A state-space algorithm for the spectral factorization ${ }^{1}$

F. Kraffer, H. Kwakernaak
Systems and Control Group, Department of Applied Mathematics, Twente University, P. O. Box 217,7500 AE Enschede, The Netherlands. Fax : +31.53 .4340733 , e-mails : F.Kraffer@math.utwente.nl, H.Kwakernaak@math.utwente.nl

Abstract

This paper presents an algorithm for the spectral factorization of a para-Hermitian polynomial matrix. The algorithm is based on polynomial matrix to state space and vice versa conversions, and avoids elementary polynomial operations in computations; It relies on well-proven methods of numerical linear algebra such as Schur decompositions. Keywords: Subspace methods, Numerical methods, Linear systems.

1 Introduction

Polynomial matrices play an importantrole in linear systems and control theory. The present algorithm for the spectral factorization of a diagonally reduced para-Hermitian polynomial matrix Z is useful in control with quadratic cost functionals. We look for a square polynomial matrix Q and a signature matrix J such that

$$
Z(s)=Q^{*}(s) J Q(s), \quad J=\left[\begin{array}{cc}
I_{m} & 0 \tag{1}\\
0 & -I_{p}
\end{array}\right] .
$$

The roots of Q all lie in the open left-half plane and the column degrees of Q equal the half-diagonaldegrees of Z. Sufficient but not necessary for the existence of such a factorization is that Z has no roots on the imaginary axis. If the factorization (1) exists such that Q has the correct column degrees then the factorization is said to be canonical.

A square polynomial matrix Z is para-Hermitian if $Z^{*}=Z$ where the adjoint Z^{*} is the polynomial matrix defined by $Z^{*}(s)=Z^{\mathrm{H}}(-s)$. The $m \times m$ para-Hermitian Z is diagonally reduced if there exist half-diagonal degrees $\delta_{1}, \delta_{2}, \cdots$, δ_{m}, so that the leading diagonal coefficient matrix

$$
\begin{equation*}
Z_{\mathrm{L}}=\lim _{|s| \rightarrow \infty} D^{-1}(-s) Z(s) D^{-1}(s) \tag{2}
\end{equation*}
$$

exists and is nonsingular. D is the diagonal matrix $D(s)=$ $\operatorname{diag}\left(s^{\delta_{1}}, s^{\delta_{2}}, \cdots, s^{\delta_{m}}\right)$.

If Z is not diagonally reduced then it may be made so by a symmetric unimodular transformation [1]. Other algorithms for spectral factorization are described in $[2,3]$. The present algorithm is simpler, and does not require elementary polynomial operations.

[^0]
2 The algorithm

The algorithm for (1) is viewed as a special case of $Z=S R$, where S has all its roots in the open right-half plane and R has all its roots in the open left-half plane. Additionally, R is column reduced, the column degrees of R equal the halfdiagonal degrees of Z, and S has a special form $S=R^{*} K^{-1}$, with K a constant real nonsingular symmetric matrix. That is, (1) is initially sought in a form

$$
\begin{equation*}
Z(s)=R^{*}(s) K^{-1} R(s) \tag{3}
\end{equation*}
$$

1. Find $\frac{d}{d t} x(t)=A x(t), w(t)=C x(t)$ as an observable state-space realization of the differential equation $Z\left(\frac{d}{d t}\right) w(t)=0$.
2. Use Schur transformation to transform the coordinates of the realization (A, C) such that

$$
\begin{aligned}
& A=U^{\mathrm{H}}\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] U, \\
& C=\left[\begin{array}{cc}
C_{1} & C_{2}
\end{array}\right] U,
\end{aligned}
$$

where A_{11} has all its roots in the open left-half plane and A_{22} has all its roots in the open right-half plane.
3. Convert $C_{1}\left(s I-A_{11}\right)^{-1}=R^{-1}(s) E(s)$ such that R is a square polynomial matrix whose column degrees equal those of Z.
4. Then $R(s) Z^{-1}(s) R^{*}(s)=K$, where K is a constant Hermitian matrix $K=R(0) Z^{-1}(0) R^{*}(0)$.
5. If $R(s)$ is nonsingular ${ }^{1}$, then K is nonsingular and

$$
Z(s)=R^{*}(s) K^{-1} R(s) .
$$

The desired spectral factorization $Z(s)=Q^{*}(s) J Q(s)$ with $Q(s)=V R(s)$, follows from the decomposition $K^{-1}=$ $V^{\mathrm{H}} J V$. The constant matrix V is obtained from the Schur decomposition of L^{-1} by permutation.

Separately, if $Z(s)=P^{*}(s) W P(s)$ as in \mathcal{H}_{∞} applications, then we define $W P(s) w=z$. The system $Z(s) w=0$ is equivalently represented by the two equations $P(s) w=$ $W^{-1} z$ and $P^{*}(s) z=0$, or

$$
\underbrace{\left[\begin{array}{cc}
P(s) & -W^{-1} \tag{4}\\
0 & P^{*}(s)
\end{array}\right]}_{T(s)}\left[\begin{array}{c}
w \\
z
\end{array}\right]=0 .
$$

[^1]The realization of (4) is in the form

$$
\frac{d}{d t} x(t)=A x(t), \quad\left[\begin{array}{l}
w(t) \tag{5}\\
z(t)
\end{array}\right]=C x(t)
$$

Omitting the equation for z results in the desired observable realization of $P^{*}(s) W P(s) w=0$.

3 The state-space realization

The state-space realization does not require computation of elementary polynomial operations. The algorithm is a special case of [4]. The polynomial matrix operator $Z(s)$ is considered as a matrix polynomial $Z(s)=Z_{z} s^{z}+\cdots+Z_{1} s+$ Z_{0} in the differential operator $s=\frac{d}{d t}$. The 'external' variables $w: \mathbb{R} \rightarrow \mathbb{R}^{m}$ are from the set of all infinitely often differentiable functions.

1. Introduce 'internal' variables ξ that convert $Z(s) w=0$ to an externally equivalent ${ }^{2}$ form

$$
\begin{gathered}
\left.\begin{array}{rl}
P(s) \xi & =0, \\
Q \xi & = \\
w . & \\
\hline
\end{array}\right]=\left[\begin{array}{cccccc}
I & -s I & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & I & \ddots & 0 \\
Z_{z} & \cdots & \cdots & \mathrm{Z}_{1} & \mathrm{Z}_{0} & -s I \\
0 & \cdots & \cdots & \cdots & 0 & I \\
\hline 0 & \cdots & \cdots & 0 & I & 0
\end{array}\right]
\end{gathered}
$$

Permutation of the 'internal' variables ξ transforms (6) into

$$
\left[\begin{array}{c}
P(s) \tag{7}\\
Q
\end{array}\right]=\left[\begin{array}{cc}
s I-A & -B \\
C & 0 \\
\hline H & 0
\end{array}\right]
$$

2. Compute a state-to-input feedback matrix F such that the maximal ($A, \operatorname{span} B$)-controlled invariant subspace contained in ker C becomes $(A+B F)$-invariant ${ }^{3}$. Use the relevant basis transformation to convert the system description

$$
\begin{align*}
& \text { into } \\
& {\left[\begin{array}{c}
P(s) \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
s I-A_{11} & -A_{12} & -B_{1} \\
0 & s I-A_{22} & -B_{2} \\
0 & C_{2} & 0 \\
\hline H_{1} & H_{2} & 0
\end{array}\right]} \tag{8}
\end{align*}
$$

where A_{11} determines the maximal controlled invariant subspace. Correspondingly, (A_{22}, B_{2}, C_{2}) is a strongly observable state-space realization.
3. According to [7], Theorem 1.8, a state-space realization is strongly observable if and only if it has no zeros. Since

$$
U(s):=\left[\begin{array}{cr}
s I-A_{22} & -B_{2} \tag{9}\\
C_{2} & 0
\end{array}\right]
$$

is a square polynomial matrix with no finite zeros, $U(s)$ is unimodular. $U(s)$ guarantees existence of a transformation matrix such that an equivalent system description is in the

[^2]form
\[

$$
\begin{align*}
\frac{d}{d t} x(t) & =A_{11} x(t) \tag{10}\\
w(t) & =H_{1} x(t)
\end{align*}
$$
\]

where A_{11} and H_{1} are directly inherited from (8). By construction, (10) is externally equivalent to $Z\left(\frac{d}{d t}\right) w(t)=0$.

4 Conclusions

Given a diagonally reduced para-Hermitian polynomial matrix Z, the result of the algorithm is a square column-reduced polynomial matrix Q with the column degrees equal to the half-diagonal degrees of Z and such that the roots of Q all lie in the open left-half plane; $Z=Q^{*} J Q$ with J the signature.
In case of a nearly noncanonical factorization [2], the algorith stops at $Z(s)=R^{*}(s) K^{-1} R(s)$ with R square columnreduced polynomial marrix with correct column degrees and roots. K is a constant real nearly singular symmetric matrix. The nearly noncanonical form is applicable in $\mathscr{H}_{\infty^{-}}$ optimization [3].
The contribution is that the algorithm avoids computation of elementary polynomial operations, and relies on standard numerical linear algebra for constant matrix computations. ${ }^{4}$ The principal application of the algorithm is that of a building block for higher-level algorithms including \mathcal{H}_{2} - and \mathcal{H}_{∞} optimization [3].

References

[1] F. M. Callier, "On polynomial matrix spectral factorization by symmetric extraction," IEEE Trans. Aut. Control, vol. AC-30, pp. 453-464, 1985.
[2] Kwakernaak H. and Šebek M., "Polynomial J spectral factorization," IEEE Trans. Aut. Control, vol. AC39, pp. 315-328, Feb. 1994.
[3] H. Kwakernaak, Frequency domain solution of the standard \mathcal{H}_{∞} problem, pp. 57-107, Springer-Verlag, Berlin, etc, 1996.
[4] F. Kraffer, "Row reduction without polynomial operations, an algorithm," in 4th European Control Conference ECC97, Brussels, Belgium, July 1997.
[5] J. M. Schumacher, "Linear systems under external equivalence," Linear Algebra and its Applications, vol. 102, pp. 1-33, 1988.
[6] Basile, G. and Marro G., Controlled and conditioned invariants in linear system theory, Prentice Hall, Englewood Cliffs, N.J., 1992, incl. Diskette 3.5 inch, ISBN 90-9006122-3.
[7] M. L. J. Hautus, "Strong Detectability and Observers," Linear Algebra and its Applications, vol. 50, pp. 353-368, 1983.

[^3]
[^0]: ${ }^{1}$ This paper is a part of the COPERNICUS Project CP 93:2424 in cooperation with the Institute of Information Theory and Automation in Prague, Czech Republic.

[^1]: ${ }^{1}$ A polynomial matrix is nonsingular if it is square and its determinant is not identically zero.

[^2]: ${ }^{2}$ Operational form for external equivalence is explained in [5].
 ${ }^{3}$ A standard reference for invariant and controlled invariant subspaces in control theory is [6].

[^3]: ${ }^{4}$ This is important for safeguarding the numerical properties of the algorithm. Current implementation is based on MATLAB kernel and the software appendix to [6].

