A state-space algorithm for the spectral factorization¹

F. Kraffer, H. Kwakernaak

Systems and Control Group, Department of Applied Mathematics, Twente University, P. O. Box 217, 7500 AE Enschede, The Netherlands. Fax : +31.53.434 0733, e-mails : F.Kraffer@math.utwente.nl, H.Kwakernaak@math.utwente.nl

Abstract

This paper presents an algorithm for the spectral factorization of a para-Hermitian polynomial matrix. The algorithm is based on polynomial matrix to state space and vice versa conversions, and avoids elementary polynomial operations in computations; It relies on well-proven methods of numerical linear algebra such as Schur decompositions. *Keywords:* Subspace methods, Numerical methods, Linear systems.

1 Introduction

Polynomial matrices play an important role in linear systems and control theory. The present algorithm for the spectral factorization of a diagonally reduced para-Hermitian polynomial matrix Z is useful in control with quadratic cost functionals. We look for a square polynomial matrix Q and a signature matrix J such that

$$Z(s) = Q^*(s)JQ(s), \quad J = \begin{bmatrix} I_m & 0\\ 0 & -I_p \end{bmatrix}.$$
(1)

The roots of Q all lie in the open left-half plane and the column degrees of Q equal the *half-diagonal degrees* of Z. Sufficient but not necessary for the existence of such a factorization is that Z has no roots on the imaginary axis. If the factorization (1) exists such that Q has the correct column degrees then the factorization is said to be *canonical*.

A square polynomial matrix Z is para-Hermitian if $Z^* = Z$ where the adjoint Z^* is the polynomial matrix defined by $Z^*(s) = Z^{H}(-s)$. The $m \times m$ para-Hermitian Z is diagonally reduced if there exist half-diagonal degrees $\delta_1, \delta_2, \dots, \delta_m$, so that the leading diagonal coefficient matrix

$$Z_{\rm L} = \lim_{|s| \to \infty} D^{-1}(-s) Z(s) D^{-1}(s)$$
 (2)

exists and is nonsingular. D is the diagonal matrix $D(s) = diag(s^{\delta_1}, s^{\delta_2}, \dots, s^{\delta_m})$.

If Z is not diagonally reduced then it may be made so by a symmetric unimodular transformation [1]. Other algorithms for spectral factorization are described in [2, 3]. The present algorithm is simpler, and does not require elementary polynomial operations.

2 The algorithm

The algorithm for (1) is viewed as a special case of Z = SR, where S has all its roots in the open right-half plane and R has all its roots in the open left-half plane. Additionally, R is column reduced, the column degrees of R equal the halfdiagonal degrees of Z, and S has a special form $S = R^*K^{-1}$, with K a constant real nonsingular symmetric matrix. That is, (1) is initially sought in a form

$$Z(s) = R^*(s)K^{-1}R(s).$$
(3)

1. Find $\frac{d}{dt}x(t) = Ax(t)$, w(t) = Cx(t) as an observable state-space realization of the differential equation $Z\left(\frac{d}{dt}\right)w(t) = 0$.

2. Use Schur transformation to transform the coordinates of the realization (A, C) such that

$$A = U^{H} \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} U,$$

$$C = \begin{bmatrix} C_{1} & C_{2} \end{bmatrix} U,$$

where A_{11} has all its roots in the open left-half plane and A_{22} has all its roots in the open right-half plane.

3. Convert $C_1(sI - A_{11})^{-1} = R^{-1}(s)E(s)$ such that R is a square polynomial matrix whose column degrees equal those of Z.

4. Then $R(s)Z^{-1}(s)R^*(s) = K$, where K is a constant Hermitian matrix $K = R(0)Z^{-1}(0)R^*(0)$.

5. If R(s) is nonsingular¹, then K is nonsingular and

$$Z(s) = R^*(s)K^{-1}R(s).$$

The desired spectral factorization $Z(s) = Q^*(s)JQ(s)$ with Q(s) = VR(s), follows from the decomposition $K^{-1} = V^H JV$. The constant matrix V is obtained from the Schur decomposition of L^{-1} by permutation.

Separately, if $Z(s) = P^*(s)WP(s)$ as in \mathcal{H}_{∞} applications, then we define WP(s)w = z. The system Z(s)w = 0is equivalently represented by the two equations $P(s)w = W^{-1}z$ and $P^*(s)z = 0$, or

$$\underbrace{\begin{bmatrix} P(s) & -W^{-1} \\ 0 & P^*(s) \end{bmatrix}}_{T(s)} \begin{bmatrix} w \\ z \end{bmatrix} = 0.$$
(4)

¹This paper is a part of the COPERNICUS Project CP 93:2424 in cooperation with the Institute of Information Theory and Automation in Prague, Czech Republic.

¹A polynomial matrix is nonsingular if it is square and its determinant is not identically zero.

The realization of (4) is in the form

$$\frac{d}{dt}x(t) = Ax(t), \qquad \begin{bmatrix} w(t) \\ z(t) \end{bmatrix} = Cx(t). \tag{5}$$

Omitting the equation for z results in the desired observable realization of $P^*(s)WP(s)w = 0$.

3 The state-space realization

The state-space realization does not require computation of elementary polynomial operations. The algorithm is a special case of [4]. The polynomial matrix operator Z(s) is considered as a matrix polynomial $Z(s) = Z_z s^z + \cdots + Z_1 s + Z_0$ in the differential operator $s = \frac{d}{dt}$. The 'external' variables $w : \mathbb{R} \to \mathbb{R}^m$ are from the set of all infinitely often differentiable functions.

1. Introduce 'internal' variables ξ that convert Z(s)w = 0 to an externally equivalent² form

$$P(s)\xi = 0, \tag{6}$$

$$\begin{bmatrix} P(s) \\ Q \end{bmatrix} = \begin{bmatrix} I & -sI & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I & \ddots & 0 \\ Z_z & \cdots & \cdots & Z_1 & Z_0 & -sI \\ 0 & \cdots & \cdots & 0 & I \\ \hline 0 & \cdots & \cdots & 0 & I & 0 \end{bmatrix}$$

Permutation of the 'internal' variables ξ transforms (6) into

$$\begin{bmatrix} P(s) \\ Q \end{bmatrix} = \begin{bmatrix} sI - A & -B \\ -C & 0 \\ -H & 0 \end{bmatrix}.$$
 (7)

2. Compute a state-to-input feedback matrix F such that the maximal (A, span B)-controlled invariant subspace contained in ker C becomes (A + BF)-invariant³. Use the relevant basis transformation to convert the system description into

$$\begin{bmatrix} P(s) \\ Q \end{bmatrix} = \begin{bmatrix} SI - A_{11} & -A_{12} & -B_1 \\ 0 & sI - A_{22} & -B_2 \\ 0 & C_2 & 0 \\ \hline H_1 & H_2 & 0 \end{bmatrix}$$
(8)

where A_{11} determines the maximal controlled invariant subspace. Correspondingly, (A_{22}, B_2, C_2) is a strongly observable state-space realization.

3. According to [7], Theorem 1.8, a state-space realization is strongly observable if and only if it has no zeros. Since

$$U(s) := \begin{bmatrix} sI - A_{22} & -B_2 \\ C_2 & 0 \end{bmatrix}$$
(9)

is a square polynomial matrix with no finite zeros, U(s) is unimodular. U(s) guarantees existence of a transformation matrix such that an equivalent system description is in the form

$$\begin{array}{rcl} \frac{d}{dt}x(t) &=& A_{11}x(t) \\ w(t) &=& H_1x(t). \end{array}$$
(10)

where A_{11} and H_1 are directly inherited from (8). By construction, (10) is externally equivalent to $Z\left(\frac{d}{dt}\right)w(t) = 0$.

4 Conclusions

Given a diagonally reduced para-Hermitian polynomial matrix Z, the result of the algorithm is a square column-reduced polynomial matrix Q with the column degrees equal to the half-diagonal degrees of Z and such that the roots of Q all lie in the open left-half plane; $Z = Q^*JQ$ with J the signature.

In case of a nearly noncanonical factorization [2], the algorith stops at $Z(s) = R^*(s)K^{-1}R(s)$ with R square columnreduced polynomial matrix with correct column degrees and roots. K is a constant real nearly singular symmetric matrix. The nearly noncanonical form is applicable in \mathcal{H}_{∞} optimization [3].

The contribution is that the algorithm avoids computation of elementary polynomial operations, and relies on standard numerical linear algebra for constant matrix computations.⁴ The principal application of the algorithm is that of a building block for higher-level algorithms including \mathcal{H}_2 - and \mathcal{H}_{∞} -optimization [3].

References

[1] F. M. Callier, "On polynomial matrix spectral factorization by symmetric extraction," *IEEE Trans. Aut. Control*, vol. AC-30, pp. 453–464, 1985.

[2] Kwakernaak H. and Šebek M., "Polynomial Jspectral factorization," *IEEE Trans. Aut. Control*, vol. AC-39, pp. 315–328, Feb. 1994.

[3] H. Kwakernaak, Frequency domain solution of the standard \mathcal{H}_{∞} problem, pp. 57–107, Springer-Verlag, Berlin, etc, 1996.

[4] F. Kraffer, "Row reduction without polynomial operations, an algorithm," in *4th European Control Conference ECC97*, Brussels, Belgium, July 1997.

[5] J. M. Schumacher, "Linear systems under external equivalence," *Linear Algebra and its Applications*, vol. 102, pp. 1–33, 1988.

[6] Basile, G. and Marro G., *Controlled and conditioned invariants in linear system theory*, Prentice Hall, Englewood Cliffs, N.J., 1992, incl. Diskette 3.5 inch, ISBN 90-9006122-3.

[7] M. L. J. Hautus, "Strong Detectability and Observers," *Linear Algebra and its Applications*, vol. 50, pp. 353–368, 1983.

²Operational form for external equivalence is explained in [5].

 $^{^{3}}$ A standard reference for invariant and controlled invariant subspaces in control theory is [6].

⁴This is important for safeguarding the numerical properties of the algorithm. Current implementation is based on MATLAB kernel and the software appendix to [6].