The Complexity of Graph Contractions

Asaf Levin ${ }^{1}$, Daniël Paulusma ${ }^{2}$, and Gerhard J. Woeginger ${ }^{2}$
${ }^{1}$ Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel. levinas@post.tau.ac.il
${ }^{2}$ Faculty of Mathematical Sciences, University of Twente, 7500 AE Enschede, The Netherlands. \{d.paulusma,g.j.woeginger\}@math.utwente.nl

Abstract

For a fixed pattern graph H, let H-CONTRACTIBILITY denote the problem of deciding whether a given input graph is contractible to H. We continue a line of research that was started in 1987 by Brouwer \& Veldman, and we determine the computational complexity of H -CONTRACTIBILITY for certain classes of pattern graphs. In particular, we pin-point the complexity for all graphs H with five vertices. Interestingly, in all cases that are known to be polynomially solvable, the pattern graph H has a dominating vertex, whereas in all cases that are known to be NP-complete, the pattern graph H does not have a dominating vertex.

1 Introduction

All graphs in this paper are undirected, finite, and simple. Let $G=(V, E)$ be a graph, and let $e=[u, v] \in E$ be an arbitrary edge. The edge contraction of edge e in G removes the two end-vertices u and v from G, and replaces them by a new vertex that is adjacent to precisely those vertices to which u or v were adjacent. The edge deletion of edge e removes e from E. The edge subdivision of e removes e from E, and introduces a new vertex that is adjacent to the two end-vertices u and v. A graph G is contractible to a graph H (G is H-contractible), if H can be obtained from G by a sequence of edge contractions. A graph G contains a graph H as a minor, if H can be obtained from G by a sequence of edge contractions and edge deletions. A graph G is a subdivision of a graph H, if G can be obtained from H by a sequence of edge subdivisions.

Now let $H=\left(V_{H}, E_{H}\right)$ be some fixed connected graph with vertex set $V_{H}=$ $\left\{h_{1}, \ldots, h_{k}\right\}$. There is a number of natural and elementary algorithmic problems that check whether the structure of graph H shows up as a pattern within the structure of some input graph G :

- PROBLEM: H-MINOR CONTAINMENT

INSTANCE: A graph $G=(V, E)$. QUESTION: Does G contain H as a minor?

- PROBLEM: H-SUBDIVISION SUBGRAPH

INSTANCE: A graph $G=(V, E)$.
QUESTION: Does G contain a subgraph that is isomorphic to some subdivision of H ?

- PROBLEM: ANCHORED H-SUBDIVISION SUBGRAPH

INSTANCE: A graph $G=(V, E) ; k$ pairwise distinct vertices v_{1}, \ldots, v_{k} in V.
QUESTION: Does G contain a subgraph that is isomorphic to some subdivision of H, such that the isomorphism maps vertex v_{i} of the subgraph of G into vertex h_{i} of the subdivision of H, for $1 \leq i \leq k$?

- PROBLEM: H-CONTRACTIBILITY

INSTANCE: A graph $G=(V, E)$.
QUESTION: Is G contractible to H ?

1.1 Known Results

A celebrated result by Robertson \& Seymour [3] states that H-MINOR CONTAINMENT can be solved in polynomial time $O\left(|V|^{3}\right)$ for every fixed pattern graph H. In fact, [3] fully settles the complexity of the first three problems on our problem list above:

Proposition 1. (Robertson \& Seymour [3])
For any fixed pattern graph H, the three problems H-MINOR CONTAINMENT, H-SUBDIVISION SUBGRAPH, and ANCHORED H-SUBDIVISION SUBGRAPH are polynomially solvable in polynomial time.

What about the fourth problem on our list, H-CONTRACTIBILITY? Perhaps surprisingly, there exist pattern graphs H for which this problem is NPcomplete to decide! For instance, Brouwer \& Veldman 11 have shown that $P_{4^{-}}$ CONTRACTIBILITY is NP-complete. The main result of 1 is the following.

Proposition 2. (Brouwer EG Veldman [1])
If H is a connected triangle-free graph other than a star, then H-CONTRACTIBILITY is NP-complete. If H is a star, then H-CONTRACTIBILITY is polynomially solvable.

Note that an equivalent way of stating Proposition 2 would be the following: H-CONTRACTIBILITY is NP-complete for every connected triangle-free graph H without a dominating vertex. H-CONTRACTIBILITY is polynomially for every connected triangle-free graph H with a dominating vertex. (A dominating vertex is a vertex that is adjacent to all other vertices.) Moreover, the paper [1] determines the complexity of H-CONTRACTIBILITY for all 'small' connected pattern graphs H : For $H=P_{4}$ and $H=C_{4}$, the problem is NP-complete (as implied by Proposition (2). For every other pattern graph H on at most four vertices, the problem is polynomially solvable.

The exact separating line between polynomially solvable cases and NPcomplete cases of this problem (under $\mathrm{P} \neq \mathrm{NP}$) is unknown and unclear.

Brouwer \& Veldman [1] write at the end of their paper that they expect the class of polynomially solvable cases to be very limited.

Watanabe, Ae \& Nakamura (4) consider remotely related edge contraction problems where the goal is to find the minimum number of edge contractions that transform a given input graph G into a pattern from a certain given pattern class.

1.2 New Results

We follow the line of research that has been initiated by Brouwer \& Veldman 1], and we classify the complexity of H-CONTRACTIBILITY for certain classes of pattern graphs that - in particular - contain all 'small' pattern graphs H with at most five vertices. Our results can be summarized as follows:

Theorem 1. (Main result of the paper)
Let H be a connected graph on at most five vertices. If H has a dominating vertex, then H-CONTRACTIBILITY is polynomially solvable. If H does not have a dominating vertex, then H-CONTRACTIBILITY is NP-complete.

It is difficult for us not to conjecture that the presence of a dominating vertex in the pattern graph H precisely separates the easy cases from the hard cases. However, we have no evidence for such a conjecture.

Fig. 1. The graphs $H_{1}=H_{1}^{*}(2,1,0) ; H_{2}=H_{1}^{*}(0,2,0) ;$ and $H_{3}=H_{1}^{*}(1,0,1)$.

There are fifteen graphs H on five vertices that are not covered by Proposition 2, these are exactly the connected graphs on five vertices that do contain a triangle; see Figures 16for pictures of all these graphs. It turned out that ten of these fifteen graphs yield polynomially solvable H-CONTRACTIBILITY problems, whereas the other five of them yield NP-complete problems. Many of our results are actually more general: They do not only provide a specialized result for one particular five-vertex graph, but they do provide a result for an infinite family of pattern graphs, from which the result on the five-vertex graph falls out as a special case. Our main contributions may be summarized as follows:

Fig. 2. The graphs $H_{4}=H_{2}^{*}(1,1)$; and $H_{5}=H_{2}^{*}(3,0)$.

Fig. 3. The graphs $H_{6}=H_{3}^{*}(2) ; H_{7}=K_{5} ;$ and $H_{8}=P^{+}(4)=K_{1} \bowtie P_{4}$.
(1) We analyze a class of cases where H contains one, two, or three dominating vertices, and where the set of non-dominating vertices induce a set of isolated vertices, isolated edges, and paths on three vertices. In Section 3 we prove that three subfamilies of this class yield polynomially solvable H CONTRACTIBILITY problems. These classes contain the eight graphs H_{1} thru H_{8} on five vertices as depicted in Figures 1-3.
Our structural results show that in case some H-contraction exists, then there also exists an H-contraction of a fairly primitive form. In our algorithmic results, we then enumerate all possibilities for these primitive pieces, and settle the remaining problems by applying the results of Robertson \& Seymour [3].
(2) For the two five-vertex graphs H_{9} and H_{10} as shown in Figure 4, we were not able to find 'straightforward' polynomial time algorithms. Our algorithms are based on lengthy (!) combinatorial investigations of potential contractions of an input graph to H_{9} and H_{10}. They are not included in this extended abstract.
(3) In Section 4 we present a number of NP-completeness results. The NPcompleteness proofs for the four (five-vertex) graphs $H_{1}^{\#}, H_{2}^{\#}, H_{3}^{\#}$, and $H_{4}^{\#}$ in Figure 5 are omitted in this extended abstract. They are done by reduction from HYPERGRAPH 2-COLORABILITY and they are inspired by a
similar NP-completeness argument of Brouwer \& Veldman [1. Theorem 5 and Theorem 6 present two generic NP-completeness constructions. As a special case, this yields NP-completeness of $H_{5}^{\#}$-CONTRACTIBILITY for the graph $H_{5}^{\#}$ in Figure 6

The rest of this extended abstract contains the exact statements and some of the proofs for the above results.

Fig. 4. The graphs H_{9} and H_{10}.

2 Notations, Definitions, and Preliminaries

We denote by P_{n} the path on n vertices, by C_{n} the cycle on n vertices, and by K_{n} the complete graph on n vertices. For a subset $U \subset V$ we denote by $G[U]$ the induced subgraph of G over U; hence $G[U]=(U, E \cap U \times U)$.

For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $V_{1} \cap V_{2}=\emptyset$, we denote their join by $G_{1} \bowtie G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup V_{1} \times V_{2}\right)$, and their disjoint union by $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$. For the disjoint union $G \cup G \cup \cdots \cup G$ of k copies of the graph G, we write shortly $k G_{1}$; for $k=0$ this yields the empty graph.

Consider a graph $G=(V, E)$ that is contractible to a graph $H=\left(V_{H}, E_{H}\right)$. An equivalent (and for our purposes more convenient) way of stating this fact is that

- for every vertex h in V_{H}, there is a corresponding connected subset $W(h) \subseteq$ V of vertices in G; we will sometimes say that $W(h)$ is the witness for vertex h.
- for every edge $e=\left[h_{1}, h_{2}\right] \in E_{H}$, there is a corresponding edge $W(e)$ in G that connects the vertex set $W\left(h_{1}\right)$ to the vertex set $W\left(h_{2}\right)$; we will sometimes say that this edge $W(e)$ in G is a witness for $\left[h_{1}, h_{2}\right.$].
- for every two vertices h_{1}, h_{2} in H that are not connected by an edge in E_{H}, there are no edges between $W\left(h_{1}\right)$ and $W\left(h_{2}\right)$.

If for every $h \in V_{H}$, we contract the vertices in $W(h)$ to a single vertex, then we end up with the graph H. Note that in general, these witness sets $W(h)$
and witness edges $W(e)$ are not uniquely defined (since there may be many different sequences of contractions that lead from G to H). In our polynomial time algorithms, we will explore the structure of the witnesses, and often prove that there exists at least one witness with certain 'strong' and 'nice' properties.

Proposition 3. For any fixed integer k, the following problem can be solved in polynomial time: Given a graph $G=(V, E)$ with up to k vertices that are colored by $\ell \leq k$ colors, can this coloring be extended to an ℓ-coloring of the whole vertex set V such that every color class induces a connected subgraph?

Proof. Consider some fixed color c, and let $S_{c} \subseteq V$ be the set of all vertices that are pre-colored by color c. Any solution to the problem must contain a monochromatic tree T in color c whose leaf-set coincides with S_{c}. Such a tree T has at most k branch-vertices (that is, vertices of degree three or higher), and there is only a fixed number of different topologies for connecting the branch-vertices and the leaves in S_{c} to each other.

The strategy is as follows: For every color c, we guess the branch-vertices for a mono-chromatic tree with leaf-set S_{c}, and we also guess the topology of this tree. Since k is a fixed constant, this altogether only yields a polynomial number of guesses for all trees for all colors (where the degree of the polynomial depends on k). Then we are left with a special case of the ANCHORED H_{-} SUBDIVISION SUBGRAPH problem that can be solved in polynomial time according to Proposition 1 .

3 Some Simple Polynomially Solvable Cases

Consider a connected graph $G=(V, E)$ with a cut-vertex v, and let C_{1}, \ldots, C_{k} denote the connected components of $G-v$. For $1 \leq i \leq k$ we say that the vertex subset $V-C_{i}$ is induced by the cut-vertex v,

For non-negative integers a, b, c, we let $H_{1}^{*}(a, b, c)$ be the graph $K_{1} \bowtie\left(a K_{1} \cup\right.$ $\left.b K_{2} \cup c P_{3}\right), H_{2}^{*}(a, b)$ be the graph $K_{2} \bowtie\left(a K_{1} \cup b K_{2}\right)$, and $H_{3}^{*}(a)$ be the graph $K_{3} \bowtie a K_{1}$.

Lemma 1. Let u be the dominating vertex in $H_{1}^{*}(a, b, c)$. If a graph $G=(V, E)$ is contractible to $H_{1}^{*}(a, b, c)$, then there exists a witness structure with the following property: For every vertex $h \neq u$ in $H_{1}^{*}(a, b, c)$, the witness set $W(h)$ is either induced by some cut-vertex, or it consists of a single vertex.

Proof. Consider a witness structure W for G with respect to $H_{1}^{*}(a, b, c)$ that maximizes the cardinality of $W(u)$. Let x, y, z be three vertices in $H_{1}^{*}(a, b, c)-u$ that induce a P_{3} with edges $[x, y]$ and $[y, z]$. We will only show that the desired property holds for $W(x), W(y)$, and $W(z)$. The arguments for the other cases are similar, but simpler.

Suppose for the sake of contradiction that there are two distinct vertices $x_{1}, x_{2} \in W(x)$ that both have neighbors in $W(y)$. Let $\left[u_{1}, x_{3}\right] \in E$ be a witness edge for $[u, x] \in E_{H}$. Consider a tree T within $W(x)$ with the minimum number
of edges that connects x_{1}, x_{2}, x_{3} to each other. Then we could move vertex x_{3} (and part of this tree T, and possibly some other vertices) from $W(x)$ to $W(u)$ while keeping the witness structure intact. This would increase the cardinality of $W(u)$. This contradiction shows that $W(x)$ contains exactly one vertex x_{1} with neighbors in $W(y)$. Next, suppose that there is some vertex $x_{4} \in W(x)$ with $x_{4} \neq x_{1}$, such that x_{4} has an edge to $W(u)$. Then we could move x_{4} (and part of a path from x_{4} to x_{1} within $W(x)$, and perhaps some other vertices) from $W(x)$ to $W(u)$. This second contradiction shows that x_{1} is the unique vertex in $W(x)$ with neighbors outside $W(x)$. A symmetric argument shows that $W(z)$ contains a unique vertex z_{1} with neighbors outside $W(z)$. Hence, $W(x)$ and $W(z)$ both are of the desired form.

Let us turn to $W(y)$. Consider a vertex $y_{1} \in W(y)$ that has a neighbor in $W(u)$. First we discuss the case where y_{1} is a cut-vertex of the subgraph induced by $W(y)$. Let C_{1}, \ldots, C_{k} denote the connected components induced by $W(y)-y_{1}$. If some component, say C_{1}, is adjacent to both x_{1} and z_{1}, then we could redefine $W(y):=C_{1}$ and merge all the other components together with y_{1} into $W(u)$; a contradiction. Hence, we may assume that every component is adjacent to at most one of the two vertices x_{1} and z_{1}. If x_{1} has a neighbor $y_{2} \in W(y)$ with $y_{2} \neq y_{1}$, then we could redefine $W(x):=\left\{y_{2}\right\}$ and merge x_{1} (and the rest of $W(x)$) into $W(u)$; a contradiction to the choice of $W(u)$. A symmetric argument shows that the only neighbor of z_{1} in $W(y)$ is y_{1}. But now we are done: If $W(u)$ has a neighbor $y_{3} \in W(y)$ with $y_{3} \neq y_{1}$, then we may merge y_{3} (and maybe some other vertices in $W(y)$) into $W(u)$. If $W(u)$ does not have any other neighbor but y_{1} in $W(y)$, then all the edges between $W(x) \cup W(u) \cup W(z)$ and $W(y)$ are incident to vertex y_{1}. Hence, the witness set $W(y)$ is either induced by the cut-vertex y_{1}, or it consists of the single vertex y_{1}.

In the remaining case, vertex y_{1} is not a cut-vertex of the subgraph induced by $W(y)$. If x_{1} and z_{1} both have neighbors other than y_{1} in $W(y)$, then we could simply move y_{1} into $W(u)$, and arrive at a contradiction. If y_{1} is the unique neighbor of x_{1} in $W(y)$ and if z_{1} also has another neighbor $y_{4} \in W(y)$, then we could redefine $W(z):=\left\{y_{4}\right\}$ and merge the old $W(z)$ into $W(u)$. A symmetric arguments settles the case where y_{1} is the unique neighbor of z_{1}, but not the unique neighbor of x_{1}. Finally, the sub-case where y_{1} is the unique neighbor of both x_{1} and z_{1} in $W(y)$ can be handled similarly as in the previous paragraph.

Lemma 2. Let u_{1} and u_{2} be the two dominating vertices in $H_{2}^{*}(a, b)$. If a graph $G=(V, E)$ is contractible to $H_{2}^{*}(a, b)$, then there exists a witness structure with the following property:

1. For every vertex x in $H_{2}^{*}(a, b)-\left\{u_{1}, u_{2}\right\}$ that is only connected to u_{1} and u_{2}, the witness set $W(x)$ is either induced by some cut-vertex or it consists of a single vertex.
2. For any pair y and z of adjacent vertices in $H_{2}^{*}(a, b)-\left\{u_{1}, u_{2}\right\}$, there exist two vertices $y_{1} \in W(y)$ and $z_{1} \in W(z)$, such that: $W(y)$ contains y_{1} and (in case y_{1} is a cut-vertex) a vertex subset induced by $y_{1} . W(z)$ contains
z_{1} and (in case z_{1} is a cut-vertex) a vertex subset induced by z_{1}. Moreover if $\left\{y_{1}, z_{1}\right\}$ forms a cut-set of G, then with one exception, all components of $G-\left\{y_{1}, z_{1}\right\}$ that are adjacent to y_{1} and z_{1} belong to $W(y) \cup W(z)$.

Proof. Omitted in this extended abstract.

Lemma 3. Let u_{1}, u_{2}, u_{3} be the three dominating vertices in $H_{3}^{*}(a)$. If a graph $G=(V, E)$ is contractible to $H_{3}^{*}(a)$, then there exists a witness structure with the following property: For every vertex h in $H_{3}^{*}(a)-\left\{u_{1}, u_{2}, u_{3}\right\}$, the witness set $W(h)$ is either induced by some cut-vertex, or it consists of a single vertex.

Proof. Omitted in this extended abstract.

Theorem 2. For any fixed non-negative integers a, b, c, contractibility to $H_{1}^{*}(a, b, c)$, to $H_{2}^{*}(a, b)$, and to $H_{3}^{*}(a)$ can be decided in polynomial time.

Proof. The proof combines the statements in Lemmas 13 with a lot of guessing and with an application of Proposition 3. In the following, we will use the same notation as in the statements of these lemmas.

For $H_{1}^{*}(a, b, c)$, we may guess for each of the $a+b+c$ witness sets $W(h)$ its unique element or its crucial cut-vertex. There are only $O\left(n^{a+b+c}\right)$ possibilities for that. This fully defines the witness sets $W(h)$ with $h \neq u$. All remaining vertices are put into $W(u)$. It is easy to check in polynomial time, whether the guessed structure yields a feasible witness structure.

For $H_{2}^{*}(a, b)$, we guess for every vertex x (that has u_{1} and u_{2} as its only neighbors) the unique element or the crucial cut-vertex for $W(x)$. For every pair y and z (of adjacent vertices in $H_{2}^{*}(a, b)-\left\{u_{1}, u_{2}\right\}$), we guess the crucial vertices y_{1} and y_{2}, and we also guess the component of $G-\left\{y_{1}, z_{1}\right\}$ that contains $W\left(u_{1}\right) \cup$ $W\left(u_{2}\right)$. Finally, we guess two neighbors of y_{1} in $W\left(u_{1}\right)$ and in $W\left(u_{2}\right)$, and two neighbors of z_{1} in $W\left(u_{1}\right)$ and in $W\left(u_{2}\right)$. There are $O\left(n^{a+3 b+1}\right)$ possibilities for all these guesses. The guesses fully specify the witness sets for the non-dominating vertices in $H_{2}^{*}(a, b)$. They also specify $W\left(u_{1}\right) \cup W\left(u_{2}\right)$, and they specify a (fixed constant) number of vertices in $W\left(u_{1}\right)$ respectively $W\left(u_{2}\right)$ that result from the above neighbor guesses. Checking feasibility of this witness structure boils down to checking whether there exists a partition ($=2$-coloring) of the vertex set $W\left(u_{1}\right) \cup W\left(u_{2}\right)$ into two connected sets $W\left(u_{1}\right)$ and $W\left(u_{2}\right)$ that respects the assignment of the guessed vertices. But that's just a special case of the problem in Proposition 3 with two colors.

For $H_{3}^{*}(a)$, we guess for every non-dominating vertex h the crucial vertex h_{1} in G that specifies $W(h)$. Moreover, we guess three neighbors of h_{1} in $W\left(u_{1}\right)$, $W\left(u_{2}\right)$, and $W\left(u_{3}\right)$. There are $O\left(n^{4 a}\right)$ possibilities for all these guesses. It remains to check whether $W\left(u_{1}\right) \cup W\left(u_{2}\right) \cup W\left(u_{3}\right)$ can be divided into three connected sets $W\left(u_{1}\right), W\left(u_{2}\right), W\left(u_{3}\right)$ that contain the appropriate guessed vertices. This is a special case of the problem in Proposition 3 with three colors.

Proposition 4. (Robertson ${ }^{63}$ Seymour [3])
For any fixed integer $a \geq 1$, contractibility to the complete graph K_{a} can be decided in polynomial time.

Proof. A trivial consequence of Proposition 1 since K_{a}-MINOR CONTAINMENT and K_{a}-CONTRACTIBILITY are the same problem.

Theorem 3. For any fixed integer $a \geq 2$, contractibility to $P^{+}(a):=K_{1} \bowtie P_{a}$ can be decided in polynomial time.

Proof. Omitted in this extended abstract.

Now let us apply the results of this section to the five-vertex graphs depicted in Figures (1) 3. The first three graphs H_{1}, H_{2}, and H_{3} have a single dominating vertex and fall into the classes $H_{1}^{*}(*, *, *)$. The graphs H_{4} and H_{5} have two dominating vertices, and fall into the classes $H_{2}^{*}(*, *)$. The graph H_{6} has a dominating triangle and falls into one of the classes $H_{3}^{*}(*)$. Hence, contractibility to these six graphs can be decided in polynomial time according to Theorem 2

Graph H_{7} is the clique on five vertices, and hence by Proposition 4 also contractibility to H_{7} can be decided in polynomial time. Finally, graph H_{8} equals $K_{1} \bowtie P_{4}$, and hence contractibility to H_{8} is polynomial by Theorem 3

4 The NP-Complete Cases

Let $H^{\#}$ be the graph on 5 vertices v, w, x, y, z with edges $[w, x],[x, y],[y, z]$, and $[v, x]$. Let $H_{1}^{\#}$ be the graph $H^{\#}$ with the edge $[v, w], H_{2}^{\#}$ be the graph $H^{\#}$ with the edge $[v, y], H_{3}^{\#}$ be the graph $H^{\#}$ with edges $[v, w],[v, y]$, and $H_{4}^{\#}$ be the graph $H^{\#}$ with edges $[v, w],[v, y],[w, z]$. See Figure 5 for some pictures.

Theorem 4. H-CONTRACTIBILITY is NP-complete if H is $H_{1}^{\#}, H_{2}^{\#}, H_{3}^{\#}$, or $H_{4}^{\#}$.

Proof. Omitted in this extended abstract.
We now will now describe two families of pattern graphs for which the corresponding contractibility problem is NP-complete. The (five-vertex) graph $H_{5}^{\#}$ in Figure 6 belongs to the family that is analyzed in Theorem 6; $H_{5}^{\#}$ is the last one of the fifteen five-vertex graphs that are not covered by Proposition 2 .

For a graph $G=(V, E)$ with $x \in V$ and $e=[x, z] \in E$ let $G_{x y}$ denote the graph G with a new vertex y and edge $[x, y]$, and let $G_{e y}$ denote the graph G with a new vertex y and edges $[x, y]$ and $[y, z]$.

Theorem 5. Let H be a 2-connected graph. If H-CONTRACTIBILITY is NPcomplete, then $H_{x y}$-CONTRACTIBILITY is NP-complete for all $x \in V_{H}$.

Fig. 5. The graphs $H_{1}^{\#}, H_{2}^{\#}, H_{3}^{\#}$, and $H_{4}^{\#}$ that yield NP-complete contractibility problems.

Proof. Given an instance graph G of H-CONTRACTIBILITY we construct a graph G^{\prime} as follows. Let $V_{G}=\left\{r_{1}, \ldots, r_{m}\right\}$. First we make m disjoint copies G^{i} of G. We insert an extra vertex s, and for $1 \leq i \leq m$ we connect the vertex r_{i} of the i-th copy to s by an edge.

Our claim is that G is contractible to H if and only if G^{\prime} is contractible to $H_{x y}$ for $x \in V_{H}$.

If G is contractible to H, then we define $W_{G^{\prime}}(y):=V_{G^{\prime} \backslash G^{j}}$, where G^{j} is chosen such that r_{j} is a vertex in $W_{G^{j}}(x)$. Clearly, $W_{G^{\prime}}(y)$ is connected, and G^{\prime} is contractible to $H_{x y}$.

Conversely, suppose G^{\prime} is contractible to $H_{x y}$. Suppose s is in $W_{G^{\prime}}(v)$ for some $v \in V_{H} \cup y$. First assume that $v \neq x$. If vertices of more than one copy G^{j} of G are contained in other witness sets than $W_{G^{\prime}}(v)$, then clearly $v \neq y$ but $v \neq x$ would be a cutvertex of H.

Hence, only vertices of G^{j} are in $V_{G^{\prime}} \backslash W_{G^{\prime}}(v)$. Now we remove all other copies $G^{i}(i \neq j)$ from G^{\prime}. It is straightforward to see that the remaining part of $W_{G^{\prime}}(v)$ still induces a connected subgraph.

Suppose $v=y$. Since the degree of y in $H_{x y}$ is exactly one, we remove s and move the remaining vertices of $W_{G^{\prime}}(y)$ to $W_{G^{\prime}}(x)$. This way we can contract $G=G^{j}$ to H.

If $v \neq y$, then besides s also r_{j} is in $W_{G^{\prime}}(v)$. Otherwise $W_{G^{\prime}}(v)$ would be equal to $\{s\}$, and v would have degree one implying that H is not 2 -connected. Then
we can remove s from $W_{G^{\prime}}(v)$ and the remaining set $W_{G^{\prime}}(v)$ induces a connected subgraph. By moving $W_{G^{\prime}}(y)$ to $W_{G^{\prime}}(x)$ the graph $G=G^{j}$ is contractible to H. The case $v=x$ can be solved using similar arguments as above.

Fig. 6. The graph $H_{5}^{\#}$.

Theorem 6. Let H be a 2-connected graph that does not have any vertex v with exactly two neighbors w_{1}, w_{2} such that $\left[w_{1}, w_{2}\right] \in E_{H}$. If H CONTRACTIBILITY is NP-complete, then $H_{e y}$-CONTRACTIBILITY is NPcomplete for all $e \in E_{H}$.

Proof. Given an instance graph G of H-CONTRACTIBILITY we construct a graph G^{\prime} as follows. Let $E_{G}=\left\{e_{1}, \ldots, e_{n}\right\}$. First we make n disjoint copies G^{i} of G. We insert an extra vertex s, and for $1 \leq i \leq n$ we connect the end points of e_{i} of the i-th copy to s by an edge.

Our claim is that G is contractible to H if and only if G^{\prime} is contractible to $H_{e y}$ for $e=[x, z] \in V_{E}$.

If G is contractible to H, then an edge $e_{j} \in E_{G}$ exists that has one of its end points in $W_{G^{j}}(x)$ and the other one in $W_{G^{j}}(z)$. We define $W_{G^{\prime}}(y):=V_{G^{\prime} \backslash G^{j}}$. Clearly, $W_{G^{\prime}}(y)$ is connected, and G^{\prime} is contractible to $H_{e y}$.

Conversely, suppose G^{\prime} is contractible to $H_{e y}$. Suppose s is in $W_{G^{\prime}}(v)$ for some $v \in V_{H} \cup y$. Because H is 2-connected, also $H_{e y}$ does not have any cutvertices. If vertices of more than one copy G^{j} of G are contained in other witness sets than $W_{G^{\prime}}(v)$, then v would be a cutvertex of $H_{e y}$.

Hence, only vertices of G^{j} are in $V_{G^{\prime}} \backslash W_{G^{\prime}}(v)$. Now we remove all other copies $G^{i}(i \neq j)$ from G^{\prime}. It is straightforward to see that the remaining part of $W_{G^{\prime}}(v)$ still induces a connected subgraph.

Suppose $v=y$. We remove s and move the remaining vertices of $W_{G^{\prime}}(y)$ to $W_{G^{\prime}}(x)$. We can contract $G=G^{j}$ to H this way, because the only neighbors of y in $H_{e y}$ are x and z and $[x, z]$ is an edge in H.

If $v \neq y$, then besides s at least one end point of e_{j} is in $W_{G^{\prime}}(v)$. Otherwise $W_{G^{\prime}}(v)$ would be equal to $\{s\}$, and v would have degree one in H or exactly two neighbors w_{1} and w_{2} with $\left[w_{1}, w_{2}\right] \in E_{H}$. Then we can remove s from $W_{G^{\prime}}(v)$ and the remaining set $W_{G^{\prime}}(v)$ induces a connected subgraph. By moving $W_{G^{\prime}}(y)$ to $W_{G^{\prime}}(x)$, we see that the graph $G=G^{j}$ is contractible to H.

References

1. A.E. Brouwer and H.J. Veldman (1987). Contractibility and NP-completeness. Journal of Graph Theory 11, 71-79.
2. M.R. Garey and D.S. Johnson Computers and Intractability. W.H. Freeman and Co., New York, 1979.
3. N. Robertson and P.D. Seymour (1995). Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63, 65-110.
4. T. Watanabe, T. Ae, and A. Nakamura (1981). On the NP-hardness of edgedeletion and edge-contraction problems. Discrete Applied Mathematics 6, 63-78.
