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Abstract

This paper presents an algorithm for the spectral factoriza-
tion of a para-Hermitian polynomial matrix. The algorithm
is based on polynomial matrix to state space and vice versa
conversions, and avoids elementary polynomial operations
in computations; It relies on well-proven methods of nu-
merical linear algebra such as Schur decompositions. Key-
words: Subspace methods, Numerical methods, Linear sys-
tems.

1 Introduction

Polynomial matrices play an importantrole in linear systems
and control theory. The present algorithm for the spectral
factorization of a diagonally reduced para-Hermitian poly-
nomial matrix Z is useful in control with quadratic cost func-
tionals. We look for a square polynomialmatrix Q and a sig-
nature matrix J such that

20 = o, 7= ¢ 5] o

The roots of O all lie in the open left-half plane and the col-
umn degrees of Q equal the half-diagonaldegrees of Z. Suf-
ficient but not necessary for the existence of such a factor-
ization is that Z has no roots on the imaginary axis. If the
factorization (1) exists such that Q has the correct column
degrees then the factorization is said to be canonical.

A square polynomial matrix Z is para-Hermitian if Z* = Z
where the adjoint Z* is the polynomial matrix defined by
Z*(s) = ZH(—s). Them x m para-Hermitian Z is diago-
nally reduced if there exist half-diagonal degrees 81, 62, - - -,
8, so that the leading diagonal coefficient matrix

7L = l l]im DY (=5)Z(s)D7(s5) (2)

[$I—> 0

exists and is nonsingular. D is the diagonal matrix D(s) =
diag(s®, 5%, ..., ).

If Z is not diagonally reduced then it may be made so by a
symmetric unimodular transformation [1]. Other algorithms
for spectral factorization are described in [2, 3]. The present
algorithm is simpler, and does not require elementary poly-
nomial operations.

" UThis paper is a part of the COPERNICUS Project CP 93:2424 in coop-
eration with the Institute of Information Theory and Automation in Prague,
Czech Republic.

0-7803-3970-8/97 $10.00 © 1997 IEEE

2 The algorithm

The algorithm for (1) is viewed as a special case of Z = SR,
where S has all its roots in the open right-half plane and R
has all its roots in the open left-half plane. Additionally, R
is column reduced, the column degrees of R equal the half-
diagonal degrees of Z, and S has a special form S = R*K~1,
with K a constant real nonsingular symmetric matrix. That
is, (1) is initially sought in a form

Z(s) = R*()K'R(s). 3)

1. Find £x() = Ax(@®), w(f) = Cx(¢) as an observ-
able state-space realization of the differential equation
Z(£)w@ =0.

2. Use Schur transformation to transform the coordinates of
the realization (A, C) such that

_ | An An
AL
C = [a G ]y,
where A;; has all its roots in the open left-half piane and Az,
has all its roots in the open right-half plane.

3. Convert Ci(sI — Aj1)~! = R™I(5)E(s) such that R is
a square polynomial matrix whose column degrees equal
those of Z.
4. Then R(5)Z~1(s)R*(5) = K, where K is a constant Her-
mitian matrix K = R(0)Z~1(0) R*(0).
5. If R(s) is nonsingular!, then K is nonsingular and

Z(s) = R*(SHK'R().
The desired spectral factorization Z(s) = Q*(s)J Q(s) with
Q(s) = VR(s), follows from the decomposition K~! =

VHJV. The constant matrix V is obtained from the Schur
decomposition of L~ by permutation.

Separately, if Z(s) = P*(s)WP(s) as in H,, applications,
then we define WP(s)w = z. The system Z(s)w = 0
is equivalently represented by the two equations P(s)w =
W1z and P*(s)z=0, or

P(s)y —-w! w _
[ 0 Ps) ][ z] = 0 “)
—_———

T(s)

! A polynomial matrix is nonsingular if it is square and its determinant
is not identically zero.
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The realization of (4) is in the form

dx) = Ax), [‘;’((f))] = . )

Omitting the equation for z results in the desired observable
realization of P*(s)WP(s)w = 0.

3 The state-space realization

The state-space realization does not require computation of
elementaty polynomial operations. The algorithm is a spe-
cial case of [4]. The polynomial matrix operator Z(s) is con-
sidered as a matrix polynomial Z(s) = Z,s°+ --- + Z15 +
7, in the differential operator § = g;. The ‘external’ vari-
ables w : R — R™ are from the set of all infinitely often dif-
ferentiable functions.

1. Introduce ‘internal’ variabies £ that convert Z(s)w = 0to
an externally equivalent? form

P(9E = 0, (6)
gt = w
-] —-sI 0 ... ... 0 7
0 .
[P(s)] _ e el e e
0 0 .- 0 I . 0
Z, o e Ly Zyg —sI
0 v v oo 0 I
0 - - 0 1 0
Permutation of the ‘internal’ variables & transforms (6) into
sI-A -B
[P 8)] - c o |. )
H 0

2. Compute a state-to-input feedback matrix F such that
the maximal (A, span B)-controlled invariant subspace con-
tained in ker C becomes (A + BF)-invariant’. Use the rele-
vant basis transformation to convert the system description

into
sI — A11 —A12 "Bl

P(S) . 0 sI— A22 —B;
Q - 0 G 4] 8)
H H,

where Ay, determines the maximal controlled invariant sub-
space. Correspondingly, (A2, B2, C;) is a strongly observ-
able state-space realization.

3. According to [7], Theorem 1.8, a state-space realization
is strongly observable if and only if it has no zeros. Since

U(S) — [S122A22 —B(Q_)] (9)

is a square polynomial matrix with no finite zeros, U(s) is
unimodular. U{s) guarantees existence of a transformation
matrix such that an equivalent system description is in the

2Qperational form for external equivalence is explained in [5].
3 A standard reference for invariant and controlled invariant subspaces
in control theory is [6].

form
2xt) = Anx(t)
w() = Hix(@).
where Ay and H, are directly inherited from (8). By con-
struction, (10) is externally equivalent to Z (£) w(z) =0.

(10)

4 Conclusions

Given a diagonally reduced para-Hermitian polynomial ma-
trix Z, the result of the algorithm is a square column-reduced
polynomial matrix Q with the column degrees equal to the
half-diagonal degrees of Z and such that the roots of Q all
lie in the open left-half plane; Z = @* JQ with J the signa-
ture.

In case of a nearly noncanonical factorization [2], the algo-
rith stops at Z(s) = R*(s)K~1R(s) with R square column-
reduced polynomial matrix with correct column degrees and
roots. K is a constant real nearly singular symmetric ma-
trix. The nearly noncanonical form is applicable in H.-
optimization [3].

The contribution is that the algorithm avoids computation
of elementary polynomial operations, and relies on standard
numerical linear algebra for constant matrix computations.*
The principal application of the algorithm is that of a build-
ing block for higher-level algorithms including 76 - and Hoo-
optimization [3].
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