plane. 
3. Convert Cl(s1- Al~) - l  = R-'(s)E(s) such that R is 
a square polynomial matrix whose column degrees equal 
those of 2. 

4. Then R(s)Z-l(s)R*(s) = K ,  where K is a constant Her- 
mitian matrix K = R(0)Z-'(O)R*(O). 
5. If R(s )  is nonsingular', then K is nonsingular and 

Z ( S )  = R * ( ~ ) K - ~  R(s). 

Thedesired spectral factorization Z(s) = P ( s ) J Q ( s )  with 
Q(s) = VR(s) ,  follows from the decomposition K-' = 
VHJV.  The constant matrix V is obtained from the Schur 
decomposition of L-' by permutation. 

Separately, if Z(s) = P*(s)WP(s) as in applications, 
then we define W P ( s ) w  = z. The system Z(s)w = 0 
is equivalently represented by the two equations P(s)w = 
W-lz and P*(s)z = 0, or 

'A polynomial matrix is nonsingular if it is square and its determinant 
is not identically zero. 
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The realization of (4) is in the form 

Omitting the equation for z results in the desired observable 
realization of P*(s)WP(s)w = 0. 

3 The state-space realization 

The svdte-space realization does not require computation of 
elementary polynomial operations. The algorithm is a spe- 
cial case of [4]. The polynomial matrix operator Z(s) is con- 

Z, in the differential operator s = $. The ‘external’ vari- 
ables w : R + Rm are from the set of all infinitely often dif- 
ferentiable functions. 

1. Introduce ‘internal’ variables 6 that convert Z(s)w = 0 to 
an externally equivalent2 form 

P(s)6 = 0, (6)  

sidered as a matrix polynomial Z(s) = Zzsz + ... + 21s + 

QC = W .  

. . . . . .  -SI 0 0 

. .  . .  
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0 O I  
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. . . . . . . . .  

Permutation of the ‘internal’ variables 6 transforms (6) into 
S I - A  - B  

H O  
(7) 

2. Compute a state-to-input feedback matrix F such that 
themaximal ( A ,  span B)-controlledinvariant subspacecon- 
tainedin ker C becomes ( A  + BF)-invariant3. Use therele 
vant basis transformation to convert the system description 

where A11 determines the maximal controlled invariant sub- 
space. Correspondingly, (A22, B2, C2) is a strongly observ- 
able state-space realization. 
3. According to [7], Theorem 1.8, a state-space realization 
is strongly observable if and only if it has no zeros. Since 

U ( s )  := [ s y 2 2  -B2 0 ] (9) 

is a square polynomial matrix with no finite zeros, U ( s )  is 
unimodular. U (s) guarantees existence of a transformation 
matrix such that an equivalent system description is in the 

20perational form for external equivalence is explained in [5J. 
3A standard reference for invariant and controlled invariant subspaces 

in control theory is [6].  

form 

(10) 
= AllX(t) 

~ ( t )  = H i x ( t ) .  
where A11 and HI are directly inherited from (8). By con- 
struction, (IO) is externally equivalent to z ($) w(t)  = 0. 

4 Conclusions 

Given a diagonally reduced para-Hermitian polynomial ma- 
trix 2, the result of the algorithm is a square column-reduced 
polynomial matrix Q with the column degrees equal to the 
half-diagonal degrees of Z and such that the roots of Q all 
lie in the open left-half plane; Z = Q* J Q  with J the signa- 
ture. 

In case of a nearly noncanonical factorization [2], the algo- 
rith stops at Z(s) = R*i(s)K-’R(s) with R squarecolumn- 
reduced polynomial matrix with correct column degrees and 
roots. K is a constant real nearly singular symmetric ma- 
trix. The nearly noncainonical form is applicable in %- 
optimization [3]. 

The contribution is that the algorithm avoids computation 
of elementary polynomlial operations, and relies on standard 
numerical linear algebra for constant matrix computations! 
The principal application of the algorithm is that of a build- 
ing block for higher-level algorithmsincluding and %- 
optimization [3]. 
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“This is important for saf eguarding the numerical properties of the algo- 

rithm. Current implementation is based on MATLAB kernel and the soft- 
ware appendix to [6]. 
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