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Preface

This chapter is a self-contained treatment of various aspects concerning suspensions of uni-
axial rod-like colloidal particles in flow. First of all, friction coefficients of rods in an otherwise
unbounded fluid will be calculated and the motion of a single rod in flow will be discussed,
both for a non-Brownian and a Brownian rod. The generalized diffusion equation for inter-
acting rods, the so-called N-particle Smoluchowski equation is then discussed, on the basis
of which the Doi-Edwards equation of motion for the orientational order parameter tensor is
derived. This microscopic derivation reveals the approximations that are involved in the Doi-
Edwards theory. One of the approximations involves the neglect of dynamical correlations.
Computer simulations indicate that such correlations might be important. On the basis of
the Doi-Edwards equation (supplemented with an appropriate closure relation) together with
experimental results, the phase behaviour of rods in simpleshear flow is addressed. A mi-
croscopic expression for the stress tensor for suspensionsof rigid colloidal particles is then
derived, and subsequently expressed in terms of the orientational order parameter tensor. The
viscoelastic response of suspensions of stiff rods is discussed, and theory is compared with
experiments and simulations. In the last section, current research interests will be briefly
discussed, including banding transitions, the non-equilibrium phase diagram under flow con-
ditions and phase separation kinetics.
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0.1 Introduction

Flow affects microstructural order of colloidal systems intwo respects : center-to-center cor-
relations are affected by flow and flow can induce changes in orientational order. For spherical
colloids, flow-induced changes of macroscopic properties find their origin entirely in shear-
induced changes of center-to-center correlations. For non-spherical colloidal particles, there
is the additional effect that flow tends to align single colloidal particles due to the torques that
the flowing solvent exerts on their cores. For very elongatedcolloidal cores, single particle
alignment is dominant over shear-induced changes of center-to-center correlations. For such
systems, equations for one-particle orientational distribution functions, with the neglect of
flow-induced distortions of center-to-center correlations, are sufficient to predict their macro-
scopic behaviour under flow. For spherical colloidal particles, however, one-particle distribu-
tion functions are not affected by flow, so that theory for spheres should be based on equations
for correlation functions.

This chapter deals with stiff, uni-axial colloidal rods with a very large aspect ratio in shear
flow. It will be assumed throughout the chapter that the center-to-center correlation function is
not affected by flow, and is thus equal to the corresponding correlation function in equilibrium,
in the absence of flow. In addition, the singlet function of rods surrounding a given rod is taken
equal to the singlet function of that given rod at the same instant of time. As will be discussed,
these two simplifications are equivalent to the neglect of dynamical correlations. There are
indications from computer simulations, however, that dynamical correlations might play a
role.

Examples of flow-affected macroscopic phenomena which willbe discussed in the present
chapter are the shear-induced shift of the isotropic-nematic phase transition and the shear-rate
dependent viscoelastic response. The effect of shear flow onmicrostructural order, which is at
the origin of shear-induced macroscopic phenomena, will beconsidered in detail. In addition,
shear flow induces phenomena which do not occur in the absenceof flow, such as pattern
formation (or more specific, shear banding) and dynamical states under stationary applied
flow. These will be addressed only briefly at the end of this chapter.

The aim of this chapter is to set up, in a self contained fashion, a microscopic theory of
the behaviour of rods in flow. Some of the results presented here are on a text book level,
some are re-derivations of well-known equations and some are at the edge of current research
interests. Much of the introductory material on colloids isalso discussed by Doi and Edwards
(1986), Russel, Saville, and Schowalter (1991) and Dhont (1996).

First of all, the so-calledvelocity gradient tensorwill be defined in section 2. This tensor
describes the type of flow that is applied. Two types of flow areof particular importance
: simple shear flow and elongational (or, extensional) flow. Simple shear flow is a velocity
profile where the gradient in the fluid flow velocity is constant, whereas for elongational flow
the sample is compressed in one direction and elongated in the other direction. Such flows
can be either stationary or oscillatory.

Colloidal rods tend to align in a flow field due to the interaction of the solvent with the
surface of the core of the rods. As a first step to understand how orientational order is affected
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by flow, the force and torque of the solvent on a single rod in anotherwise unbounded fluid
must be calculated. Since the linear dimensions of the rods is much larger than the size of
solvent molecules, the solvent can be described on the basisof hydrodynamics. The rod is
treated as a macroscopic object as far as its interactions with solvent molecules is concerned.
The basic knowledge of hydrodynamics relevant for colloidsis developed in section 3. The
main result here is that inertial effects can be neglected ona time scale that is relevant for
colloids, leading to the so-calledcreeping flow equationsfor the solvent flow velocity. These
are linear equations of motion for which the Greens function, known asthe Oseen tensor, is
derived in section 3. Friction of rods in a flowing solvent is then treated on basis of these
basic hydrodynamic equations in section 4. Friction coefficients can be calculated exactly
for ellipsoidal rods of arbitrary aspect ratio, which involves an exact solution of the creeping
flow equations, Happel and Brenner (1983). Alternatively, friction coefficients are derived in
section 4 on the basis of the bead model for a rod, by analyzingforces that act on beads.

Once the hydrodynamic friction coefficients are known, orbits of the orientation of a non-
Brownian rod in a flow field can be analyzed. These so-calledJeffery orbitsare discussed in
section 5. Here, interactions between rods are not incorporated, that is, the orbits of a single
rod in an otherwise unbounded fluid are considered.

Brownian motion in the absence of flow is then analyzed in section 6 on the basis of New-
ton’s equation of motion. This equation of motion includes arandom force which describes
forces originating from collisions of solvent molecules with the surface of the colloidal par-
ticle. Such equations of motion containing a fluctuating term are referred to asLangevin
equations. Specifying certain statistical properties of the random force allows to distinguish
between several important time scales and the calculation of the mean squared displacement.
Again, this analysis is performed for a single rod in an otherwise unbounded solvent.

For the description of Brownian motion and diffusion of rodsat higher rod concentration,
where interactions between rods are important, it is more convenient to employ equations of
motion for probability density functions. The fundamentalequation of motion of this sort,
the so-calledSmoluchowski equationis derived in section 7. In the same section it is shown
that the diffusive properties as obtained in section 6 on thebasis of the Langevin equation are
reproduced by the Smoluchowski equation.

At higher concentrations and when a flow field is applied, the orientational order can be
quantified by means of theorientational order parameter tensorS. This tensor is introduced
in section 8. It is shown that the largest eigenvalue of this tensor is a measure for the degree
of orientational order and that the corresponding eigenvector defines the preferred orientation
of the rods.

Orientational order for very dilute rod-suspensions underflow are discussed in section 9.
Interactions between rods are neglected here. Solutions ofthe Smoluchowski equation are
shown to be in accordance with computer simulations.

Orientational order and phase behaviour of concentrated suspensions in flow is analyzed
by means of an equation of motion for the order parameter tensor S, which is known asthe
Doi-Edwards equation. In section 10 this equation of motion is derived from the Smolu-
chowski equation. This derivation is a microscopic basis ofthe Doi-Edwards equation, which
reveals the approximations that are implicit in the Doi-Edwards equation. To obtain a closed
equation of motion for the second order tensorS, a closure relation must be used for a fourth
order tensor. There are a number of propositions for such a closure relation. A simple closure
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relation will be discussed in section 10, which is shown to beaccurate to within about10 %.
This particular closure relation, however, can not describe non-stationary states under station-
ary flow conditions like tumbling and wagging. To describe such states, the Smoluchowski
equation itself should be solved numerically. This will notbe discussed in the present chapter.

The isotropic-nematic phase transition is discussed in section 11, both without and with
simple shear flow. The bifurcation diagram is introduced andthe paranematic-to-nematic and
nematic-to-paranematic spinodals in the shear-rate versus concentration plane are calculated.
The prediction of the shear-rate dependent location of binodals is much more complicated,
and requires equations of motion for the orientational order parameter tensorand the flow
field velocity, which should accurately account for strong inhomogeneities in concentration,
orientational order parameter and shear rate. Such equations of motion will not be derived in
this chapter, but only briefly discussed in the last section on current research.

In the derivation of the Doi-Edwards equation of motion fromthe Smoluchowski equa-
tion, dynamical correlations are neglected. Computer simulations indicate, however, that such
correlations are important for the description of diffusion. The discrepancy between the an-
alytically obtained effective collective diffusion coefficients within the Doi-Edwards theory
and that found in computer simulations is discussed in section 12.

A microscopic derivation of the stress tensor in terms of theconcentration and the orien-
tational order parameter tensor is given in section 13. Within certain approximations, a very
similar expression as in the Doi-Edwards-Kuzuu theory is obtained. On the basis of this ex-
pression for the stress tensor, (non-linear) viscoelasticelastic response of rod suspensions is
discussed in section 14. Analytical and numerical predictions are compared to experiments
and computer simulations. A surprising finding is that the zero-shear, zero-frequency shear
viscosity is a linear function of the concentration up to very high concentrations, in accordance
with computer simulations. Comparison with experiments indicates a sensitive dependence of
the viscoelastic behaviour on the flexiblity of the core of the rods. So far, no theory on the
dynamics and viscoelastic response is available that incorporates flexibility.

Section 15 is a (certainly biased) overview of the current research interests in the field of
rod suspensions under shear flow. The possible non-equilibrium phase diagram is addressed,
together with banding transitions, non-stationary statesand kinetics of phase separation and
band formation.

0.2 The Velocity Gradient Tensor

A linear flow profile is characterized by means of the so-called velocity gradient tensorG,
where the flow velocityU at positionr is written asU = G · r. For spatially varying
flow profiles, velocities can locally be described by such a linear flow profile, provided that
gradients are small on the length scale set by the size of the colloidal particles. The velocity
gradient tensor can have several different forms. In case ofso-calledsimple shear flow, the
gradient velocity tensor is usually denoted asΓ, and is equal to,

Γ = γ̇





0 1 0
0 0 0
0 0 0



 , simple shear flow. (1)
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Figure 1: (a) Simple shear flow, whereL is the gapwidth. (b) Depicts elongational flow, sometimes
also referred to as extensional flow (where the elongationaland compression axes are indicated), and (c)
depicts rotational flow. Arrows indicate the flow direction.

The corresponding flow profile is a flow in thex-direction, with its gradient in they-direction,
as sketched in fig.1a. Thez-direction is commonly referred to as the vorticity direction. The
strength of the flow is characterized by theshear rateγ̇, which equals the spatial gradient
∂Ux/∂y of the flow velocityUx in thex-direction. For so-calledelongational or extensional
flow, where the velocity gradient tensor is denoted asE, we have,

E = γ̇





0 1 0
1 0 0
0 0 0



 , elongational flow, (2)

which flow is sketched in fig.1b. In such an elongational flow, deformable objects tend to
elongate along the so-called extensional axis, and suppressed along the compressional axis.
These two directions are indicated in fig.1b. Whenever it is not specified whether simple shear
flow or elongational flow is considered, the velocity gradient tensor will be denoted asG.

We will encounter the symmetric partE = 1
2

[

G + GT
]

of the velocity gradient tensor,
where the superscript “T ” stands for the transpose of the corresponding tensor. For elonga-
tional flow, the velocity gradient tensor is already symmetric : this is why we denoted the
velocity gradient tensor for elongational flow by anE in eq.(2). For simple shear flow we
have,

E = 1
2
γ̇





0 1 0
1 0 0
0 0 0



 , simple shear flow. (3)

We will sometimes also encounter the anti-symmetric partΩ = 1
2

[

G − GT
]

of the velocity
gradient tensor. For elongational flow the anti-symmetric part is zero, while for simple shear
flow we have,

Ω = 1
2
γ̇





0 1 0
−1 0 0
0 0 0



 , simple shear flow. (4)
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The flow velocities corresponding to flow with a velocity gradient tensor equal toE in eq.(3)
or eq.(4) are sketched in fig.1b and c, respectively. The former case is an elongational flow,
also referred to as extensional flow, while the second is purerotational flow. Note that,

Γ = E + Ω , (5)

so that simple shear flow can be decomposed into a linear combination of elongational and
rotational flow.

In laboratory experiments, the shear rate is either independent of time, or the shear rate
can be sinusoidally oscillating,

γ̇ = time independent , stationary flow,

γ̇(t) = γ̇0 cos{ω t} , oscillatory flow, (6)

whereω is the frequency of oscillation anḋγ0 is referred to as theshear-rate amplitude.
Oscillatory experiments can be employed to probe the dynamics of a system of Brownian
particles.

0.3 Hydrodynamics

Consider a system containing large rod-like particles immersed in a fluid. There are three
types of interactions to be distinguished in such a system : interactions of rods with rods,
solvent molecules with solvent molecules and rods with solvent molecules. The latter two
types of interactions can be described on the basis of phenomenological equations for fluid
flow, provided that the linear dimensions of the rods are muchlarger than the size of solvent
molecules. Such solutions of large molecules are referred to asBrownian or colloidal sys-
tems. The large difference in relevant length scales between thesolvent and the assembly of
Brownian rods allows to describe the solvent on a phenomenological level, without losing the
microscopics for the assembly of Brownian particles. In such a phenomenological treatment,
only macroscopic quantities of the fluid like its viscosity and mass density enter the equations
of interest. In the present section, friction coefficients of rods are calculated, which will be
used later in this chapter in microscopic equations of motion for rod-like Brownian particles.

The mechanical state of the solvent is characterized by the local velocityu(r, t) at position
r at timet, the pressurep(r, t) and the mass densityρ(r, t). All these fields are averages over
small volume elements that are located at the various positionsr. These volume elements
must be so small that the state of the fluid hardly changes within the volume elements. At the
same time, the volume elements should contain many fluid molecules, to be able to properly
define such averages. In particular we wish to define the thermodynamic state of volume
elements, which is possible when they contain a large amountof solvent molecules, and when
they are in internal equilibrium, that is, when there islocal equilibrium. In this way the
temperature fieldT (r, t) may be defined. The temperature dependence of, for example, the
mass density is then described by thermodynamic relations.These thermodynamic relations
are an important ingredient in a general theory of hydrodynamics. For our purposes, however,
the temperature and mass density may be considered constant. Temperature variations due to
viscous dissipation in the solvent are assumed to be negligible. At constant temperature, the
only mechanism to change the mass density of the solvent is tovary the pressure. For fluids,
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however, exceedingly large pressures are needed to change the density significantly, that is,
fluids are quiteincompressible. Brownian motion is not so vigorous to induce such extreme
pressure differences, so that the density will also be assumed constant. The assumption of
constant temperature and density is also a matter of time scales. Relaxation times for local
temperature and pressure differences in the solvent are much faster than typical time scales
relevant for Brownian motion.

Assuming constant temperature and mass density leaves justtwo variables which describe
the state of the fluid : the fluid flow velocityu(r, t) and the pressurep(r, t). Thermodynamic
relations need not be considered in this case, simplifying the phenomenological analysis con-
siderably.

0.3.1 The continuity equation

The rate of change of the mass of fluid contained in some arbitrary volumeW is equal to the
mass of fluid flowing through its boundary∂W . The local velocity at surface elements on
∂W can be written as the sum of its component parallel and perpendicular to the surface. The
parallel component does not contribute to in and out flux of mass through the boundary∂W .
Only the componentu · n̂ of the flow perpendicular to the surface gives rise to in and out flux
of mass, wherên is the unit normal of the corresponding surface element. Hence,

d

dt

∫

W

dr ρ(r, t) = −
∮

∂W

dS · {ρ(r, t)u(r, t)} ,

wheredS = n̂ dS, with dS an infinitesimal surface area. The minus sign on the right hand-
side is added, because the mass inW decreases whenu is along the outward normal. The time
derivative on the left hand-side can be taken inside the integral, while the integral on the right
hand-side can be written as an integral over the volumeW , using Gauss’s integral theorem.
This leads to,

∫

W

dr

[

∂

∂t
ρ(r, t) + ∇ · {ρ(r, t)u(r, t)}

]

= 0 ,

where∇ is the gradient operator with respect tor. Since the volumeW is an arbitrary volume,
the integrand must be equal to zero. This can be seen by choosingW as a sphere centered at
some positionr, with a (infinitesimally) small radius. Within that small sphere the integrand
in the above integral is constant, so that the integral reduces to the product of the volume of
W and the value of the integrand at the pointr. Hence,

∂

∂t
ρ(r, t) + ∇ · {ρ(r, t)u(r, t)} = 0 .

This equation expresses conservation of mass, and is referred to as thecontinuity equation.
For a fluid with a constant mass density, the continuity equation reduces to,

∇ · u(r, t) = 0 . (7)

Fluids with an essentially constant mass density are referred to asincompressible fluids, and
eq.(7) is therefore sometimes referred to as theincompressibility equation. Being nothing
more than the condition to ensure conservation of mass, thissingle equation is not sufficient
to calculate the fluid flow velocity. It must be supplemented by Newton’s equation of motion
to obtain a closed set of equations.
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0.3.2 The Navier-Stokes equation

The Navier-Stokes equation is Newton’s equation of motion for a small amount of mass con-
tained in a volume element within the fluid. Consider such an infinitesimally small volume
element, the volume of which is denoted asδr. The positionr of that volume element as a
function of time is set by Newton’s equation of motion. The momentum that is carried by the
mass element is equal toρ(r, t) (δr)u(r, t), so that Newton’s equation of motion reads,

ρ(r, t) δr
du(r, t)

dt
= f ,

wheref is the total force that is exerted on the mass element. Since in Newton’s equations of
motionr is the time dependent position coordinate of the volume element, anddr/dt = u is
the velocity of the volume element, the above equation can bewritten as,

ρ(r, t) δr

[

∂u(r, t)

∂t
+ u(r, t) · ∇u(r, t)

]

= f .

Here,∇u is a dyadic product, that is, it is a tensor of which theijth component is equal to
∇iuj , with ∇i the differentiation with respect tori, theith component ofr.

The total forcef on the volume element consists of two parts. First of all, there may
be external fields which exert forces on the fluid. These forces are denoted by(δr) fext(r),
that is,fext is the external force on the fluid per unit volume. The second part arises from
interactions of the volume element with the surrounding fluid.

The forces due to interactions with the surrounding fluid areformally expressed in terms
of the stress tensorΣ(r, t), which is defined as follows. Consider an infinitesimally small
surface area in the fluid, with surface areadS and a normal unit vector̂n. The force per unit
area exerted by the fluid located at the side of the surface area to which the unit normal is
directed, on the fluid on the opposite side of the surface area, is by definition equal todS · Σ,
with dS=n̂ dS (see fig.2).

Hence, by definition, the force of surrounding fluid on the volume elementδr is equal to,
∮

∂δr

dS′ · Σ(r′, t) =

∫

δr

dr′ ∇′ · Σ(r′, t) = δr ∇ · Σ(r, t) ,

where∂δr is the boundary of the volume element. We used Gauss’s integral theorem to rewrite
the surface integral as a volume integral. The last equationis valid due to the infinitesimal size
δr of the volume element at positionr. The forcefh on the volume element due to interaction
with the surrounding fluid is thus given by,

fh(r, t) = (δr)∇ ·Σ(r, t) . (8)

There are two contributions to the stress tensor : a contribution resulting from gradients in the
fluid flow velocity, and a contribution due to pressure gradients.

Consider first the forces due to pressure gradients. Let us take the volume elementδr
cubic, with sides of lengthδl. The pressurep is a force per unit area, so that the force on the
volume element in thex-direction is equal to,

(δl)2
(

p(x − 1

2
δl, y, z, t)− p(x +

1

2
δl, y, z, t)

)

= −(δl)3
∂

∂x
p(x, y, z, t),



0.3 Hydrodynamics 13

x

y

z
dS

),( trSdforce
r

tr

S·=

r
r

dSnSd ˆ=
r

x

y

z
dS

),( trSdforce
r

tr

S·=

r
r

dSnSd ˆ=
r

Figure 2: Definition of the stress tensorΣ.

where(δl)2 is the area of the faces of the cube. The force on the volume element is thus
−(δr)∇p(r, t). We therefore arrive at,∇ · Σ =−∇p. The contribution of pressure gradients
to the stress tensor is thus easily seen to be equal to,

Σ(r, t) = −p(r, t) Î ,

with Î the3× 3-dimensional unit tensor. This contribution to the stress tensor is referred to as
the isotropic part of the stress tensor, since it is proportional to the unit tensor and therefore
does not have a preferred spatial direction.

Next, consider the forces on the volume element due to gradients in the fluid flow veloc-
ity. When the fluid flow velocity is uniform, that is, when there are no gradients in the fluid
flow velocity, the only forces on the volume element are due topressure and possibly external
forces. There are friction forces in addition, only in case the volume element attains a ve-
locity which differs from that of the surrounding fluid. The contribution to the stress tensor
due to friction forces is therefore a function of spatial derivatives of the flow velocity, not of
the velocity itself. This contribution to the stress tensorcan be formally expanded in a power
series with respect to the gradients in the fluid flow velocity. For not too large gradients (such
that the fluid velocity is approximately constant over distances of many times the molecular
dimension) the leading term in such an expansion suffices to describe friction forces. The con-
tribution of gradients in the fluid flow velocity to the stresstensor is thus a linear combination
of the derivatives∇iuj(r, t), where∇i is the derivative with respect to theith component of
r, anduj(r, t) is thejth component ofu(r, t).

There are also no friction forces when the fluid is in uniform rotation, in which case the
flow velocity is equal tou = Ω×r, with Ω the angular velocity. Such a fluid flow corresponds
to rotation of the vessel containing the fluid, relative to the observer. Linear combinations of
the form,

∇iuj(r, t) + ∇jui(r, t) , (9)
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are easily verified to vanish in caseu = Ω × r. The stress tensor is thus proportional to such
linear combinations of gradients in the fluid velocity field.

For isotropic fluids, with no preferred spatial direction, the most general expression for the
componentsΣij of the stress tensor as a result of friction is therefore,

ΣD,ij = η0

{

∇iuj + ∇jui −
2

3
δij∇ · u(r, t)

}

+ ζ0 δij∇ · u , (10)

where the subscript “D ” stands forthe deviatoric part of the stress tensor. The terms∼
∇ · u(r, t) on the right hand-side are due to the linear combinations (9)with i = j. The
term− 2

3∇ · u(r, t) is introduced to make the expression between the curly brackets traceless
(meaning that the sum of the diagonal elements of that contribution is zero). It could also
have been absorbed in the last term on the right hand-side. The constantsη0 andζ0, which
are scalar quantities for isotropic fluids, are theshear viscosityandbulk viscosityof the fluid,
respectively. Notice that all terms proportional to∇·u(r, t) are zero for incompressible fluids.

We thus find the following expression for the total stress tensor for an isotropic fluid,

Σ(r, t) = η0

{

∇u(r, t) + [∇u(r, t)]T − 2

3
Î∇ · u(r, t)

}

+ {ζ0 ∇ · u(r, t) − p(r, t)} Î , (11)

where the superscriptT stands for transposition.
The above expression for the stress tensor leads to theNavier-Stokes equation,

ρ
∂u(r, t)

∂t
+ ρu(r, t) · ∇u(r, t) = η0 ∇2u(r, t) −∇p(r, t)

+

(

ζ0 +
1

3
η0

)

∇ (∇ · u(r, t)) + fext(r) , (12)

where the mass density, and the shear- and bulk viscosity arenow taken independent of po-
sition. For incompressible fluids, for which∇ · u(r, t) = 0 (see eq.(7)), the Navier-Stokes
equation reduces to,

ρ
∂u(r, t)

∂t
+ρu(r, t)·∇u(r, t) = ∇·Σ(r, t)+fext(r, t) = η0∇2u(r, t)−∇p(r, t)+fext(r).

(13)

Together with the continuity equation (7) for incompressible fluids, this equation fully deter-
mines the fluid flow and pressure once the external force and boundary conditions are speci-
fied.

0.3.3 The creeping flow equations

The different terms in the Navier-Stokes equation (13) can be very different in magnitude,
depending on the problem at hand. In the present case we are interested in fluid flow around
small sized objects (the colloidal particles). Let us estimate the magnitude of the various terms
in the Navier-Stokes equation for this case. A typical valuefor the fluid flow velocity is the
velocity v of the colloidal objects. The fluid flow velocity decreases from a valuev, close to
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a Brownian particle, to a much smaller value, over a distanceof the order of a typical linear
dimensiona of the particles (for spherical particlesa is the radius, for a rotating roda is the
length of the rod). Hence, typically,| ∇2u |≈ v/a2. Similarly, | u · ∇u |≈ v2/a. The rate
of change ofu is v divided by the time it takes the colloidal particle to lose its velocity due
to friction with the fluid. This time interval is equal to a fewtimesM/γ, with M the mass of
the colloidal particle andγ its friction coefficient (this will be discussed in more detail later in
this chapter). Introducing the rescaled variables,

u′ = u/v ,

r′ = r/a ,

t′ = t/(M/γ) ,

transforms the Navier-Stokes equation (13) to,

ρ γ v

M

∂u′

∂t′
+

ρ v2

a
u′ · ∇′u′ =

η0v

a2
∇′ 2u′ − 1

a
∇′p + fext ,

where∇′ is the gradient operator with respect tor′. Introducing further the dimensionless
pressure and external force,

p′ =
a

η0v
p ,

f ′ ext =
a2

η0v
fext ,

transforms the Navier-Stokes equation further to,

ρ
a2γ

Mη0

∂u′

∂t′
+ Re u′ · ∇′u′ = ∇′ 2u′ −∇′p′ + f ′ ext . (14)

The dimensionless numberRe is the so-calledReynolds number, which is equal to,

Re =
ρ a v

η0
. (15)

By construction we have,

| u′ · ∇′u′ | ≈ | ∇′ 2u′ | ≈ 1.

Hence, for very small values of the Reynolds number, the termproportional tou · ∇u in
the left hand-side in eq.(14) may be neglected. Furthermore, for spherical particles we have
γ = 6πη0a so thatρ a2γ/Mη0 = 9ρ/2ρp ≈ 9/2, with ρp the mass density of the Brownian
particle. The prefactor of∂u′/∂t′ is thus approximately equal to9/2. The time deriva-
tive should generally be kept as it stands, also for small Reynolds numbers. Now suppose,
however, that one is interested in a description on the diffusive time scaleτD ≫ M/γ (the
significance of the diffusive time scale will be discussed later in this chapter). For such times,
the time derivative∂u′/∂t′ is long zero, sinceu goes to zero as a result of friction during the
time intervalM/γ. One may then neglect the contribution to the time derivative which is due
to relaxation of momentum of the Brownian particle as a result of friction with the solvent.
The remaining time dependence ofu on the diffusive time scale is due to the possible time
dependence of the external force and to interactions with other Brownian rods, which vary
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significantly only over time intervals larger than the diffusive time scale. The value of the
corresponding derivative∂u/∂t can now be estimated as above : the only difference is that
the time should not be rescaled with respect to the timeM/γ, but with respect to the diffusive
time scaleτD. We now have,t′ = t/τD, u′ = u/v, and| ∂u′/∂t′ |≈ 1. The transformed
Navier-Stokes equation in this case reads,

9

2

ρ

ρp

M/γ

τD

∂u′

∂t′
+ Re u′ · ∇′u′ = ∇′ 2u′ −∇′p′ + f ′ ext ,

where all derivatives of the fluid flow velocityu′ are of the order1. SinceτD ≫ M/γ, the
time derivative due to changes of the fluid flow velocity as a result of the time varying external
force and interactions with other Brownian particles may now be neglected in addition.

For small Reynolds numbers and on the diffusive time scale, the Navier-Stokes equation
(16), written in terms of the original unprimed quantities,therefore simplifies to,

∇p(r, t) − η0∇2 u(r, t) = fext(r) . (16)

This equation, together with the incompressibility equation (7), are thecreeping flow equa-
tions. “Creeping” refers to the fact that the Reynolds number is small, which is the case when
the typical fluid flow velocityv is small.

A typical value for the velocity of a Brownian particle can beestimated from the equipar-
tition theorem,12M < v2 >= 3

2kBT (kB is Boltzmann’s constant andT is the temperature).
Estimatingv ≈

√
<v2 >, using a typical mass of10−17 kg for a spherical particle with a

radius of100 nm and the density and viscosity of water, the Reynolds number is found to be
equal to10−2. Hydrodynamics of a fluid in which colloidal particles are embedded can thus
be described on the basis of the creeping flow equations.

For small Reynolds numbers and on the Brownian time scale, inertial forces on fluid el-
ements are thus small in comparison to pressure- and friction forces. The neglect of inertial
contributions in the Navier-Stokes equation leads to the linear equation (16), which can be
solved analytically in some cases.

0.3.4 The Oseen tensor

An external force acting only in a single pointr′ on the fluid is mathematically described by a
delta distribution,

fext(r) = f0 δ(r − r′) . (17)

The prefactorf0 is the total force
∫

dr′ fext(r′) acting on the fluid. Since the creeping flow
equations are linear, the fluid flow velocity at some pointr in the fluid, due to the point force
in r′, is directly proportional to that point force. Hence,

u(r) = T(r − r′) · f0 .

The tensorT is commonly referred to as theOseen tensor, named after the scientist who first
derived an explicit expression for this tensor, Oseen (1927). The Oseen tensor connects the
point force at a pointr′ to the resulting fluid flow velocity at a pointr. Note thatT is only a
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function of the difference coordinater − r′ due to translational invariance of a homogeneous
fluid. Similarly, the pressure at a pointr is linearly related to the point force,

p(r) = g(r − r′) · f0 .

The vectorg is referred to here as thepressure vector.
Consider an external force which is continuously distributed over the entire fluid. Due to

the linearity of the creeping flow equations, the fluid flow velocity at some pointr is simply
the superposition of the fluid flow velocities resulting fromthe forces acting in each point on
the fluid. Hence,

u(r) =

∫

dr′ T(r − r′) · fext(r′) . (18)

The same holds for the pressure,

p(r) =

∫

dr′ g(r − r′) · fext(r′) . (19)

In mathematical language, the Oseen tensor and the pressurevector are the Green’s functions
of the creeping flow equations for the fluid flow velocity and pressure, respectively. Once these
Green’s functions are known and the external force is specified, the resulting fluid velocity and
pressure can be calculated through the evaluation of the above integrals. The calculation of
the Green’s functions is thus equivalent to solving the creeping flow equations, provided that
the external forces are known.

Let us calculate the Oseen tensor and pressure vector. To this end, substitute eqs.(18,19)
into the creeping flow equations (7,16). This leads to,

∫

dr′ [∇ ·T(r − r′)] · fext(r′) = 0 ,

∫

dr′
[

∇g(r − r′) − η0∇2T(r − r′) − Î δ(r − r′)
]

· fext(r′) = 0 ,

where, as before,̂I is the3 × 3-dimensional unit tensor. Since the external force is arbitrary,
the expressions in the square brackets must be equal to zero,so that the Green’s functions
satisfy the following differential equations,

∇ · T(r) = 0 ,

∇g(r) − η0∇2T(r) = Î δ(r) . (20)

A single equation for the pressure vector is obtained by taking the divergence of the second
equation, with the use of the first equation,

∇2 g(r) = ∇ · Î δ(r) = ∇δ(r) .

Using,

1

4π
∇2 1

r
= − δ(r) , (21)
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it follows that,

g(r) = − 1

4π
∇1

r
+ G(r) .

Here,G is a vector for which∇2G=0, whileG → 0 asr → ∞. It can be shown that such a
vector is0. Hence,

g(r) = − 1

4π
∇1

r
=

1

4π

r

r3
. (22)

The differential equation to be satisfied by the Green’s function for the fluid flow velocity (the
Oseen tensor), is found by substitution of eq.(22) into eq.(20),

∇2

[

1

4π

1

r
Î − η0T(r)

]

=
1

4π

[

3
r r

r5
− 1

r3
Î

]

.

An obvious choice for the term between the square brackets onthe left hand-side of the above
expression is of the form,

1

4π

1

r
Î− η0T(r) = α0

1

rn
Î + α1

1

rm

r r

r2
,

with α0,1, n andm constants. These constants can indeed be chosen such that this Ansatz
is the solution of the differential equation (with the boundary condition thatT(r) → 0 as
r → ∞). A somewhat lengthy, but straightforward calculation yields,

T(r) =
1

8πη0

1

r

[

Î +
r r

r2

]

. (23)

This concludes the determination of the Green’s functions for the creeping flow equations.

0.4 Hydrodynamic Friction of a Single Rod

The behaviour of rod-like colloids in shear flow is strongly coupled to friction of solvent with
the rod’s surface. In the present section, friction coefficients for very long and thin rods will be
calculated on the basis of the creeping flow equations. This is most easily done by considering
a rod consisting of spherical beads with diameterD (as depicted in fig.3). For very long and
thin rods, friction coefficients for such necklaces are the same as for cylindrical rods with
thicknessD. The number of spherical beads is equal ton + 1 = L/D (with L the length of
the rod), where the bead index number ranges from− 1

2
n to + 1

2
n. The position of the central

bead (for whichn = 0) defines the position coordinate of the rod.
The flow velocity around a moving rod in shear flow is given, according to eq.(18), by,

u(r) = G · r +

∮

∂V

dS′ T(r − r′) · f(r′) , (24)

where the integral ranges over the surface∂V of the rod. Here, the forcef(r′) is the force per
unit area that a surface element atr′ exerts on the fluid. The first term on the right-hand side
in eq.(24) is the flow that would have existed in the absence ofthe rod, the second term is the
contribution due to the presence of the rod. For stick boundary conditions we have that,

u(r) = vc + Ω× (r − rc) , for r ∈ ∂V , (25)
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Figure 3: The necklace representation of a very long and thin rod, and the definition of the vectorR on
the surface of a bead, relative to the position of that bead.

wherevc is the translational velocity of the center of the rod,rc the position of the center of
the rod, andΩ is the rod’s angular velocity relative to its center.

Within the bead model discussed above,∂V is the sum of the surfaces∂Vj of the beads,
with j ranging from− 1

2
n to + 1

2
n. The center position of thejth bead will be denoted as

rj = rc + j D û, whereû is the unit vector along the long axis of the rod, which specifies its
orientation. Within the bead model, eq.(24) reads,

u(R + rj) = G · (R + rj) +

1
2

n
∑

i = − 1
2

n

∮

∂V 0

dS′ T(R − R′ + rji) · fi(R′) , (26)

with R = r − rj andR′ = r′ − ri position vectors with lengthD/2 on the surface∂V 0 of a
bead with its center atri (see fig.(3)). The stick boundary condition (25) now becomes,

u(R + rj) = vc + Ω× (R + rj − rc)

= vc + Ω× (R + jDu) , for R = D/2 and all j . (27)

In the next two subsections we consider translation (without rotation) and rotation (without
translation). Motion of a translatingandrotating rod is a linear superposition of the results for
these two special cases, due to the linearity of the creepingflow equations and its boundary
condition.

0.4.1 Translational friction

Let us first consider a translating rod in an otherwise quiescent fluid, without shear flow. The
boundary condition (27) reduces simply to,u(R + rj) = vc. The representation (26) foru
thus yields,

vc =

1
2

n
∑

i = − 1
2

n

∮

∂V 0

dS′ T(R − R′ + rji) · fi(R′) , for R = D/2 and allj . (28)
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Integration of both sides over the surface of the entire rod,that is, operating on both sides with
∑

1
2

n

j = − 1
2

n

∮

∂V 0 dS, yields,

vc =
1

πLD

1
2

n
∑

j = − 1
2

n

1
2

n
∑

i = − 1
2

n

∮

∂V 0

dS

∮

∂V 0

dS′ T(R − R′ + rji) · fi(R′) . (29)

Using that,
∮

∂V 0

dS′ T(r − R′) =
D

4 η0

{[

D

2r
+

1

3

(

D

2r

)3
]

Î +

[

D

2r
−

(

D

2r

)3
]

rr

r2

}

, (30)

it is found that, fori = j, the surface integrals in eq.(29) are equal to,
∮

∂V 0

dS T(R − R′ + rji) =
D

3η0
Î , for i = j . (31)

For i 6= j, the Oseen tensor may be Taylor expanded as,

T(R − R′ + rji) = T(rij) + (R − R′) · ∇iT(rij) + · · · , (32)

with ∇i the gradient operator with respect tori. Only the leading order term in this Taylor
expansion must be retained to obtain expressions for friction coefficients that are valid to
leading order inL/D (if you wish you may include the next higher order Taylor terms and
convince yourself that these terms do not contribute in leading order). Using eq.(31) and
eq.(32) to leading order in eq.(29) gives,

vc ≈ − 1

3πη0L

1
2

n
∑

i = − 1
2

n

Fh
i − D

L





1
2

n
∑

j = − 1
2

n

1
2

n
∑

i = − 1
2

n , i 6= j

T(rij)



 · Fh
i . (33)

where,
∮

∂V 0

dS′ fi(R
′) = −Fh

i , (34)

is the total force of the fluid on beadi. The first term on the right-hand side is simply the sum
of Stokesian friction forces on the beads, while the second term represents the contribution
due to hydrodynamic interaction between the beads. For verylong rods, all forcesFh

i may be
taken equal, that is, end-effects may be neglected, since the majority of beads (away from the
ends of the rod) experience approximately the same force. SubstitutingFh

i = D
L Fh, with Fh

the total force on the rod, yields,

vc = − 1

3πη0L
Fh −

(

D

L

)2




1
2

n
∑

j = − 1
2

n

1
2

n
∑

i = − 1
2

n , i 6= j

T(rij)



 · Fh . (35)

The double bead index summation can be calculated up to leading order by replacing sums by
integrals (for details see appendix A). It is thus found that,

1
2

n
∑

j = − 1
2

n

1
2

n
∑

i = − 1
2

n , i 6= j

T(rij) =
1

8πη0D

[

Î + ûû
]

1
2

n
∑

j = − 1
2

n

1
2

n
∑

i = − 1
2

n , i 6= j

1

| i − j |

≈ 1

4πη0D

[

Î + ûû
] L

D
ln

{

L

D

}

. (36)
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We finally obtain, to leading order,

vc = − 1

3πη0L
Fh − 1

4πη0L
ln

{

L

D

}

[

Î + ûû
]

·Fh

≈ − 1

4πη0L
ln

{

L

D

}

[

Î + ûû
]

· Fh . (37)

Notice that the Stokesian friction of each bead does not contribute in leading order : the major
contribution comes from hydrodynamic fields near each bead generated by the remaining
beads. Hydrodynamic interaction between the beads is thus essential for the friction of a
translating rod.

Inversion of eq.(37) yields,

Fh = −Γf · vc , with Γf =
4πη0L

ln{L/D}

[

Î − 1

2
ûû

]

, (38)

where the tensorΓf is referred to as thefriction tensor. Contrary to a spherical particle, the
friction force is generally not co-linear with its velocity. When the motion of the rod is parallel
to its orientation, the friction force of the rod with the fluid is found from eq.(38) to be equal
to,

Fh = −γ‖ vc , (39)

with γ‖ the friction coefficient for parallel motion,

γ‖ =
2πη0L

ln{L/D} . (40)

For motion perpendicular to the center line it is likewise found that,

Fh = −γ⊥ vc , (41)

with γ⊥ the friction coefficient for parallel motion,

γ⊥ =
4πη0L

ln{L/D} . (42)

Notice that this friction constant is twice as large as for parallel motion. This is only true
for very long and thin rods. For rods with smaller aspect ratios, corrections to the limiting
expressions (40) and (42) were considered by de la Torre and Bloomfield (1981). Also note
that the friction tensor can be written as,

Γf = γ‖ ûû + γ⊥

[

Î − ûû
]

, (43)

where the dyadic product̂uû is the projection operator parallel to the orientation direction of
the rod and̂I− ûû is the projection operator in the direction perpendicular to û. This expres-
sion for the friction tensor is generally valid, also for shorter rods, in which case, however,
correction terms should be added to the limiting expressions (40,42), as discussed by de la
Torre and Bloomfield (1981).

Consider now the additional contribution of shear flow. The forcesFh
i as a function of the

bead indexi may be obtained directly from the above considerations as follows. Each beadi
has a velocity, relative to the externally imposed fluid flow velocity, equal tovc − G · ri =
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vc−G ·rc−iDG ·û. Therelativechange of this velocity between neighbouring beads is thus
∼ 1/i, and is small for beads away from the center. Large groups of beads therefore experience
a friction force as in the case of a uniformly translating rodin an otherwise quiescent fluid.
Beads away from the center therefore experience a friction force parallel to the center line
equal to,

Fh
i , ‖ = −D

L
γ‖ ûû · (vc − G · rc − iDG · û) ,

and perpendicular to the center line,

Fh
i , ⊥ = −D

L
γ⊥

[

Î− ûû
]

· (vc − G · rc − iDG · û) .

Here, the apparent local velocity of the fluid is decomposed in its component parallel and
perpendicular to the rods center line, and the friction coefficient on the bead is equal to that
of an entire rod divided by the numbern + 1 = L/D of beads. The total force that the fluid
exerts on the rod is now simply found by summation over all beads,

Fh =

1
2

n
∑

i = − 1
2

n

[

Fh
i , ‖ + Fh

i , ⊥

]

= −
(

γ‖ûû + γ⊥

[

Î− ûû
])

· (vc − G · rc)

= − 4πη0L

ln {L/D}

[

Î− 1

2
ûû

]

· (vc − G · rc) . (44)

The last equation is only valid for very long and thin rods. The first equation is also valid for
shorter rods, where expressions for the two friction coefficients were calculated by de la Torre
and Bloomfield (1981). This result is precisely eq.(38) for translational motion in an otherwise
quiescent fluid, where the velocity of the rods center is taken relative to the local shear flow
velocity. Such a result is intuitively clear, as additionalfriction forces due to the shear flow
on the beads with a positive bead index simply cancel with thesame forces on beads with a
negative index.

0.4.2 Rotational friction

Consider a rod in shear flow with its center at the origin (so that vc = 0 = rc) and with a
prescribed angular velocityΩ perpendicular to its center line. The rotational friction coeffi-
cient may be obtained directly from the above results on translational friction, with arguments
similar to the ones given at the end of the previous subsection where the effect of shearing
motion of the fluid on translational friction is considered.The velocity of beadi relative to
the local fluid flow velocity is equal toΩ×ri − G · ri = iD Ω × û − −iD G · û. The
relativechange of this velocity between neighbouring beads is thus∼ 1/i, and is small for
beads away from the origin. Large groups of beads therefore experience a friction force as
in case of a uniformly translating rod in an otherwise quiescent fluid. Beads away from the
origin therefore experience a friction force parallel to the center line equal to,

Fh
i , ‖ = −D

L
γ‖ ûû · (iD Ω× û − iD G · û) , (45)
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Figure 4: A rod in simple shear flow with its center line parallel to the flow direction experiences a
non-zero torque entirely due to its non-zero thickness.

and perpendicular to the center line,

Fh
i , ⊥ = −D

L
γ⊥

[

Î − ûû
]

· (iD Ω× û − iD G · û) . (46)

The torque on the rod is thus equal to,

T h =

1
2

n
∑

i = − 1
2

n

ri ×
[

Fh
i , ‖ + Fh

i , ⊥

]

= −D3

L
γ⊥ [û× (Ω × û) − û× (G · û)]

1
2

n
∑

i = − 1
2

n

i2 , (47)

where it is used thatγ⊥ = 2γ‖ (see eqs.(40,42)). Sincêu ⊥ Ω, and using that
∑k

i=1 i2 =
1
6k(k + 1)(2k + 1) ≈ 1

3k3 for largek, it is thus found that,

T h = −γr [Ω − û× (G · û) ] , (48)

where,

γr =
1

12
L2 γ⊥ =

πη0L
3

3 ln{L/D} , (49)

is therotational friction coefficient. Notice that a torque-free rod in shear flow thus attains an
angular velocity equal tôu × (G · û). For rods with smaller aspect ratios, corrections to the
limiting expression (49) are given by de la Torre and Bloomfield (1981).

For the special case of simple shear flow, whereG = Γ as given in eq.(1), the above
result predicts a zero torque on the rod when it is oriented along the flow direction, since
then û × (Γ · û) = 0. From symmetry it follows that for such orientations the total force
Fh

i of the fluid on each bead is zero, so that the torque is indeed0. What is neglected in
eq.(47) is the variation of the fluid flow velocity over the surface of each bead, which is a good
approximation for orientations away from alignment along the flow direction. When the rod
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is oriented along the flow direction, however, the fluid flow variation over the surfaces of the
beads give rise to a small but non-zero torque. The torque is only non-zero when the finite
thickness of the rod is taken into account, and its magnitudeis at least an orderD/L smaller
than the torqueγrû × (Γ · û) for orientations not parallel to the flow direction.

As will be seen in the section on Jeffery orbits, which are theorbits described bŷu of
a non-Brownian rod in shear flow, the small torque on a rod thatis oriented along the flow
direction is essential to obtain the realistic periodic motion for û : without this small contri-
bution,û would simply end up in the direction parallel to the flow. Let us therefore consider
this small, but essential contribution to the torque for non-Brownian rods.

The additional contribution to the torque is due to variations of the fluid forces over the
bead surfaces. Taking these variations into account, the torque is by definition equal to (∂V is
again the surface of the rod),

T h = −
∮

∂V

dS′ r′ × f(r′) = −
1
2

n
∑

i = − 1
2

n

∮

∂V 0

dS′ (R′ + ri) × fi(R
′)

=

1
2

n
∑

i = − 1
2

n

ri × Fh
i −

1
2

n
∑

i = − 1
2

n

∮

∂V 0

dS′ R′ × fi(R
′) . (50)

The last term on the right-hand side is now extra as compared to the case where the additional
torque due to variations of the hydrodynamic forces over therods surface is neglected. This
is the term that is responsible for a finite torque when the rodis oriented along the flow
direction. The first term on the right-hand side is already considered before with the neglect
of end-effects. In calculating the additional contribution ∆T h (the last term on the right-hand
side) end-effects will also be neglected, meaning that the variation of the hydrodynamic forces
over the bead surface is taken equal for all beads. The variation of the fluid flow in which a
bead is embedded is given byΓ · R′. We are only interested in the component of this flow in
the direction alonĝu, since the complementary perpendicular component gives rise to rotation
about the center line, which does not affectû. This parallel component of the flow along the
surface of the rod is equal tôuû · Γ · R′, and the corresponding parallel force is proportional
to this flow velocity. Hence,

fi(R
′) = C ûû · Γ ·R′ , (51)

whereC is an as yet unknown constant. It now follows that,

∆T h = −C

1
2

n
∑

i = − 1
2

n

∮

∂V 0

dS′ R′ × (Γ ·R′) = C
L

D

πD4

12
û ×

(

ΓT · û
)

, (52)

where the superscript “T ” stands for transposition. The constantC can now be determined
by comparing this result to solutions of the creeping flow equations for the simple case that
the rod is oriented along the flow direction. For the case of a cylinder without end-effects and
for a long and thin ellipsoidal particles it can be shown that,

C = −6 η0

D
, for cylinders without end-effects, (53)

= − 4 η0

D ln{L/D} , for long and thin ellipsoids. (54)
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The different results are not just the result of neglect of end-effects in case of the cylindrical
particle. The precise value ofC is sensitive to the precise shape of the surface of the rod : the
torque on a rod aligned along the flow direction depends on howthe fluid is “pushed away” or
“sucked in” as it flows along its surface.

We thus finally find the following expression for the torque,

T h = −γr

[

Ω− û × (Γ · û) + κ2 û ×
(

ΓT · û
) ]

, (55)

where the dimensionless constantκ2 is equal to,

κ2 =
3

2

(

D

L

)2

ln

{

L

D

}

, for cylinders without end-effects, (56)

=

(

D

L

)2

, for long and thin ellipsoids . (57)

Since for colloidal rods the precise geometry of their surface is usually not known, andκ2 is
sensitive to that geometry, the constantκ2 should be considered as a fitting parameter when
performing experiments. This parameter tends to zero with decreasing values ofD/L.

0.5 Motion of Non-Brownian Rods in Shear Flow :
Jeffery Orbits

The first thing that comes to mind when beginning to study the effect of shear flow on di-
lute suspensions of rods is to ask about their motion withoutconsidering Brownian motion.
The trajectory of motion of a Brownian rod will be the smooth trajectory of a non-Brownian
rod that is randomly corrugated due to Brownian motion. In this section we ask for the ori-
entational orbits that a non-Brownian rod (a “fiber”) traverses when subjected to shear flow.
These orbits are commonly the referred to asJeffery orbits, named after the scientist Jefferey
(1922) who first considered this problem (a more compact formulation as compared to the
original work of Jeffery has been formulated by Hinch and Leal (1972) and Leal and Hinch
(1972)). We shall consider Jeffery orbits of rods in elongational flow and simple shear flow,
respectively.

The expressions derived in the previous section for very long and thin rods will be used
to calculate such Jeffery orbits. Jefferey (1922) derived exact expressions for ellipsoidal rods,
while Bretherton (1962) showed that the same equations of motion can be applied to arbi-
trary shaped, cylindrically symmetric, slender bodies, provided that the body is modelled as
an equivalent ellipsoid. The expressions obtained in the following are the asymptotic limits
for large aspect ratios of those derived by Jeffery and Bretherton. It turns out, however, that
for aspect ratiosL/D larger than about3-4, errors that are made in using these asymptotic ex-
pressions (but employing the correct value for the rotational friction coefficient) are typically
less about5% (asymptotic limits are obtained when, typically,1/(1 + r2) is approximated by
1/r2, wherer = L/D). This is confirmed by simulations (see for example Ingber and Mondy
(1994)).

Interactions between fibers at high fiber concentration and intrinsic flexibility of fibers
does of course have an effect on the orbits described by a rod.Simulations on Jeffery orbits
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Figure 5: Definition of the spherical coordinatesϕ andΘ, relative to the flow and gradient direction in
case of simple shear flow. The flow is in thex-direction while the gradient is in they-direction. In this
example,ϕ < 0.

where interactions and flexibility are considered have beenperformed by Yamamoto and Mat-
suoka (1995). The theory described here assumes rigid rods.A discussion and references on
the effect of interactions between fibers, wall effects and rheology of fiber suspensions can
be found in the book by Papathanasiou and Guell (1997). The treatment here describes the
motion of a single fiber, which is not affected by interactions with other fibers or a wall.

Jeffery orbits are most conveniently described in terms of the spherical coordinatesϕ and
Θ of the unit vector̂u that specifies the orientation of the rod. These coordinates, relative
to the flow and gradient direction in case of simple shear flow are sketched in fig.5. In case
of elongational flow, the elongation axis is oriented along{ϕ, Θ} = {π/4, π/2} (compare
figs.1a,b). In fig.5,ϕ for the corresponding rod is negative.

0.5.1 Jeffery orbits in elongational flow

According to eq.(48), the torqueT h that the fluid exerts on a very long and thin rod with an
angular velocityΩ in a shear field with velocity gradient tensorG = E (see eq.(2)) is equal
to,

T h = −γr [Ω− û × (E · û) ] , (58)
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whereγr is the rotational friction coefficient. It will turn out thatfor elongational flow, the
torque exerted on the rod when it is orientated parallel to the flow direction (the last term in
eq.(55)) is of no relevance, contrary to simple shear flow. When no external torque acts on the
rod, the hydrodynamic torque in eq.(58) is0, so that,

Ω = û× (E · û) . (59)

On the other hand, by definition,

dû

dt
= Ω× û . (60)

Substitution of eq.(59) into eq.(60), using thatû× (û×a) = (û ·a)û−a for arbitrary vectors
a, yields,

dû

dt
= E · û− (û · E · û) û . (61)

This equation of motion for the orientation̂u describes the rotational orbits of a long and thin
rod, without Brownian motion, in elongational flow. Expressing the orientation in terms of
spherical angular coordinates, and substitution of the explicit form of E in eq.(2), the follow-
ing equations of motion for these coordinates are obtained,

dΘ

dt
cos{Θ} cos{ϕ} − dϕ

dt
sin{Θ} sin{ϕ} = −γ̇ sin3{Θ} sin{ϕ} cos2{ϕ} +

γ̇

2
sin{Θ} sin{ϕ},

dΘ

dt
cos{Θ} sin{ϕ} +

dϕ

dt
sin{Θ} cos{ϕ} = −γ̇ sin3{Θ} sin2{ϕ} cos{ϕ} +

γ̇

2
sin{Θ} cos{ϕ},

dΘ

dt
= γ̇ sin{Θ} cos{Θ} sin{ϕ} cos{ϕ} . (62)

It may seem that we have here three equations for two unknowns(Θ andϕ) : each one of these
equations, however, may be derived from the remaining two. Elimination ofdΘ/dt from one
of the first two equations, using the third equation, yields the following seemingly simple set
of two equations of motion for the spherical angular coordinates,

dϕ

dt
= −γ̇

[

sin2{ϕ} − 1
2

]

,

dΘ

dt
= γ̇ sin{Θ} cos{Θ} sin{ϕ} cos{ϕ} . (63)

The first of these equations is easily integrated, to yield,
∫ ϕ(t)

ϕ(t=0)

dϕ′

sin2{ϕ′} − 1
2

= ln

{

(tan{ϕ(t)} − 1) (tan{ϕ(t = 0)} + 1)

(tan{ϕ(t)} + 1) (tan{ϕ(t = 0)} − 1)

}

= −γ̇ t . (64)

Solving fortan{ϕ(t)} leads to,

tan{ϕ(t)} =

{

1 + C(t)

1 − C(t)

}

, with , C(t) =
tan{ϕ(t = 0)} − 1

tan{ϕ(t = 0)} + 1
exp{−γ̇ t} . (65)

At infinite time, the spherical coordinateϕ of û thus becomes equal toπ/4 (or equivalently
5π/4). Hence, the projection of̂u onto thexy-plane (the flow-gradient plane) is along the
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Figure 6: (a) Jeffery orbits for elongational flow for initial valuesϕ(t = 0) = π/100 and various values
for Θ(t = 0), as indicated in the figure. Data points• correspond to time steps equal to1/(10 γ̇). The
arrows indicate the direction of the temporal evolution of the spherical coordinates. (b) Jeffery orbits for
simple shear flow withκ = 0.1, for various values ofΘ(t = 0), as indicated in the figure. The points•
on the orbits mark time intervals ofT/200. ϕ(t) decreases with time.
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direction of the the extensional axis of the elongational flow. The reason for this is easily
inferred from fig.1b.

Dividing the two equations of motion in eq.(63) yields,

dΘ

sin{Θ} cos{Θ} = − dϕ sin{ϕ} cos{ϕ}
sin2{ϕ} − 1

2

.

Integration of both sides now leads to,

tan{Θ(t)} = tan{Θ(t = 0)}
√

sin2{ϕ(t = 0)} − 1
2

sin2{ϕ(t)} − 1
2

, (66)

whereϕ(t) can be obtained from eq.(65). Sinceϕ(t) tends toπ/4 (or 5π/4), the above
solution predicts thattan{Θ} tends to infinity, and henceΘ(t) → π/2. Hence, independent
of the initial condition, a rod will end up in the velocity-gradient plane along the extensional
axis. This is verified in fig.6a, which shows numerical results for the spherical coordinates.
Here, the distance between each data point is1/(10 γ̇). Data are shown for small values of
ϕ(t = 0). For larger initial values forϕ, the orbit just starts on one of the curves shown
and then traces the same orbit. As can be seen from the most upper-left curve in fig.6a,
when the initial value ofΘ is small, the rod spends a relatively long time around the unstable
stationary solution{Θ, ϕ} = {0, π/4} of the equations of motion, before reaching the final
stable state{Θ, ϕ} = {π/2, π/4}. That is,û first rotates to the extensional direction where
ϕ = π/4, keeping its angleΘ with the vorticity direction relatively small. This angle then
slowly increases, after which there is an acceleration towards the final orientation.

0.5.2 Jeffery orbits in simple shear flow

As we have seen in the section on hydrodynamics, the torqueT h that the fluid exerts on a
very long and thin rod with an angular velocityΩ in a shear field with velocity gradient tensor
G = Γ (see eq.(1)) is equal to,

T h = −γr

[

Ω− û × (Γ · û) + κ2 û ×
(

ΓT · û
) ]

, (67)

whereγr is the rotational friction coefficient. The parameterκ2 tends to zero for decreasing
values ofD/L, and measures the torque of the rod when aligned such thatϕ = 0, for which
caseû× (Γ · û) = 0. Neglecting this small contribution results in an orientation of the rod in
the flow direction for long times, while for a rod of finite thickness, whereκ2 is small but non-
zero, a periodic motion results. Contrary to the case of elongational flow, considered in the
previous subsection, the small but finite contribution∼ κ2 is essential for a correct description
in case of simple shear flow.

When no other torque is acting on the rod, the hydrodynamic torque is0, so that,

Ω = û× (Γ · û) − κ2 û×
(

ΓT · û
)

. (68)

Precisely as for elongational flow, this implies that,

dû

dt
= Γ · û − κ2 ΓT · û− (û · Γ · û) û . (69)
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In terms of spherical coordinates, this is equivalent to,

dΘ

dt
cos{Θ} cos{ϕ}− dϕ

dt
sin{Θ} sin{ϕ}=−γ̇(1−κ2) sin3{Θ} sin{ϕ} cos2{ϕ}+γ̇ sin{Θ} sin{ϕ},

dΘ

dt
cos{Θ} sin{ϕ}+

dϕ

dt
sin{Θ} cos{ϕ}=−γ̇(1−κ2) sin3{Θ} sin2{ϕ} cos{ϕ}−γ̇κ2 sin{Θ} cos{ϕ},

dΘ

dt
= γ̇(1−κ2) sin{Θ} cos{Θ} sin{ϕ} cos{ϕ} . (70)

Precisely as in the previous case of elongational flow, we thus arrive at the following equations
of motion for the spherical angular coordinates,

dϕ

dt
= −γ̇

[

sin2{ϕ} + κ2 cos2{ϕ}
]

,

dΘ

dt
= γ̇(1 − κ2) sin{Θ} cos{Θ} sin{ϕ} cos{ϕ} . (71)

The first of these equations is easily integrated to yield,
∫ ϕ(t)

ϕ(t=0)

dϕ′

sin2{ϕ′} + κ2 cos2{ϕ′} =
1

κ

[

arctan

{

1

κ
tan{ϕ(t)}

}

− C′

]

= −γ̇ t , (72)

whereC′ is an integration constant, equal to,

C′ = arctan

{

1

κ
tan{ϕ(t = 0)}

}

. (73)

Hence,

tan{ϕ(t)} = κ tan{C′ − γ̇κ t} . (74)

Sinceϕ(t) is periodic, trajectories of̂u do not depend onϕ(t = 0), so that, without loss of
generality, we may takeϕ(t = 0) = 0. For this choice, according to eq.(73),C′ = 0. The
solution (74) thus simplifies to,

tan{ϕ(t)} = −κ tan{γ̇κ t} . (75)

It follows thatϕ(t) is a periodic function of time, with a periodT which is independent of the
initial value ofû, and is equal to,

T =
2π

γ̇ κ
. (76)

It should be noted that terms of order(D/L)2 are neglected in the equation of motion (69)
for the orientation (except for the important contribution∼ κ2 to the torque), so that the
expression for the periodT here is valid to within terms of that order.

Division of the two equations of motion in eq.(71) yields,

dΘ

sin{Θ} cos{Θ} = (κ2 − 1)
dϕ sin{ϕ} cos{ϕ}

sin2{ϕ} + κ2 cos2{ϕ} .

Integration of both sides leads to,

tan{Θ(t)} = tan{Θ(t = 0)}
√

1 + (κ2 − 1) cos2{ϕ(t = 0)}
1 + (κ2 − 1) cos2{ϕ(t)} , (77)
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Figure 7: The angleχ between the projection of the director onto the gradient-velocity plane and the
flow direction as a function of straiṅγ t, for five different shear rates :̇γ = 1 •, 1.7 � , 3O, 5�

and7 s−1
△, as obtained from dichroism measurements by Vermant et al. (2001). The sample consists

of ellipsoidal hematite rods with an aspect ratio of2.5 with a polydispersity of about25%, dissolved
in a slightly acidic water/glycerin5/95 mixture. The average length of the rods is430 nm and their
thickness170 nm. The vertical line indicates the period of timeT as obtained from eq.(76).

whereϕ(t) follows from eq.(75). Jeffery orbits are plotted in fig.6b for various values of
Θ(t = 0) and forκ = 0.1. As already mentioned above, the parameterκ is a measure for the
torque on the rod when aligned in the velocity-gradient plane, and tends to0 for D/L → 0.
For long and thin rods, for whichκ is small, this torque is small, and the rod spends a relatively
long time around this particular orientation. Forκ = 0, that is, in the unrealistic case of zero
thickness of the rod, the above result predicts that the rod ends up at an orientation where
ϕ = 0 (or a multiple ofπ). The small, but finite value ofκ, however, results in periodic
motion of the rod. In the present case of simple shear flow, thesmall torque as a result of
the finite thickness of the rod in the equation of motion (69) is thus essential, since this small
contribution will lead to a continuing motion of the rod, notending in an orientation in the
flow direction at infinite time. As can be seen from fig.6, the rod spends a relatively long time
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at orientations whereϕ is a multiple ofπ. For smaller values ofκ, this would be even more
pronounced.

An experiment

Experimental results for the angleχ between the director in the gradient-velocity plane and
the flow direction as obtained from dichroism measurements on hematite suspensions are
shown in fig.7 (data are taken from Vermant et al. (2001)). Thelaser beam is along the
vorticity direction, so that dichroism in the gradient-velocity plane is probed. The flow is
imposed at timet = 0, from an initially isotropic dispersion. The geometrical aspect ratio
of the hematite rods is2.5 with a polydispersity of about25 %. For small times, rods are
preferentially oriented with an angle of45o with the flow direction, due to the orientational
effect of the elongational part of the simple shear flow. For asingle rod, the angleχ is equal to
ϕ in eq.(75). Hence, according to eq.(75),χ should scale with the straiṅγ t, which is indeed
confirmed by these experiments. The temporal oscillations of χ are damped because of the
polydispersity in aspect ratio. The shear rates are chosen large enough so that during the time
interval where damping occurs, orientational Brownian motion of the rods does not play a role.
According to eqs.(76,56), each different aspect ratio leads to a different periodT of oscillation
of ϕ(t), so that after some time different rods are “out of phase”, which gives rise to damping
of the oscillations of the measured angleχ. Since the dispersions are very dilute, so that the
rods do not interact with each other, the angleχ can be calculated taking polydispersity into
account (details can be found in Vermant et al. (2001)). Using the equations derived in the
present section and properly averaging with respect to polydispersity in aspect ratio fits the
experimental master curve in fig.7. The effective aspect ratio as obtained from this fit is1.75
(instead of the geometrical aspect ratio2.5) and a polydispersity of65 % (instead of25 %).
These differences between the effective and geometrical values are due to deviation of the rod
shapes from an ideal ellipsoidal shape. The period of oscillation as given by eq.(76) is seen
to be of the right magnitude (despite the fact that eq.(76) isonly valid for long and thin rods,
while the present hematite rods are quite short and thick).

0.6 Brownian Motion of a Free Rod (without shear flow)

Before going to Brownian rods in shear flow, we shall considertranslational and rotational
Brownian motion of a long and thin rod in the absence of flow. Brownian motion can be
studied on the basis of Newton’s equation of motion, supplemented with fluctuating forces
and torques resulting from collisions of solvent moleculeswith the rod. Such equations of
motion with a fluctuating component are referred to asLangevin equations. We shall first
review Newton’s equations of motion before formulating theLangevin equations for a long
and thin rod. On the basis of these equations, important timescales can be defined. Due to the
very large size and mass of the rod in comparison to the solvent molecules, the rod moves on a
time scale that is much larger than typical relaxation timesof solvent molecules. In addition it
will turn out that velocities relax quite fast due to friction with the solvent. This enables us to
coarse grain equations of motion to the so-called Brownian time scale, on which velocities and
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Figure 8: Motion of a rigid body.Ω is the angular velocity andvc is the translational velocity of the
reference pointrc.

angular momenta have long relaxed to equilibrium with the heat bath of solvent molecules.
In an experiment, the time scale is set by the time interval over which observables are

averaged during a measurement. For example, taking photographs of a Brownian particle
is an experiment on a time scale that is set by the shutter timeof the camera. Subsequent
photographs reveal the motion of the Brownian particle averaged over a time interval equal to
the shutter time. Any theory considering the motion of the Brownian particle obtained in such
a way should of course be aimed at the calculation of observables, averaged over that time
interval. A time scale is thus the minimum time resolution ofan experiment or theory.

0.6.1 Newton’s equations of motion for a rigid body

Let us first recall Newton’s equations of motion for non-spherical rigid particles. The rigid
body contains a large number of molecules, with positionsrn, momentapn, and massesmn,
wheren = 1, 2, 3, · · · . The positions of the molecules are fixed relative to each other, that
is, the body is rigid as a result of inter-molecular interactions. The velocityvn of molecule
n is composed of two parts : the rigid body can rotate and translate. To make the distinction
between the two contributions, the velocities are written as,

vn = Ω × (rn − rc) + vc, (78)

whererc is an arbitrary point inside the rigid body with a translational velocityvc, andΩ is
the angular velocity with respect to the pointrc (see fig.8).

Newton’s equation of motion for the total momentump reads,

dp

dt
≡ d

dt

∑

n

pn = Ω×
∑

n

mn [vn−vc]+
dΩ

dt
×

∑

n

mn [rn−rc]+M
dvc

dt
= F , (79)
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whereF is the totalexternal forceon the particle, andM =
∑

n mn is the total mass of the
particle. With the following choice for the pointrc,

rc =
∑

n

mnrn/
∑

n

mn, (80)

which is thecenter of massof the rigid body, eq.(79) becomes similar to Newton’s equation
of motion for a spherical particle,

dpc

dt
= F, (81)

wherepc = Mvc. The rotational motion of the particle is characterized by the angular
momentumJ,

J ≡
∑

n

rc
n × pc

n, (82)

where the superscriptc refers to coordinates relative to the center of mass coordinate (rc
n =

rn − rc andpc
n = pn − pc). The equation of motion of the angular momentumJ follows

simply by differentiating the defining equation (82), and using Newton’s equation of motion
for each molecule separately,

dJ

dt
=

∑

n

rc
n × Fn ≡ T , (83)

with Fn the force on thenth molecule. The last equality in this equation defines thetorque
T on the particle. Equations (81) and (83) are Newton’s equations of motion for translational
and rotational motion, respectively.

Notice that the angular momentum is a linear function of the angular velocityΩ, since,
according to eqs.(78,80,82),

J =
∑

n

mnrc
n × (Ω× rc

n) . (84)

The right-hand side can be written as a tensor multiplication of Ω,

J = Ic · Ω, (85)

with Ic the inertia tensor, theijth component of which is,

Ic
ij ≡

∑

n

mn

[

(rc
n)2 δij − (rc

n)i(r
c
n)j

]

, (86)

with δij the Kronecker delta (δij = 0 for i 6= j, andδij = 1 for i = j). The torque,
angular momentum, angular velocity and inertia tensor may be considered as the rotational
counterparts of force, momentum, translational velocity and mass, respectively.
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Figure 9: For a long and thin rod, the angular velocity may be thought ofas being perpendicular to its
orientation.

For the analysis of time scales, we shall need the expressionfor the kinetic energyEkin

of a rotating rod. Using eqs.(78,80,86), one finds,

Ekin =
∑

n

1

2
mnvn · vn

=
∑

n

1

2
mn[Ω× rc

n + vc] · [Ω× rc
n + vc]

=
∑

n

1

2
mnv2

c +
∑

n

1

2
mn(Ω × rc

n) · (Ω× rc
n)

=
1

2
Mv2

c +
∑

n

1

2
mn

[

Ω2(rc
n)2 − (Ω · rc

n)2
]

≡ 1

2
Mv2

c +
1

2
Ω · Ic · Ω . (87)

The first term on the right-hand side in the last line is the translational kinetic energy, the
second term is the kinetic energy associated with rotation about the center of mass.

0.6.2 The Langevin equation for a long and thin rod

Clearly, thermal collisions of solvent molecules with the Brownian particle result in both
stochastic motion of the position of its center of mass as well as its orientation. The Langevin
equations are Newton’s equations of motion (81) for translational motion and (83) for rota-
tional motion supplemented with a fluctuating force and torque, respectively, which account
for collisions of the rod with solvent molecules.

In the following, we specialize to a long and thin cylindrically symmetric rod. For such
a long and thin rod, the rotational motion around the cylinder axis of symmetry need not
be considered. The components of the inertia tensor relatedto rotational motion around the
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long cylinder axis are very small in comparison to its remaining components, and may be
disregarded. The angular velocityΩ is therefore understood to denote the component of the
angular velocity perpendicular to the cylinder axis of symmetry (see fig9). The componentΩ

of the angular velocity that changes the orientation of the rod is equal to,

Ω = û× dû

dt
. (88)

This can be seen as follows. By definition we have,

dû

dt
= Ω× û , (89)

Operating on both sides witĥu×, using that̂u× (Ω× û) = (û · û)Ω− (û ·Ω)û, and noting
thatû · û = 1 andû · Ω = 0, eq.(88) is recovered.

The force and torque of the solvent on the rod consists of two parts. Once the rods attained
a finite translational and rotational velocity, there is a systematic force equal to−Γf · p/M
(see eq.(38)) and a systematic torque equal to−γrΩ (see eq.(48)) on the rod due to friction.
The second part is the fluctuating force and torque discussedbefore. Denoting the fluctuating
force byf and the fluctuating torque byT, the complete set of Langevin equations reads (we
omit the superscripts “c ” in the following),

dp/dt = −Γf

M
· p + f(t),

dr/dt = p/M,

dJ/dt = −γr Ω + T(t),

I · Ω = J. (90)

Since systematic interactions with the solvent molecules are made explicit through friction
contributions, the ensemble average of the fluctuating force and torque are zero,

< f(t) > = 0 ,

< T(t) > = 0 . (91)

Due to the fore mentioned large separation in time scales on which the solvent molecules relax
and the rod moves, it is sufficient for the calculation of the thermal movement of the Brownian
particle to use a delta correlated fluctuating force and torque in time, that is,

< f(t)f(t′) > = Gtrans δ(t − t′) ,

< T(t)T(t′) > = Grot δ(t − t′) , (92)

whereδ is the delta distribution andGtrans andGrot are constant3 × 3-dimensional ten-
sors (where the subscripts stand for “translation” and “rotation”), which may be regarded as
a measure for the strength of the fluctuating force and torque. They are referred to as the
translational and rotational fluctuation strength, respectively. Such delta correlations limit
the description to a time resolution which is large with respect to the solvent time scale of
10−13s.

Note that for the rods with a large aspect ratioL/D considered here, the inertia tensor in
eq.(86) is easily calculated, replacing the sum over molecules by an integral. For a constant
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local mass densityρ of the rod material, the inertia tensor becomes,

I =

∫

dr′ ρ [r′ 2Î − r′r′] ≈ π

(

D

2

)2

ρ

∫ 1
2L

− 1
2L

dl l2 [Î− ûû] =
1

12
ML2 [Î − ûû] . (93)

The typical magnitude for the inertia tensor is thus1
12ML2. Note that sinceΩ is perpendicular

to û (see eq.(88)), it follows from eq.(93) that,

I ·Ω = 1
12

ML2 Ω . (94)

This result will be convenient in our further analysis of theLangevin equation.

0.6.3 The Brownian time scale :
Relaxation rates of the translational and rotational velocity

The Langevin equation (90) can be used to estimate the time scale on which the translational
and rotational velocity decay to equilibrium with the heat bath of solvent molecules. First
consider the translational velocity. Ensemble averaging the first equation in (90), using eq.(92)
gives,

d <p>

dt
= − <

Γf

M
· p > . (95)

Remember that the friction tensorΓf depends on the orientation of the rod, and can therefore
not be taken outside the ensemble averaging brackets< · · · >. However, the interest here
is in anestimateof the relaxation time of the translational velocity. Sincethe magnitude of
the friction coefficient of a rod varies only a factor of two depending on its orientation, one
can use a typical magnitude of the elements ofΓf in eq.(95). This typical magnitude follows
from the expression in eq.(38) as2πη0L/ ln{L/D}. The time scale on which the translational
velocity relaxes can thus be estimated from,

d <p>

dt
≈ − 2 π η0 L

M ln{L/D} <p> . (96)

It follows that (withp(0) the initial translational momentum),

<p> (t) ≈ p(0) exp {−t/τtrans} , with τtrans =
M ln{L/D}

2 π η0 L
≈ 1 ns . (97)

A typical value for the relaxation timeτtrans of the translational velocity of a rod is thus found
to be of the order of a nano second.

The time scale on which rotational velocities relax can be estimated from the last two of
the equations in (90). Ensemble averaging gives, using eq.(91),

d <J>

dt
= −γr <Ω> ,

<I · Ω> = <J> . (98)

Using eq.(94) in the second equation, and substitution of the result into the first equation leads
to,

d <Ω>

dt
= − 12 γr

M L2
<Ω> , (99)
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and hence (withΩ(0) the initial angular velocity),

<Ω> (t) = Ω(0) exp {−t/τrot} , with τrot =
12 M L2

γr
=

M ln{L/D}
4 π η0 L

≈ 1 ns. (100)

where the expression (49) for the rotational friction coefficient has been used. Relaxation
times for translational and rotational velocities are thusboth of the order of a nano second.

Within a description where time is coarse grained to a time much larger thanτtrans and
τrot, inertial forces and torques on the rod can be neglected. This will turn out to be an
important fact in further theoretical developments discussed later in this chapter. The corre-
sponding coarsening in length scale and orientational angle will be discussed in the following
section. The time scale that is much larger thanτtrans andτrot, but still small enough to
resolve position and orientation in sufficient detail, is referred to asthe Brownian or diffusive
time scale.

0.6.4 The Brownian length scale and Brownian angle

As discussed in the beginning of this section, a coarsening in time implies a coarsening of
position and angular orientation. On the Brownian time scale the spatial and angular resolution
is not better than the distance over which the Brownian particle moves and the angle over
which a rod typically rotates, respectively, during a time interval equal to the Brownian time
scale.

Consider first the length∆l that the rod traverses during the timeτ ≫ τtrans. This so-
calledBrownian length scaleis easily obtained by integration of eqs.(97),

∆l =

∫ τ

0

dt
|<p(t)>|

M
=

|p(0) |
M

τtrans (1 − exp{−τ/τtrans}) ≈ |p(0) |
M

τtrans . (101)

A typical value for| p(0) | is obtained from the equipartition theorem,

|p(0) | ≈
√

<|p | 2> =
√

3MkBT . (102)

The Brownian length scale is thus estimated as,

∆l ≈
√

3 M kB T
ln{L/D}
2 π η0 L

. (103)

Using typical numerical values for the several quantities gives,

∆l

L
≈ 10−4 − 10−3 . (104)

The conclusion is that displacements that are very small in comparison to the length of the rod
are still resolved on the Brownian time scale. When∆L/L would have been a large number, it
would have made no sense to coarsen to the Brownian time scale, since it is then not possible
to accurately describe the motion of the rod.

Next consider the typical angle∆Θ over which a rod rotates during a timeτ ≫ τrot. This
is the so-calledBrownian angle. Integration of eq.(100) gives,

∆Θ =

∫ τ

0

dt |<Ω(t)>|= |Ω(0) | τrot (1 − exp{−τ/τrot}) ≈ |Ω(0) | τrot . (105)
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According to eq.(94), the rotational contribution to the kinetic energy in eq.(87) is equal to
1
24

ML2 |Ω |2. Hence, according to the equipartition theorem, a typical value for|Ω0 | can be
estimated as,

|Ω(0) | ≈
√

<|Ω |2> = 6

√

kB T

M L2
. (106)

The Brownian angle is thus of the order,

∆Θ ≈ 6
√

M kB T
ln{L/D}
4 π η0 L2

. (107)

For typical numerical values we have (note that, according to eq.(103), the right-hand side is
equal to

√
3 ∆L/L),

∆Θ

π
≈ 10−4 − 10−3 . (108)

Very small angular displacements can thus still be resolvedon the Brownian time scale.
For the study of processes where a significant translationaland rotational displacement

of the Brownian particle is essential, a statistical description on the Brownian time scale is
therefore sufficient.

0.6.5 Calculation of fluctuation strengths

Analyzing the Langevin equation requires the determination of the fluctuation strengths in
eq.(92). This can be done using the equipartition theorem for translational and rotational
motion, after having solved the Langevin equation forp(t) andΩ(t).

First consider the translational velocity. Integration ofthe first equation of motion in (90)
yields,

p(t) = exp

{

−Γf

M
t

}

· p(0) +

∫ t

0

dt′ exp

{

−Γf

M
(t − t′)

}

· f(t′) . (109)

The exponent of a tensor,A say, is defined through the Taylor expansion,

exp{A} ≡
∞
∑

n=0

1

n!
An , (110)

whereAn is A · A · · ·A, n times, andA0 ≡ Î, the identity tensor. Now, from eq.(43) it is
easily shown by induction that,

Γn
f = γn

‖ ûû + γn
⊥ [ Î − ûû ] , (111)

and hence, from the defining expression (110) for the tensor exponential,

exp

{

−Γf

M
(t − t′)

}

= exp
{

− γ‖

M
(t − t′)

}

ûû + exp
{

−γ⊥
M

(t − t′)
}

[Î − ûû] . (112)

Equation (109) can thus be written as,

p(t) = p‖(t) + p⊥(t) , with p‖ ≡ ûû · p , andp⊥ ≡ [ Î− ûû ] · p , (113)
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with,

p‖(t) ≡ exp
{

− γ‖

M
t
}

p‖(0) +

∫ t

0

dt′ exp
{

− γ‖

M
(t − t′)

}

f‖(t
′) ,

p⊥(t) ≡ exp
{

−γ⊥
M

t
}

p⊥(0)+

∫ t

0

dt′ exp
{

−γ⊥
M

(t − t′)
}

f⊥(t′) , (114)

where the components of the random force parallel and perpendicular to the rods orientation
are respectively defined as,

f‖(t) ≡ û(t)û(t) · f(t) , and f⊥(t) ≡ [ Î − û(t)û(t) ] · f(t) . (115)

Instead of using the full tensor form in eq.(95) for the fluctuating force, we shall only need
correlation functions of inner products of its two componentsf‖ andf⊥. Sincef(t) varies with
time much faster than̂u(t), the latter is virtually constant over time intervals equalto many
times the correlation time of the former. The conditional ensemble averages off‖,⊥, with a
prescribed̂u, are therefore still0, and their correlation functions are still delta correlated on a
time scale much larger than the solvent time scale. For the same reason,

< f‖(t) · f⊥(t′) > = 0 . (116)

We shall therefore define two independent fluctuation strengths for the fluctuating force par-
allel and perpendicular to the rods orientation,

< f‖(t) · f‖(t′) > = G‖ δ(t − t′),

< f⊥(t) · f⊥(t′) > = G⊥ δ(t − t′). (117)

Notice that we are working here with inner products instead of dyadic products as for the
spherical particle, so that bothG‖ andG⊥ are scalars. Since< p‖(t) · p⊥(t) >= 0, the
kinetic energy corresponding to translational motion of the Brownian rod is a sum of two
quadratic terms related to the perpendicular velocity and asingle quadratic term related to the
parallel velocity. From the equipartition theorem it is thus found that,

lim
t→∞

< p‖(t) · p‖(t) > = M/β,

lim
t→∞

< p⊥(t) · p⊥(t) > = 2 M/β. (118)

Substitution of eq.(114) into the above expressions, usingeqs.(116,117), it is readily found
that,

G‖ = 2γ‖/β ,

G⊥ = 4γ⊥/β . (119)

This concludes the determination of the translational fluctuation strengths, which will be used
to investigate the translational Brownian motion of the rodin the following section.

Next consider the fluctuation strength for the correlation function in eq.(92) of the torque.
Using eq.(94) in the last equation in (90), substituting theresult into the third equation and
integration yields,

Ω(t) = Ω(0) exp

{

− 12γr

ML2
t

}

+
12

ML2

∫ t

0

dt′ T(t′) exp

{

− 12γr

ML2
(t − t′)

}

. (120)



0.6 Brownian Motion of a Free Rod (without shear flow) 41

Using the second equation in (92) thus leads to,

lim
t→∞

< Ω(t)Ω(t) > =
6

γrML2
Gr. (121)

From eq.(87) for the kinetic energy together with eq.(94) and one finds that the kinetic energy
due to rotational motion is equal to124ML2Ω2(t). The equipartition theorem implies that
1
24

ML2Ω2(t) = 3
2
kBT . Hence,

lim
t→∞

< Ω(t)Ω(t) > = 12 Î
kBT

ML2
. (122)

Combining this with eq.(121) identifies the rotational fluctuation strength,

Gr = Î
2γr

β
. (123)

This expression allows for the analysis of the rotational part of the Langevin equation.

0.6.6 Translational Brownian motion of a rod

The simplest quantity that characterizes translational Brownian motion is themean squared
displacement, defined as,

W (t) ≡ <|r(t) − r(t = 0) |2> , (124)

where the brackets denote ensemble averaging. This quantity can be calculated from the
Langevin equation as follows.

We shall calculate the mean squared displacement on the Brownian time scale. As men-
tioned before, inertial forces can be neglected on the Brownian time scale. Neglecting the
inertial forcedp/dt on the left hand-side of the first equation in (90) gives,

dr/dt = Γ−1
f · f(t) , (125)

whereΓ−1
f is the inverse ofΓf . The reason for neglecting the inertial force can be made more

explicit as follows. Lett′ = t/τ be the dimensionless time in units of the Brownian time scale
τ . Rescaling the first equation in eq.(90) gives,

τtrans

τ

dp

dt′
= − τtrans

Γf

M
· p + τtrans f(τ t′) . (126)

Since the typical magnitude of the elements of the tensorΓf/M is 1/τtrans (see eqs.(38,97)),
so thatτtrans Γf/M is of order unity, andτ ≫ τtrans on the Brownian time scale, this
is a singularly perturbed differential equation. That is, the inertial term is important only
over a very small time interval int′, which is the mathematical boundary layer connected
to the singular perturbation. During this time interval themomentum coordinate relaxes to
equilibrium with the solvent. Beyond this small time interval, wheredp/dt′ is not very large
anymore, so that the inertial contribution can be neglected. This immediately leads to eq.(125).

The inverse of the friction tensor appearing in eq.(125) is easily calculated,

Γ−1
f =

1

γ‖
ûû +

1

γ⊥
[ Î− ûû ] . (127)
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The Langevin equation can thus be written in terms of the parallel and perpendicular compo-
nents of the random force (see eq.(115)),

dr/dt =
1

γ‖
f‖(t) +

1

γ⊥
f⊥(t) , (128)

hence,

r(t) = r(t = 0) +

∫ t

0

dt′
[

1

γ‖
f‖(t

′) +
1

γ⊥
f⊥(t′)

]

. (129)

Using that the fluctuating forces are delta correlated with fluctuation strengths given in eq.(119),
one readily finds that,

W (t) = 6 D̄ t , (130)

where,

D̄ =
1

3

(

D‖ + 2D⊥

)

. (131)

Here we introduced the Einstein translational diffusion coefficients for parallel and perpendic-
ular motion,

D‖ = kBT/γ‖ ,

D⊥ = kBT/γ⊥ . (132)

For timest ≪ τtrans, where friction with the solvent has not been effective, thevelocity of
the center of mass of a rod is constant. The mean squared displacement then varies like∼ t2.
On the Brownian time scale, that is for timest ≫ τtrans, many independent collisions of the
rod with solvent molecules have occurred. This apparently leads to a linear variation ofW (t)
with time. Such dynamic behaviour is calleddiffusive.

0.6.7 Orientational correlations

The simplest quantity that characterizes rotational Brownian motion is therotational mean
squared displacement,

Wrot(t) ≡ <| û(t) − û(t = 0) |2> = 2 [ 1− < û(t) > · û(t = 0) ] . (133)

This rotational displacement is calculated on the Browniantime scale. For the same reason as
for translational motion, the inertial term for the rotational langevin equation of motion can
be neglected on the Brownian time scale. The third of the equations of motion in (90) thus
reduces to,

Ω = û× dû

dt
=

1

γr
T(t) . (134)

where eqs.(88,94) have been used. As a first step to obtain an expression for the rotational
mean squared displacement (133), the differential equation (134) should be solved for̂u(t) in
terms of the fluctuating torqueT. To this end, eq.(134) is rewritten as,

dû/dt =
1

γr
T(t) × û . (135)
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Figure 10: Integration of the correlation function of the torque over half the domain of its argument.

To integrate this equation, the right-hand side is written as a tensor multiplication,

dû/dt = A(t) · û , (136)

with,

A(t) ≡ 1

γr





0 −T3(t) T2(t)
T3(t) 0 −T1(t)
−T2(t) T1(t) 0



 , (137)

whereTj is the jth component ofT. The differential equation (136) is equivalent to the
integral equation,

û(t) = û(0) +

∫ t

0

dt′ A(t′) · û(t′) , (138)

which is solved by iteration,

û(t) = û(0) +

∞
∑

n=1

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 · · ·
∫ tn−2

0

dtn−1

∫ tn−1

0

dtn

A(t1) ·A(t2) · · · · · A(tn) · û(0) . (139)

For the calculation of the ensemble average ofû(t), the ensemble averages of the multiple
integrals over products ofA’s must be evaluated explicitly. From the definition of the tensor
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Figure 11: (a) Rotational diffusion visualized as diffusion of a pointon the unit sphere. (b) For small
time this is equivalent to diffusion of a point on a two-dimensional surface.

A it follows immediately that,

A(t) · û(0) =
1

γr
T(t) × û(0) , (140)

A2(t) · û(0) =
1

γ2
r

T(t) × (T(t) × û(0))

=
1

γ2
r

[

−T 2(t)Î + T(t)T(t)
]

· û(0) . (141)

Since the ensemble average of the random torque, and hence ofA, is zero, and its correla-
tion function is delta correlated in time, the first two termsin the ensemble averaged iterated
solution are found from eqs.(123,137),

∫ t

0

dt1 < A(t1) > · û(0) = 0 , (142)

∫ t

0

dt1

∫ t1

0

dt2 < A(t1) ·A(t2) > · û(0) = − 2
kBT

γr
t û(0) . (143)

Here we used that,
∫ t1

0

dt2 δ(t1 − t2) =
1

2
.

Sincet1 is not in the interior of the integration range here, this integral isnotequal to1. That
its value is equal to12 can be seen as follows. On the smallest time scale, the correlation
function< T(t1)T(t2) > of the random torque, and hence ofA, is a symmetric function
of the differencet1 − t2. The integral with respect tot2 in eq.(139) ranges over half of the
symmetric correlation function (see fig.10), and is thus equal to 1

2× the integral ranging over
the entire range of the argument. To evaluate the ensemble averages over higher order products
of A in the iterated solution (139), we use that, on the Brownian time scale,T and hence also
A is a Gaussian variable. On the Brownian time scale,T is an average over many independent
realizations, so that, according to the central limit theorem, it is a Gaussian variable. All the
ensemble averages of products of an odd number ofA’s are thus zero. The ensemble averages
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of products of an even number ofA’s can be written as a sum of products of averages of only
two A’s. Consider for example the ensemble average of then = 4 term in the iterated solution
(summation over the repeated indicesp, q, r, s is understood here,Aij is theijth component
of A andûs(0) is thesth component of̂u(0)),

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 < Aip(t1)Apq(t2)Aqr(t3)Ars(t4) > ûs(0) =

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 [ < Aip(t1)Apq(t2) >< Aqr(t3)Ars(t4) > ûs(0)

+ < Aip(t1)Aqr(t3) >< Apq(t2)Ars(t4) > ûs(0)

+ < Aip(t1)Ars(t4) >< Apq(t2)Aqr(t3) > ûs(0) ] .

For the respective products of ensemble averages in the above equation we need to evaluate
the following integrations over delta distributions,

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 δ(t1 − t2) δ(t3 − t4) ,

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 δ(t1 − t3) δ(t2 − t4) ,

and,
∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 δ(t1 − t4) δ(t2 − t3) .

The first of these four-fold integrals is equal to,
∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 δ(t1 − t2) δ(t3 − t4) =

(

1

2

)2
1

2
t2 ,

where the factor(1/2)2 originates from integration of delta functions ranging over half the
domain of their arguments, as explained above. By inspection, the other two four-fold integrals
turn out to be zero, because the arguments of the delta functions are non-zero in the entire
integration range. Only products with the consecutive timeorderingt1 → t2 → t3 → · · · →
tn contribute. Using the expression (123) for the rotational fluctuation strength, we thus arrive
at the following result,

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 < A(t1) · A(t2) · A(t3) ·A(t4) > · û(0)

=

(

− 4

βγr

)2 (

1

2

)2
1

2
t2 û(0) .

In the next higher order terms in the ensemble average of the iterative solution (139), the
product with the consecutive time ordering is likewise the only surviving one. Along similar
lines one shows that, for evenn’s,

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn < A(t1) · · · · · A(tn) >=

(

− 4

βγr

)n/2 (

1

2

)n/2
1
n
2 !

tn/2 Î .
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The iterative solution is thus,

< û(t) > =

[

∞
∑

n=0

1

n!
(−2Dr)

n tn

]

û(0) = exp{−2Drt} û(0) , (144)

where therotational diffusion coefficientDr is defined by the Einstein relation,

Dr = kBT/γr . (145)

Therotational mean squared displacementis thus equal to,

Wrot(t) = 2 [ 1 − exp{−2Drt} ] . (146)

For small times this result is quite similar to eq.(130) for the mean squared displacement of
the center of mass of a rod,

Wrot(t) = <| û(t) − û(t = 0) |2> = 4 Dr t , Dr t ≪ 1 . (147)

This corresponds to diffusion of a point in two dimensions. Rotational Brownian motion may
be visualized as a point on the unit spherical surface, representing the tip of the unit vector
û, which exerts Brownian motion (see fig.11a). For small timesthis is Brownian motion on a
two dimensional flat surface (see fig.11b). For larger times the tip experiences the curvature
of the unit spherical surface, leading to the more complex behaviour as described by eq.(146).

0.7 Equations of Motion for Interacting Rods

So far, we have considered rods which do not interact with other rods. For systems of in-
teracting rods, properties are most easily studied by meansof probability density functions
(pdf’s) of positions and orientations. In this section we shall derive the fundamental equation
of motion for the probability density function of the positions and orientations of an assembly
of N interacting rods. This equation of motion is commonly referred to asthe Smoluchowski
equation. An essential ingredient in the derivation of this equationof motion is the neglect
of inertia on the Brownian time scale, as discussed before. The Smoluchowski equation also
describes the dynamics of non-interacting rods, and is shown to reproduce results obtained in
previous sections. In addition, the behaviour of non-interacting rods in shear flow is discussed
at the end of this section.

0.7.1 The N-particle Smoluchowski equation

Consider a single cylindrically symmetric, rigid rod embedded in solvent. The position coor-
dinate of the rod will be denoted byr, while its orientation is characterized by the unit vector
û which is directed along the long axis of the rod. The “microstate” of the rod is thus set by
a point inℜ3 (the position vectorr) and a point on the unit spherical surface (the tip of the
vectorû), as depicted in fig.12. The points inℜ3 and on the unit spherical surface exhibit
chaotic motion due to translational- and rotational Brownian motion, respectively. Consider
now an ensemble ofN containers, where each container is filled with solvent and contains
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Figure 12: (a) Definition of the position coordinater and the orientation̂u of a rod. (b) The “microstate”
of a single rod is set by a point inℜ3 (the position coordinate) and a point on the unit spherical surface
(the orientation).

just a single Brownian rod. The “microstate” of this ensemble (as far as the colloidal rod is
concerned) is set byN points inℜ3 (for the positions) andN points on the unit spherical
surface (for the orientations). LetW denote an arbitrary volume inℜ3, andA an arbitrary
surface area on the unit spherical surface (see fig.13). The density of points at a certain po-
sition and orientation is proportional to the probability of finding a rod in that microstate. To
find an equation of motion for that probability, we shall ask for the time rate of change of the
number of points insideW andA. The time dependent “number of points”N(t) is related to
the probability density functionP (r, û, t) for the positionr and orientation̂u, as,

N(t) =

∫

W

dr

∫

A

dû P (r, û, t) , (148)

wheredû denotes an infinitesimally small surface element on the unitspherical surface (in
spherical coordinates this surface element is equal tosin{Θ} dΘ dϕ). The time rate of change
of the number of points inW andA is thus given by,

dN(t)

dt
=

∫

W

dr

∫

A

dû
∂

∂t
P (r, û, t) . (149)

The rate of change of the number of points is related to the in-and out-flux of points through
the boundaries∂W and∂A of W andA, respectively.

Consider first the flux through∂W . Let v denote the translational velocity of the center
of mass of the rod. The only component ofv that contributes to in- or out-flux through∂W
is the component that is perpendicular toW : whenv is locally parallel to∂W , there is no
local in- nor out-flux contribution. The component ofv that is perpendicular to∂W is equal
to n̂ · v, wheren̂ is the unit normal (which is chosen to be directed outward ofW). The local
contribution to the rate of change of the number of points inW is equal to the local density
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Figure 13: The “microstate” of the ensemble is given by a point distribution in ℜ3 and on the unit
spherical surface.W andA are arbitrary subspaces inℜ3 and on the unit spherical surface, respectively.

of pointsP (r, û, t), multiplied by the perpendicular componentn̂ · v of v. The total rate
of changedNW(t)/dt of the number of points due to in- and out-flux through∂W is thus
equal to (withdS = n̂dS, wheredS is an infinitesimally small surface element on∂W ; see
fig.14a),

dNW(t)

dt
= −

∮

∂W

dS ·
∫

A

dû [v P (r, û, t) ] . (150)

The minus sign here is due to the fact that the direction ofn̂ is pointing outward ofW : when
v ∼ n̂, so that̂n·v > 0, the number points inW decreases in time. ApplyingGauss’s integral
theoremit is found that,

dNW(t)

dt
= −

∫

W

dr

∫

A

dû∇ · [vP (r, û, t) ] . (151)

Next consider the contributiondNA(t)/dt of the rate of change due to in- and out-flux
through the boundary∂A of A. This boundary is a closed curve on the unit spherical sur-
face. Sincêu is always perpendicular to the unit spherical surface, the vector that is locally
perpendicular to∂A is equal todl × û, wheredl is the infinitesimally small vector that is
locally tangential to the curve∂A (see fig.14b). The component of the velocitydû/dt that is
perpendicular to∂A is thus equal to(dl× û) ·dû/dt, which is the component that determines
the in- and out-flux. Since this is equal todl · (û×dû/dt), the total rate of changedNA(t)/dt
of the number of points inA is thus equal to,

dNA(t)

dt
= −

∫

W

dr

∮

∂A

dl ·
(

û× dû

dt

)

P (r, û, t) . (152)

Applying Stokes’s integral theorem, it is found that,

dNA(t)

dt
= −

∫

W

dr

∫

A

dû û ·
{

∇û ×
(

û × dû

dt

)

P (r, û, t)

}

, (153)
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Figure 14: Part of the boundary∂W (a) and of the boundary∂A (b). For an explanation of the symbols
in these figures, see the main text.

where∇û is the gradient operator with respect to the cartesian components of̂u. Using eq.(88)
for the angular velocity, and using thatû · ∇û × (· · · ) = (û × ∇û) · (· · · ), eq.(153) can be
rewritten as,

dNA(t)

dt
= −

∫

W

∫

A

dû (û ×∇û) · [ΩP (r, û, t) ] . (154)

Combining eqs.(151,154) we thus find that,

dN(t)

dt
=

dNA(t)

dt
+

dNW(t)

dt

= −
∫

W

dr

∫

A

dû
{

∇ · [v P (r, û, t) ] + R̂ · [ΩP (r, û, t) ]
}

, (155)

where therotation operatorR̂ is introduced for convenience as,

R̂ (· · · ) = û×∇û (· · · ) . (156)

The differentiation with respect tôu should be taken at constant length ofû. Fortunately, the
outer product witĥu eliminates the component alonĝu of ∇û. Hence, the differentiation in
eq.(156) can be done with respect to the unconstrained cartesian coordinates of̂u. Note the
similarity between the translational and rotational contributions to the rate of change : instead
of the translational velocityv, the angular velocityΩ appears in the rotational contribution,
and instead of the gradient operator∇ the rotation operator̂R appears. From eqs.(149,155) it
is now found that,

∫

W

dr

∫

A

dû

{

∂

∂t
P (r, û, t) + ∇ · [vP (r, û, t) ] + R̂ · [ΩP (r, û, t) ]

}

= 0 . (157)
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Since this holds for arbitrary volumesW and surface areasA, the integrand must be equal to
0. Hence,

∂

∂t
P (r, û, t) = −∇ · [v P (r, û, t) ] − R̂ · [ΩP (r, û, t) ] . (158)

Here, we considered a system that contained just a single rod. For a suspension that contains
N rods, instead of just{r, û}, the relevant phase space coordinates are,

{r1, r2, · · · , rN , û1, û2, · · · , ûN} ,

whererj is the position of thejth rod, andûj its orientation. The equation of motion for
the probability density functionP of these phase space coordinates is found from eq.(158) by
simply adding the in- and out-fluxes over all rods,

∂

∂t
P (r1, · · · , rN , û1, · · · , ûN , t) = −

N
∑

j=1

{

∇j · [vj P ] + R̂j · [Ωj P ]
}

. (159)

The full phase space coordinate dependence ofP is not denoted here on the right-hand side
for brevity. Here,R̂j is defined as in eq.(156), witĥu is replaced bŷuj . This is an exact
result, since it merely expresses conservation of the number of rods.

As a last step, the translational- and rotational velocities have to be expressed in terms
of functions of the phase space coordinates. In doing so, we shall neglect hydrodynamic
interactions between the rods. The reason for this neglect is two-fold. First of all, as will be
seen later, the volume fractions of interest scale asD/L (with D the thickness andL the length
of the rods). That is, the volume fraction where the isotropic-nematic phase transition occurs
scales asD/L. For the study of dynamics in the isotropic phase and the isotropic-nematic
phase transition, volume fractions are thus very low. This implies that on average two arbitrary
surface elements of distinct rods are very far apart. Therefore, hydrodynamic interactions are
probably much less important than for suspensions of spherical particles. Secondly, the precise
form of hydrodynamic interaction functions for rods is unknown, even on the two-body level.

The key relation to express the velocities in terms of phase functions is the force balance
equation. As has been seen before, translational and angular momentum coordinates are re-
laxed to equilibrium with the heat bath of solvent moleculeson the Brownian time scale, so
that the total force (and torque) on each Brownian particle is zero. There are three non-inertial
forces (and torques) working on each rod : the hydrodynamic forceFh

j (torqueTh
j ) that the

solvent exerts on the rod, the direct interaction forceFI
j (torqueTI

j ) and the Brownian force
FBr

j (torqueTBr
j ), which will be discussed and specified later. Hence,

Total force = 0 = Fh
j + FI

j + FBr
j ,

Total torque = 0 = Th
j + TI

j + TBr
j . (160)

The direct force is minus the gradient of the total potentialenergyΦ of the assembly of Brow-
nian particles,

FI
j = −∇j Φ(r1, · · · , rN , û1, · · · , ûN ) , (161)

while the direct torque is related toΦ as,

TI
j = −R̂jΦ . (162)



0.7 Equations of Motion for Interacting Rods 51

With the neglect of hydrodynamic interactions, the hydrodynamic torque and force are just
the friction forces of a single rod with the solvent. This friction force is equal to (see eq.(44)),

Fh
j =

(

γ‖ûû + γ⊥

[

Î− ûû
])

· (vc − G · rc) . (163)

The torque due to friction with the solvent is equal to (see eq.(48)),

T h
j = −γr [Ωj − ûj × G · ûj ] . (164)

As discussed before, in case of simple shear flow, the second term in the square brackets is
0 when the rod’s orientation is along the flow direction. To correctly describe Jeffery orbits
of non-Brownian rods we therefore had to add the small torquethat acts on rods with such an
orientation (see eq.(55)). For Brownian rods this small torque is irrelevant, since rods oriented
parallel to the flow direction will attain other orientations due to Brownian motion before the
mentioned small torque became active.

The translational velocity can be found from eqs.(160,163)as,

vj =
(

D‖ûjûj + D⊥

[

Î − ûjûj

])

·
{

−β∇jΦ + βFBr
j

}

+ γ̇ Ĝ · rj , (165)

while the rotational velocity is found from eqs.(160,164) as,

Ωj = Dr

{

−βR̂jΦ + βTBr
j

}

+ γ̇ ûj ×
(

Ĝ · ûj

)

. (166)

Here,Ĝ = G/γ̇ is the “normalized” velocity gradient tensor,

D‖ = kBT/γ‖ , D⊥ = kBT/γ⊥ . (167)

are the translational diffusion coefficients for motion parallel and perpendicular to the rods
long axis, respectively, and,

Dr = kBT/γr , (168)

is the rotational diffusion coefficient. These diffusion coefficients depend on the lengthL and
thicknessD of the rod, and the shear viscosityη0 of the solvent (see eqs.(40,42,49)),

Dr =
3kBT ln{L/D}

π η0 L3

D‖ =
kBT ln{L/D}

2π η0 L
, (169)

D⊥ = 1
2
D‖ .

Note that due to the last two equations here, eq.(165) can be rewritten as,

vj = 3
4
D̄

[

Î + ûjûj

]

·
{

−β∇jΦ + βFBr
j

}

+ γ̇ Ĝ · rj , (170)

wherethe translational diffusion coefficient̄D is equal to,

D̄ = 1
3

[

D‖ + 2D⊥

]

= 4
3
D⊥ = 2

3
D‖ =

kBT ln{L/D}
3π η0 L

. (171)

The reason for referring toDr andD̄ as “diffusion coefficients” will become clear in the fol-
lowing section, where diffusion of non-interacting rods isconsidered. The above expressions
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for diffusion coefficients are valid for very long and thin rods. For shorter rods, corrections to
these limiting expressions are given by de la Torre and Bloomfield (1981).

We still have to express the Brownian contributions to the total force and torque in terms of
phase functions. This is achieved as follows. In the absenceof flow, for infinite timet → ∞,
when the suspension attains equilibrium, the probability density functionP is proportional
to the Boltzmann exponentialexp{−β Φ}, and∂P/∂t = 0. From the long-time limit of
eq.(159), together with eqs.(166,170) in the absence of shear flow, it follows that,

FBr
j = −kBT∇j ln{P} ,

TBr
j = −kBT R̂j ln{P} . (172)

These Brownian contributions to the total force and torque are the result of the fact that the
force balance equations (160) are only valid on the diffusive time scale. On such a coars-
ened time scale, not only the purely microscopic forcesFh

j andFI
j (and the corresponding

torques) act on the colloidal particles. The additional Brownian force (and torque) arises from
interactions of the colloidal particle with the solvent molecules, averaged with respect to the
equilibrium probability density function for the phase space coordinates of the fluid molecules
in the external field imposed by the colloidal particles withprescribed positions and orienta-
tions. Even in a very dilute system of colloidal particles (an “ideal gas”), where interactions
between the colloidal particles can be neglected, the equilibrium state is one where the macro-
scopic density is constant, independent of position. The forces that drive such an ideal gas to
the homogeneous state are the Brownian forces.

In this way the following equation of motion for the probability density functionP of the
phase space coordinates{r1, · · · , rN , û1, · · · , ûN} is obtained,

∂P

∂t
=

N
∑

j=1

{

3
4
D̄∇j ·

(

Î + ûjûj

)

· [∇jP + β P∇jΦ] − γ̇ ∇j ·
[

P Ĝ · rj

]

+ DrR̂j ·
[

R̂jP + β P R̂jΦ
]

− γ̇ R̂j ·
[

P ûj ×
(

Ĝ · ûj

)]}

. (173)

This is theSmoluchowski equationfor very long and thin, rigid rods, where hydrodynamic
interactions are neglected.

An alternative, perhaps more satisfying derivation of the Smoluchowski equation, is to
start from the Liouville equation for a binary mixture : the solvent molecules and the colloidal
particles. The Smoluchowski equation is then found after integrating over the fast phase space
variables (the phase space coordinates of the solvent molecules and the momentum coordi-
nates of the colloidal particles). Such an approach has beentaken, for spherical colloids, by
Deutch and Oppenheim (1971) and Murphy and Aquirre (1972). The Smoluchowski equation
for spherical particles has been used as a starting point to derive the Smoluchowski equation
for rods by Erpenbeck and Kirkwood (1963).

0.7.2 Translational and rotational diffusion of non-interacting
rods without shear flow

Consider the mean squared center of mass displacement of a freely diffusing rod. Its position
at timet = 0 will be chosen at the origin :r(t = 0) = 0. Free diffusion occurs in suspensions
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where the concentration of colloidal particles is so small,that on average, rods do not notice
each other. In that case, the interaction potential in the Smoluchowski equation (173) may be
neglected (Φ = 0), andN can be taken equal to1, resulting in,

∂

∂t
P (r, û, t) = 3

4
D̄∇ ·

[

Î + ûû
]

· ∇P + DrR̂
2
P , (174)

whereR̂2
= R̂ · R̂. For the highly diluted systems under consideration each orientation

has equal probability,P (r, û, t) is independent of̂u, and is simply proportional toP (r, t).
Equation 174 thus reduces to,

∂

∂t
P (r, t) = 3

4
D̄∇ ·

[

Î + ûû
]

· ∇P (r, t) . (175)

Integration of both sides with respect toû, using that,1
∮

dû
[

Î + ûû
]

= 4
3
Î ,

thus leads to,

∂

∂t
P (r, t) = D̄∇2P (r, t) . (176)

The equation of motion for the dyadic product< r(t)r(t) > is obtained by multiplying both
sides withr r and integrating,

d

dt

∫

dr r r P (r, t) ≡ d

dt
< r(t)r(t) > = D̄

∫

dr rr∇2P (r, t)

= D̄

∫

drP (r, t)∇2rr = 2D̄ Î ,

where Gauss’s integral theorem has been used twice in the second line. Since<r(t = 0)r(t =
0)>= 0, time-integration immediately leads to,

< r(t)r(t) > = 2D̄t Î ,

and hence,

W (t) ≡ < r2(t) > = 6D̄t , (177)

in accordance with the result (130) as obtained from the Langevin equation. Note that on
taking the Trace of the dyadic product, each spatial dimension (3 in this case) gives rise to a
factor 2 on the right-hand side in the mean squared displacement in eq.(177). Diffusion in two
dimensions gives a prefactor of4 instead of6, in accordance with the result in eq.(147) for
short-time rotational diffusion.

Let us now consider the time dependence of the orientation< û(t) >, given thatû(t =
0) = û(0). For a homogeneous system,P (r, û, t) is independent ofr, so that eq.(174) reduces
to,

∂

∂t
P (û, t) = Dr R̂

2
P (û, t) . (178)

1 The integral
H

dû (· · · ) stands for integration over the unit spherical surface. In terms of the angular spherical

coordinatesΘ andϕ of û this integral is
R π
0 dΘ

R 2π
0 dϕ sin{Θ} (· · · ).
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Multiplying both sides witĥu and integrating over the unit spherical surface gives,

d

dt
< û(t) > = Dr

∮

dû û R̂2 P (û, t) .

From Stokes’s integral theorem it follows that for any two (well behaved) functionsf andg
of û,

∮

dû f(û)R̂g(û) = −
∮

dû g(û)R̂f(û) . (179)

Applying this result twice leads to,
∮

dû ûR̂2 P (û, t) =

∮

dûP (û, t)R̂2 û = −2 < û(t) > ,

where it is used that̂R2û = −2û. The equation of motion we were after thus reads,

d

dt
< û(t) > = −2Dr < û(t) > ,

the solution of which is,

< û(t) > = exp{−2Drt} û(0) . (180)

in accordance with eqs.(133,146) as obtained from the Langevin equation. As discussed in the
section on the Langevin-equation approach, for small timeswhereDrt ≪ 1, this result can
be interpreted as translational diffusion of the tip ofû on a two-dimensional surface.

0.8 The Orientational Order Parameter

At higher concentrations, where interactions between rodsare important, a transition from an
isotropic distribution of orientations to an orientationally ordered nematic state can occur (as
will be discussed in more detail later). Orientational order is also induced by shear flow in
otherwise isotropic suspensions. For such ordered states the degree of orientational order
varies, depending on the concentration of rods and the shearrate. In the present section
the so-calledorientational order parameterwill be defined, which measures the degree of
orientational order.

û

Q

n̂

Figure 15: Definition of the angleΘ between the orientation̂u of a rod and the director̂n.
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The preferred orientation̂n of the rods is referred to asthe director. The most simple
measure for the degree of orientation that comes to mind is<cos{Θ}>=< û > ·n̂, whereΘ
is the angle of the orientation̂u of a given rod and the director̂n (see fig.15). However, due to
symmetry, an orientation̂u is equally likely to occur as the orientation−û, so that< û >= 0.
The next most simple measure would then be< cos2{Θ} >=< ûû >: n̂n̂. 2. Hence, the
most simple quantity that characterizes the orientationalstate is the so-calledorientational
order parameter tensor,

S ≡ < û û > ≡
∮

dû û û P (û) , (181)

where the integration ranges over the unit spherical surface (see 1). Furthermore,P (û) is
the probability density function (pdf) for the orientationû of a rod, which can in principle be
obtained from the solution of theN -particle Smoluchowski equation (173), noting that,

P (û) =

∫

dr1 · · ·
∫

drN

∮

dû2 · · ·
∮

dûN P (r1, · · · , rN , û, û2, · · · , ûN ) . (182)

The pdf ofû can be time dependent, in which case orientational dynamicscan be studied.
What information can be distilled from a specifiedS ? To answer this question, letê be a

unit vector, and letϕ denote the angle between the orientationû of a given rod and̂e. Consider
the function,

f ≡ < cos2{ϕ} > = S : êê =
∑

m,n

Smn êm ên , (183)

whereSnm is thenmth component ofS, andên thenth component of̂e. Since the maximum
value ofcos2{ϕ} is attained whenϕ = 0, and the most likely direction of̂u is along the
director, it is evident that the unit vectorê that maximizesf is the director. Maximization of
f has to be performed under the constraint thatê is a unit vector, that iŝe · ê = 1. According
to Lagrange’s principle, we therefore have to maximize the function,

f∗ = f − λ ê · ê =
∑

mn

{Smn − λ δmn} êm ên , (184)

whereλ is the Lagrange multiplier, andδnm is the Kronecker delta (δmn = 0 whenm 6= n
andδmn = 1 whenm = n). From∂f/∂êm = 0 it is easily found that,

S · ê = λ ê , maximizes or minimizesf∗ . (185)

By taking the inner product on both sides it follows that,

λ = S : êê , whenê maximizes or minimizesf∗ . (186)

We thus find that,

The eigenvector ofS with the largest eigenvalue is the directorn̂ and the largest eigen-
value is equal to<cos{Θ}2 >= S : n̂n̂.

2 The contraction symbol “: ” stands for summation over two adjacent indices, that is, for two tensorsA andB,
by definition,A : B =

P

n,m AnmBmn
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n̂

ˆ 'n

Figure 16: For a bi-axial nematic, the projections of the rods onto the plane perpendicular to the director
n̂ have a preferred orientation̂n′ as well. For a uni-axial nematic, the order in this plane is isotropic.

According to eqs.(183,186), the largest eigenvalue ofS characterizes the degree of align-
ment, and is referred to asthe scalar orientational order parameter. Note that the largest
eigenvalue ofS is equal1/3 in the isotropic state (since thenS = 1

3
Î), and equal to1 for

a perfectly aligned state (since thenS = n̂n̂). A commonly used equivalent measure is the
so-calledP2-order parameter, which is defined as,

P2 ≡< P2(cos{Θ}) > = 1
2

{

3 <cos2{Θ}> −1
}

= 1
2
{3λ − 1} , (187)

whereP2(x) is the second order Legendre polynomial. The reason for introducing this
“rescaled” scalar order parameterP2 is that it is0 for an isotropic state and equal to1 for
a perfectly aligned state.

When for a particular nematic suspension the remaining two smaller eigenvalues are equal,
the nematic is referred to as “uni-axial”Uni-axial nematic. When they are unequal, the ne-
matic is referred to as “bi-axial”Bi-axial nematic. For a uni-axial nematic, the projections
of the rods onto the plane perpendicular to the director are isotropically distributed, while
for a bi-axial nematic the orientations of the rods in this projection have a second preferred
directionn̂′ (see fig.16).

Bi-axiality of nematic ordering is found, for example, whena suspension of rigid rods is
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subjected to simple shear flow. A nematic state of cylindrically shaped rods, in the absence of
an external field, is expected to be uni-axial.

The procedure to find the order parameter is to calculate the tensorS and determine its
eigenvalues. The largest eigenvalue measures the degree oforientational order and the corre-
sponding eigenvector gives the preferred direction of alignment. We shall derive an equation
of motion forS from the Smoluchowski equation later in this chapter.

0.9 Non-interacting Brownian Rods in Shear Flow

In the present section we shall discuss probability densityfunctions (pdf’s) and orientational
order parameter matrices for a single Brownian rod subjected to flow. On applying a stationary
flow, the orientational pdf of a single rod attains a stationary form. This stationary, time
independent pdf is determined by the interplay of the aligning effect of the flow and isotropy-
restoring rotational diffusion.

The stationary form of the Smoluchowski equation (173) for asingle rod reads,

0 = R̂2
P (û) − Per R̂ ·

[

P (û) û×
(

Ĝ · û
) ]

, (188)

where the dimensionless parameterPer is commonly referred to as therotational Peclet num-
ber, which is defined as,

Per =
γ̇

Dr
. (189)

This Peclet number is a measure for the effect of the shear flowrelative to isotropy-restoring
rotational diffusion. For small Peclet numbers, rotational diffusion is relatively fast, so that
the pdf is only slightly anisotropic.

As explained below eq.(156), the differentiation inR̂ is with respect to the cartesian coor-
dinates of̂u, without the constraint that̂u is unit vector.

The stationary equation of motion can be solved in closed analytical form when the ve-
locity gradient tensorG is symmetric (as for elongational flow). This solution is discussed in
the next subsection. When the velocity gradient tensor is not symmetric (as for simple shear
flow), the solution cannot be obtained in a simple closed analytical form, but must be obtained
by numerical methods. However, expansion of the orientational pdf for small Peclet numbers
is feasible.

0.9.1 Elongational flow

For pure straining motion, the velocity gradient tensorĜ is equal to the symmetric tensorÊ

in eq.(2). A symmetric velocity gradient tensor admits a solution of the simpler equation,

0 = R̂P (û) − Per

[

P (û) û ×
(

Ê · û
) ]

, (190)

where one of thêR-operators in eq.(188) is removed. Division byP (û) thus yields,

0 = R̂ ln{P (û)} − Per û×
(

Ê · û
)

. (191)
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From one of the relations in appendix B, it follows immediately that the solution is given by,

P (û) =
1

C(Per)
exp

{

1

2
Per (û · Ê · û)

}

, (192)

whereC is thePer-dependent normalization constant,

C(Per) =

∮

dû exp

{

1

2
Per (û · Ê · û)

}

(193)

=

∫ 2π

0

dϕ

∫ π

0

dΘ sin{Θ} exp
{

Per sin2{Θ} sin{ϕ} cos{ϕ}
}

.

This normalization constant may be determined, as a function of Per by numerical integra-
tion. Alternatively,C(Per) may be expanded for smallPer in a power series inPer, or
its asymptotic form for largePer may be calculated. Taylor expansion of the exponential in
eq.(193) with respect toPer readily gives,

C(Per) = 4π +
2π

15
Pe2

r +
π

630
Pe4

r + O
(

Pe6
r

)

. (194)

For large (positive) Peclet numbers, asymptotic forms forC(Per) can be obtained by a saddle
point analysis, which we shall not discuss here. For intermediate values ofPer, the integral
in eq.(193) forC(Per) must be evaluated numerically.

The orientational order parameter tensor can be calculatedfrom the above given forms
for the pdfP (û) and eq.(181), and from that the scalar orientational order parameterP2 as
defined in eq.(187) and the angleχ between the director and the flow direction. These are
plotted as functions ofPer in fig.17. Solid lines are obtained from numerical integration of
eq.(193), while the dotted lines correspond to the limitinganalytical results in eq.(194) for
small Peclet numbers (including the corresponding expansion of the exponential in eq.(192)
for the pdf). For elongational flow,χ is always equal to450, which is obvious from the flow
field as sketched in fig.1 : rods will orient along the extensional axis.

0.9.2 Simple shear flow

In case of pure shearing motion, the velocity gradient tensor Ĝ is equal to the tensor̂Γ in
eq.(1). For such a non-symmetric velocity gradient tensor the above method of solution cannot
be copied, since the corresponding eq.(190) has no solutions for a non-symmetric tensorG.

For small rotational Peclet numbers the deviation of the pdffrom isotropy is small, so that
the solution of the stationary equation of motion (188) can be expanded as,

P (û) =
1

4π
+ Per P1(û) + Pe2

r P2(û) + · · · . (195)

Substitution of this expansion into eq.(188) and equating coefficients of equal powers ofPer,
one readily finds the following recursive set of differential equations for the as yet unknown
functionsPj ,

R̂2
Pj(û) = R̂ ·

[

Pj−1(û) û×
(

Γ̂ · û
) ]

, j ≥ 1 , (196)
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Figure 17: (a) The scalar orientational order parameterP2 = 1
2
{3λ − 1}, with λ the largest eigenvalue

of S (see eq.(187)) as a function of the rotational Peclet numberPer = γ̇/Dr for elongational flow and
simple shear flow. Solid lines are numerical results, dottedlines correspond to the limiting analytical
solutions (194) and (202) for elongational and simple shear, respectively, and data points are computer
simulation results by Winkler et al. (2004a,b). (b) The angle χ between the director and the flow
direction. The dotted line is the angle that follows from thelimiting form (202) of the pdf for simple
shear flow.
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whereP0(û) = 1/4π is the isotropic pdf without shear flow. Normalization requires that,
∮

dûPj(û) = 0 , j ≥ 1 . (197)

Let us consider the first two corrections from isotropy in theexpansion (195).
For j = 1, using thatP0(û) = 1/4π, eq.(196) reads,

R̂2
P1(û) =

1

4π
R̂ ·

[

û ×
(

Γ̂ · û
) ]

= − 3

4π
(û · Ê · û) , (198)

whereÊ is the symmetric part of the gradient velocity tensorΓ̂, that is,Ê = 1
2 (Γ̂+ Γ̂T ). The

above equation follows from the relations given in appendixB 3. Using these relations once
more immediately leads to,

P1(û) =
1

8π
(û · Ê · û) =

1

8π
sin2{Θ} sin{ϕ} cos{ϕ} . (199)

Substitution of this solution forP1 into eq.(196) forj = 2 yields gives,

R̂2
P2(û) =

1

8π
R̂ ·

[

(û · Ê · û)(û × Γ̂ · û)
]

=
1

8π

[

û2
2 − 5(û · Ê · û)2

]

. (200)

From the relations in appendix B one readily verifies that,R̂2
(û · Ê · û)2 = 2û2

1 + 2û2
2 −

20(û · Ê · û)2. The third equation in the appendix now shows that the solution to eq.(200) is
given by,

P2(û) =
1

32π

[

(û · Ê · û)2 +
1

3
(û2

1 − û2
2) −

1

15

]

=
1

32π

[

sin4{Θ} sin2{ϕ} cos2{ϕ} +
1

3
sin2{Θ}(cos2{ϕ} − sin2{ϕ}) − 1

15

]

. (201)

The constant1/15 between the square brackets has been subtracted in order that P2 satisfies
the normalization constraint (197).

Collecting results, we thus obtain the following small Peclet number expansion (valid up
toO(Pe3

r)),

P (û) =
1

4π
+ Per

1

8π
(û · Ê · û) + Pe2

r

1

32π

[

(û · Ê · û)2 +
1

3
(û2

1 − û2
2) −

1

15

]

. (202)

The corresponding scalar orientational order parameterP2 and the angleχ between the direc-
tor and the flow direction are plotted in fig.17, together withthe numerical solution of eq.(188).
The dotted lines in fig.17 correspond to asymptotic solutions for small Peclet numbers. The
solid lines correspond to numerical solutions of eqs.(188), while the data points are simula-
tion results by Winkler et al. (2004) and Winkler and Gompper(2004). In these simulations,
the aspect ratio of the rods isL/D = 15, and there is a finite flexibility (the average end-to-
end distance is98% of the contour length). This may be the reason for the small deviations
at higher Peclet numbers. For short rods the order parameteris expected to be smaller than
for long rods. In fig.17a, however, the simulation results for the order parameter are slightly

3Notice that in the combination̂u · M · û, one can replace the tensorM by its symmetric part1
2
(M + M

T ),
sinceû ·

`

M − M
T

´

· û = 0.
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above those corresponding to the numerical solution of the Smoluchowski equation. This is
an indication for a sensitive dependence of orientational order induced by shear flow on the
flexibility of rods.

Contrary to elongational flow, rods subjected to simple shear flow will rotate in the velocity-
gradient plane. The orientational order parameter for elongational flow is therefore large as
compared to simple shear flow. For small Peclet numbers, rodsin simple shear flow spend
most of their time during rotation in a direction whereχ = 450. This is the result of an inter-
play between the Brownian torque on the rod and the torque that the fluid exerts on the rod.
A preferred alignment along the flow direction implies a strongly peaked orientational pdf. In
that case the Brownian torque, being equal to−kBT R̂ ln{P (û)}, would be very large. The
Brownian torque thus tends to diminish the strongly peaked pdf in the flow direction. This
competition leads, according to the above analysis, to a preferred alignment along the exten-
sional axis of the shear flow at very small shear rates. For larger Peclet numbers, where the
torque that the fluids exerts on the rod is dominant, the angleχ tends to0, that is, rods are on
average aligned along the flow direction.

0.10 The Doi-Edwards Equation of Motion and the
Maier-Saupe Potential

In this section we shall derive an equation of motion for the orientational order parameter
tensorS for homogeneous systems of long and thin rods with short-ranged repulsive interac-
tions subjected to shear flow. This equation of motion is known as the Doi-Edwards equation
(see Doi and Edwards (1986)), which is derived here from the Smoluchowski equation (173).
In such a microscopic derivation, the assumptions under which the Doi-Edwards equation
holds will become clear. For the very long and thin rods underconsideration here, the sta-
tionary equation of motion for the pdfP (û) for the orientation̂u of a rod, as obtained from
the Smoluchowski equation, complies with Onsager’s free energy functional (Onsager (1933),
Onsager (1942), Onsager (1949)). Expanding the interaction term in the equation of motion
with respect to the orientational order parameter leads in anatural way to the Maier-Saupe
potential (Maier and Saupe (1958), Maier and Saupe (1959), Maier and Saupe (1960)).

0.10.1 The equation of motion forP (û, t)

Let us first derive the equation of motion forP (û, t). According to eqs.(182) (whereP is
now time dependent), such an equation of motion can be obtained from the Smoluchowski
equation (173) by integration with respect tor1, · · · , rN , û2, · · · , ûN .

Analytical progress can be made by assuming a pair-wise additive total potential, that is,

Φ(r1, · · · , rN , û1, · · · , ûN ) =
∑

i<j

V (ri − rj , ûi, ûj) , (203)

with V the pair-interaction potential. This is exact for rods withhard-core interactions (or
rods with very short-ranged repulsive interactions) that we shall consider. According to the
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integral theorems of Gauss and Stokes, we have, respectively,
∫

drj ∇j · (· · · ) = 0 , and ,

∮

dûj R̂j · (· · · ) = 0 . (204)

Using the above relations, integration of both sides of the Smoluchowski equation (173) with
respect tor1, · · · , rN andû2, · · · , ûN , leads to (witĥu = û1),

∂

∂t
P (û, t) = DrR̂ ·

{

R̂P (û, t) − β P (û, t) T̄(û, t)
}

− R̂ · {P (û, t) û × (Γ · û)} .(205)

The torqueT̄ is defined as (withR = r1 − r2 andû
′ = û2),

T̄(û, t) = −ρ̄

∫

dR

∮

dû′ P (û′, t) g(R, û, û′, t)R̂V (R, û, û′) , (206)

whereρ̄ = N/V is the number density of rods, and where the pair-correlation functiong is
defined as (withr = r1 andr′ = r2),

P (r, r′, û, û′, t) ≡
∫

dr3 · · ·
∫

drN

∮

dû3 · · ·
∮

dûNP (r, r′, r3, · · · , rN , û, û′, û3, · · · , ûN , t)

≡ 1

V 2
P (û, t)P (û′, t) g(r, r′, û, û′, t) , (207)

with P (r, r′, û, û′, t) the pdf for the positions and orientations of two rods. Sincethe product
1
V

P (û′, t)g(r, r′, û, û′) is the conditional pdf for the positionr′ and orientation̂u′ of a rod,
given the orientation̂u and positionr of the other rod, the torque in eq.(206) is the torque on a
rod, with prescribed orientation̂u and positionr, averaged over the orientations and positions
of the other rods. In fact, eq.(205) is nothing but the one-particle Smoluchowski equation with
the addition of an “external torque”̄T.

A closed equation of motion forP (û, t) is obtained wheng is known. For equilibrium
suspensions of very long and thin, rigid and repulsive rods,similar arguments as used by
Onsager (1933) lead to (see subsection 10.3 for details),

g(r− r′, û, û′, t) = exp{−β V (r − r′, û, û′)} , (208)

whereV is the pair-interaction potential. This expression is valid in the isotropic and nematic
states (provided the degree of alignment is not too high). That eq.(208) is a good approxi-
mation for suspensions of very long and thin rods in equilibrium even at high concentrations
is shown in subsection 10.3. What is neglected in using eq.(208) are dynamic contributions
to correlations and the influence of shear flow. So far, nothing is known about dynamic cor-
relations, and we shall assume here that these contributions can be neglected. Furthermore,
the effect of shear flow is to align rods, that is, shear flow strongly affects the singlet pdf
P (û, t). Correlations between centers-of-mass of the very long andthin rods, measured by
the pair-correlation functiong, are much less affected by flow.

In case of hard-core interactions we have the identity,

exp
{

−βV (r−r′, û, û′)
}

R̂V (r−r′, û, û′) = −β−1R̂
[

exp
{

−βV (r−r′, û, û′)
}

− 1
]

= β−1 R̂χ(r − r′, û, û′) , (209)

with χ the characteristic function of the excluded volume for two rods :χ = 1 when the cores
of the two rods overlap andχ = 0 otherwise. The torque (206) can now be written as,

T̄(û, t) = −R̂V eff (û, t) , (210)
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wherethe effective potentialV eff is equal to (withR = r′ − r),

V eff (û, t) = β−1ρ̄

∫

dR

∮

dû′ P (û′, t)χ(R, û, û′)

= 2DL2β−1ρ̄

∮

dû′ P (û′, t) | û× û
′ | , (211)

where in the last equation it is used that,
∫

dR χ(R, û, û′) = 2DL2 | û× û
′ | , (212)

for very long and thin rods. The effective potentialV eff is commonly referred to asthe Doi-
Edwards potential. We thus find the following closed equation of motion forP (û, t),

∂

∂t
P (û, t) = DrR̂ ·

{

R̂P (û, t) + 2DL2ρ̄ P (û, t) R̂
∮

dû′ P (û′, t) | û × û
′ |

}

−γ̇ R̂ ·
{

P (û, t) û×
(

Γ̂ · û
) }

. (213)

Note that this equation is non-linear inP (û, t).
We note here, for those who are familiar with Onsager’s work (Onsager (1933), Onsager

(1942), Onsager (1949)), that the stationary solutionP (û) of the equation of motion (213)
without shear flow satisfies,

ln{P (û)} + 2DL2ρ̄

∮

dû′ P (û′, t) | û × û
′ | = C , (214)

whereC is an integration constant. This is precisely the Euler-Lagrange equation that com-
plies with the Onsager free energy functional for very long and thin rods with excluded volume
interactions.

An important thing to notice is that the outer productû × (Γ · û) in eq.(213) can not be
written in the formR̂f , with f a scalar field. Therefore, the simple shear contribution to the
equation of motion (213) forP (û, t) can not be incorporated as a potential. Simple shear flow
is thus a non-conservative external field. Since no potential for shear flow can be defined, one
can not define a free energy. Thermodynamic considerations for systems under shear flow
are therefore questionable. It has yet to be seen how accurate thermodynamic approaches
for systems under shear flow are. To describe coexistence under shear flow conditions, one
must in principle resort to equations of motion, and time integrate these up to the stationary
state. Since sharp interfaces may exist in such stationary states, equations of motion should
accurately describe situations where strong gradients in concentration and orientational order
parameter are present.

0.10.2 The equation of motion forS(t)

Following Doi and Edwards, Doi and Edwards (1986), an equation of motion forS can be
obtained by operating on both sides of eq.(213) with

∮

dû (ûû) (· · · ) (see eq.(181), whereP
is now time dependent). The first term on the right hand-side of eq.(213) is easily found to
render,

∮

dû (û û)R̂2
P (û, t) =

∮

dûP (û, t)R̂2
(û û) = 2Î− 6S , (215)
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where in the first equation two partial integrations have been done, and in the second equation

it is used thatR̂2
(û û) = 2Î − 6û û. To make further analytical progress, we shall expand

the second term in the equation of motion (213) up to third order in the orientational order
parameter. That is, we shall expand with respect to the eigenvalues of matrices likeq =
ûû − 1

3
Î, whose eigenvalues are in between−1/3 and2/3. Such a third order Ginzburg-

Landau expansion complies with a fourth order expansion of the free energy in the absence
of flow. Since the outer product in eq.(213) for the effectivepotential can be written as (with
q′ = û

′
û
′ − 1

3
Î),

| û × û
′ |=

√

1 − ûû : û′
û
′ =

√

2
3
− q : q′ ,

we can Taylor expand up to leading order with respect toq andq′,

| û × û
′ | ≈

√

2
3

[ 1 − 3
4
q : q′ ] . (216)

Since the next higher order term in this Taylor expansion is of fourth order, this truncation
leads to a Ginzburg-Landau expansion up to third order of theequation of motion forS.
Since

√

2/3 differs by only3.8 % from the exact valueπ/4 for the isotropic average value of
| û × û

′ |, we shall replace
√

2/3 in eq.(216) byπ/4. Errors due to truncation of the Taylor
expansion in eq.(216) are probably larger. Re-substitution of the definition of theq’s in terms
of bilinear products of̂u’s then leads to,

| û × û
′ | ≈ 5π

16

[

1 − 3
5
ûû : û′

û
′ ] . (217)

The effective potential (211) within this Ginzburg-Landauexpansion can be written as,

V eff (û, t) = 5π
8

β−1DL2ρ̄ {1 − 3
5
S : ûû} , (218)

known as theMaier-Saupe potentialMaier-Saupe potential (Maier and Saupe (1958), Maier
and Saupe (1959), Maier and Saupe (1960)). Using the Ginzburg-Landau expansion (218) in
the Smoluchowksi equation (213), and operating on both sides with

∮

dû (ûû) (· · · ), leads to
the Doi-Edwards equation of motion,

d

dt
S = −6Dr

{

S− 1
3
Î− L

D
ϕ

(

S · S− S(4) : S
)}

+γ̇
{

Γ̂ · S+S · Γ̂T −2S(4) : Ê
}

, (219)

where the concentration is now expressed in terms of the volume fractionϕ = π
4
D2Lρ̄, and,

as before,̂Γ = Γ/γ̇ is the normalized velocity gradient tensor, which is introduced to make
the shear-rate dependence more explicit. Furthermore,S(4) is a fourth order polyadic tensor,
defined as,

S(4) ≡ < û û û û > . (220)

In order to obtain a closed equation of motion forS, the fourth order tensorS(4) should be
expressed in terms ofS. Such a closure relation is discussed below.

0.10.3 Density Expansion of the Pair Correlation Function

Before deriving an orientational closure relation, we willdiscuss the reason why eq.(208) is
a good approximation in equilibrium for very long and thin rods with short-ranged repulsive
interactions, even for high concentrations.
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Angle = D / L

Figure 18: The effective angular integration range corresponding to the orientation of rod3.

The first two terms in the density expansion of the equilibrium pair-correlation function
are,

g(r1 − r2, û1, û2) = exp{−β V (r1 − r2, û1, û2)} × (221)
{

1 + ρ̄

∫

dr3

∮

dû3 χ(r1 − r3, û1, û3)χ(r3 − r2, û3, û3) + · · ·
}

.

Since the characteristic functions in the integrand are only non-zero when the core of rod
number3 overlaps with both the cores of rods1 and2, the integration with respect tôu3

effectively extends over an angular range of the orderD/L (see fig.18). The integration with
respect tor3 contributes at most∼ DL2. Hence, the second term in the above expression is at
most of order(D/L)DL2 ρ̄ ∼ ϕ. Since the volume fractions of interest scale likeD/L (see
Onsager (1933), Onsager (1942), Onsager (1949) and later inthis chapter), the first order in
density contribution to the pair-correlation function is negligibly small for very long and thin
rods. Higher order terms are similarly very small.

The above arguments as far as theû3-integration is concerned only hold when the angle
betweenû1 andû2 is much larger than∼ D/L, as is clear from fig.18. Otherwise, thêu3-
integration extends over a much larger angular range than just∼ D/L. Hence, the expression



66

(208) for the pair-correlation function is valid for high concentrations, provided that the degree
of alignment is not very high. Scaling of the angular integration range withD/L does not hold
for all configurations of the three rods. A more careful analysis shows that the second term in
eq.(221) is of order(D/L) ln{L/D} instead ofD/L.

0.10.4 An Orientational Closure Relation

There are a number of orientational closure relations for the contraction in eq.(220) that can
be used in eq.(219) to obtain a closed equation of motion forS(t) (for an overview, see For-
est and Wang (2003)). Here we will derive a simple closure relation which is shown to be
reasonably accurate. It turns out that the various tumblingand wagging phenomena where
rods coherently rotate under stationary shear flow (not to beconfused with the Jeffery orbits
discussed before) can not be accurately described by most ofthe existing closure relations.
Such periodic solutions for the orientational order shouldbe analyzed on the basis of eq.(213)
without using a Ginzburg-Landau expansion for| û × û

′ |.
The fourth order average in eq.(220) occurs in the form of a double contraction,

A ≡ S(4) : M , (222)

whereM is equal toS. As pointed out by Hinch and Leal (1976), orientational order increases
monotonically with increasing shear-rate, so that interpolation between the known forms for
S(4) in the isotropic state and in the perfectly aligned state will probably lead to quite accurate
closures. The four point averageS(4) is known exactly for the two extreme cases of perfect
alignment (along the director̂n) and for the isotropic state,

< û û û û >ijkl = n̂in̂jn̂kn̂l , perfect alignment,

= 1
15

[ δijδkl + δikδjl + δikδjl ] , isotropic, (223)

with δij the Kronecker delta (δij = 1 wheni = j, andδij = 0 wheni 6= j). Furthermore, we
have the following trivial identities,

Aij ≡
∑

n,m

< ûi ûj ûn ûm > Mmn = Aji ,

∑

i

Aii =
∑

i

∑

n,m

< ûi ûi ûn ûm > Mmn =
∑

n,m

SnmMmn ≡ S : M . (224)

The latter identity is especially important in order to ensure that the trace ofS remains equal
to 1 on time integration of the equation of motion (219). Using closures which do not satisfy
(224) violate the time invariance of the trace of the order parameter. Furthermore,

A = < û û û û > : M , (225)

with,

M ≡ 1
2

[

M + MT
]

, (226)

the symmetric part ofM, where the superscript “T ” stands for “the transpose of”. This
equation implies that the closure relation must be a function of M.

Since order parameters tend to increase monotonically withshear rate, an accurate closure
relation can be found by constructing an interpolation formbetween the exact results (223)
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such that the conditions (224,225) are satisfied. Substitution of the most general form of linear
combinations of first and second order terms inS (insisting that no isotropic contributions∼ Î

contribute),

A = c1S ·M + c2M · S + c3S Î : M

+ c4S · S · M + c5S ·M · S + c6M · S · S + c7SS : M + c8MS : S ,

into eqs.(223-226) renders algebraic equations for the coefficientscj , leading to,

< û û û û > : M = 1
5

{

S·M + M·S− S·S·M− M·S·S + 2S·M·S + 3SS :M
}

. (227)

Substitution of the closure relation (227) into the equation of motion (219) finally leads to a
closed equation of motion for the orientational order parameter tensor.

The accuracy of the closure relation (227) is discussed in appendix C. Comparison of exact
numerical solutions of the Smoluchowski equation (205) fornon-interacting rods, shows that
the closure approximation (227) withM = S and withM = E are accurate to within1% and
10%, respectively. Computer simulations show that this accuracy extends to interacting rods.

0.11 Paranematic-Nematic Spinodals and the Binodal
under Shear Flow

Since shear flow tends to align rods, it will affect the location of isotropic-nematic phase
transition lines. The shear induced shift of spinodals is theoretically more easily calculated as
the shift of binodals. For the prediction of the location of binodals as a function of shear rate,
equations of motion must be time-integrated up to the stationary state where two bulk phases
coexist. These equations of motion must accurately accountfor the usually sharp interface
between both bulk phases. Equations of this sort have been derived in Dhont and Briels (2002)
and Dhont and Briels (2003) (see also the next section in thischapter as far as the stress tensor
is concerned), but remain to be analyzed. On the basis of approaches that partly rely on
thermodynamic arguments, similar equations of motion can be derived to predict the phase
behaviour of rods under shear flow Olmsted and Lu (1999), Olmsted (1999), Olmsted et al.
(2000), Lu et al. (2000) and Fielding and Olmsted (2003). These equations of motion are in
principle valid for small gradients in concentration and orientational order parameter, and are
therefore probably not able to accurately predict of the location of the binodal. Nevertheless,
the analysis of such equations of motion reveals interesting behaviour like gradient banding,
which will be discussed later in this chapter.

In the absence of flow, computer simulations where free energies are calculated can be
used to obtain binodal concentrations for arbitrary aspectratios Bolhuis and Frenkel (1997).

The experimental situation is different : here it is much more difficult to measure the
location of spinodals as compared to binodals. In the following we shall first discuss how the
shear-rate dependence of spinodals can be calculated, and an experiment is discussed where a
line in between the paranematic-nematic and nematic-paranematic spinodals is probed. As far
as the binodal is concerned, there are no theoretical (nor simulation) results available yet. We
shall discuss an experiment where the location of the binodal is measured by means of time
resolved rheology experiments.
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0.11.1 Spinodals

A spinodal point is defined as a point in the shear rate versus concentration diagram (the
so-callednon-equilibrium phase diagram), where a stable stationary solution of the equation
of motion (219) for the orientational order parameter turnsinto an unstable solution. In the
absence of shear flow, such spinodal points can also be found by means of thermodynamics.
Once a solution becomes unstable, the system will start to phase separate without any time
delay. In order to describe such spinodal decomposition kinetics, one needs to consider the
extension of the equation of motion (213) or (219) to inhomogeneous systems, where gradient
contributions stabilize the system against formation of very large gradients. In the absence
of shear flow, such equations of motion are analyzed by Doi et al. (1988), Shimada et al.
(1988) and Winters et al. (2000). For spinodal decomposition kinetics under shear flow, these
equations of motion must be supplemented by an effective Navier-Stokes equation beyond
the initial stage of demixing. Spinodal decomposition of rod-like systems will be strongly
affected by flow, since flow affects orientational order. Analyzing such coupled equations of
motion as derived by Dhont and Briels (2002), Dhont and Briels (2003) is in progress. In the
present section we shall limit the discussion to the shear induced shift of spinodals.

As far as the location of spinodals is concerned, the non-equilibrium phase diagram can
most conveniently be understood on the basis of so-calledbifurcation diagrams. A bifurcation
diagram is a plot in the orientational-order-parameter versus concentration plane, where, for
a given shear rate, the order parameter for the stationary solutions of the equation of motion
(219) is indicated. There are two possible stationary solutions : stable- and unstable solutions.
LetS0 denote a stationary solution of eq.(219), that is, the right-hand side of eq.(219) vanishes
for S = S0. LetδS be a small perturbation. The stationary solutionS0 is referred to as a stable
solution when an initial stateS0 +δS relaxes back toS0 in time, providedδS is small enough.
The stateS0 is referred to as unstable, whenδS does not relax to0, no matter how small this
perturbation is chosen. A linear stability analysis is required to decide whether a stationary
solution is either stable or unstable. Such a stability analysis for the stationary isotropic state
S0 = 1

3
Î in the absence of shear flow can be performed analytically. Using the closure relation

(227) in eq.(219) witḣγ = 0, substitution of,

S(t) = 1
3
Î + δS(t) , (228)

and linearization with respect toδS(t) readily leads to,

d

dt
δS = −6Deff

r δS (229)

where,

Deff
r = Dr { 1 − 1

5
L
D

ϕ } , (230)

is an effective rotational diffusion coefficient. The solution of eq.(229) reads,

δS(t) = exp
{

−6Deff
r t

}

δS(t = 0) . (231)

The perturbationδS thus grows exponentially in time whenDeff
r < 0, that is whenL

D
ϕ > 5.

For L
D

ϕ>5, the isotropic phase becomes unstable, and the new stable state is the nematic state
with a relatively large value forλ. On subsequently lowering the concentration, the nematic
state becomes unstable atL

D
ϕ<40/9 = 4.44 · · · , and the system returns to the isotropic state.
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Figure 19: (a) Bifurcation diagrams, where only stable stationary solutionsS0 of eq.(219) (together
with the closure relation (227)) are shown. Here,λ is the largest eigenvalue ofS0 andϕ is the volume
fraction of rods. The numbers in the plot refer toPe0

r ≡ γ̇/Dr. (b) Spinodal points as found from the
bifurcation diagrams.

A stability analysis can in principle be done onceS0 is known, and hence an effective
rotational diffusion coefficient can be defined also for non-zero shear rates. For non-zero
shear rates this effective diffusion coefficient is generally a tensor rather than a scalar. An
important thing to note is that the largest eigenvalue of this diffusion tensor becomes0 at a
spinodal point. Rotational diffusion therefore becomes very slow in the neighbourhood of a
spinodal point, which is reminiscent of critical slowing down.

The isotropic-to-nematic spinodal concentrationL
D

ϕ = 5 should be compared to the exact
value4 found by Onsager (1933), or equivalently, from a linear stability analysis of eq.(213),
without performing a Ginzburg-Landau expansion on| û × û

′ |. The difference between our
result and the exact result for the location of the isotropic-to-nematic spinodal point in the
absence of shear flow is mainly due to the Ginzburg-Landau expansion (217), and to a lesser
extent to the closure relation (227) (which is accurate to within 1 % for M = S).

Note thatDeff
r is a collective diffusion coefficient since it describes thecollective relax-

ation (or growth) of an initially misaligned state, where each rod contributes to the misalign-
ment relative to the isotropic state. This diffusion coefficient is only weakly concentration
dependent because such a relaxation (or initial growth) requires very small, collective reorien-
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Figure 20: The shear-induced shift of spinodal concentrations as probed with time resolved birefrin-
gence measurements by Lenstra et al. (2001). The tilted lineis located in between the two spinodal
concentrations. The circles below indicate the binodal concentrations in the absence of shear flow.

tations of the rods. The concentration dependence of the tracer rotational diffusion coefficient
considered by Doi and Edwards (1986), on the contrary, is much more pronounced due to
“entanglements”, since now large reorientations of the rods are important. As will be shown
in section 12, the effective rotational diffusion coefficient does not depend in a linear fashion
on concentration. This is due to the neglect of dynamic correlations.

Spinodals will be shifted to lower concentrations on applying simple shear-flow, since
shear flow tends to align the rods, and therefore stabilizes the nematic state over the parane-
matic state. These spinodal points must be obtained numerically from eqs.(219,227), since
generally the stationary solutionS0 is not known analytically. In fig.19a, bifurcation diagrams
are given for various values of the bare Peclet numberPe0

r ≡ γ̇/Dr.

We note here that an otherwise isotropic stable state is aligned by shear flow. Such an
aligned state is referred to as aparanematic state. Similarly, an otherwise stable nematic state
is more strongly aligned by shear flow.

The shear-rate dependent paranematic-to-nematic spinodal (where the paranematic phase
becomes unstable on increasing the concentration) and nematic-to-paranematic spinodal (where
the nematic phase becomes unstable on lowering the concentration), as obtained from the
bifurcation diagram in fig.19a, are plotted in fig.19b. In theabsence of shear flow, as dis-
cussed above, the isotropic-to-nematic spinodal concentration is located atL

D
ϕ = 5, while the
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nematic-to-isotropic spinodal concentration is found to be equal toL
D

ϕ = 40/9 = 4.44 · · · .
For a critical rotational Peclet numberPe0

r = 0.159 · · · , the two spinodals meet in a non-
equilibrium critical point. For larger shear-rates, wherePe0

r > 0.159 · · · , there is a continuous
and reversible transition between the paranematic and nematic state : here, shear forces are so
large that rod-rod interactions are not able anymore to induce a discontinuous transition.

An important thing to note is that the concentration always enters through the combination
L
D

ϕ. For long and thin rods, the volume fractions of interest thus scale as∼ D
L
≪ 1. This is

the reason why hydrodynamic interactions become less important for very long and thin rods,
as mentioned before. The strength of direct interactions, on the contrary, is not small, since at
L
D

ϕ = O(1), these interactions are sufficiently strong to induce a phase transition.
Recent time resolved birefringence experiments by Lenstraet al. (2001) confirm a shear

induced shift of paranematic-nematic phase boundary lines(see fig.20). Here, the shear rate is
gradually changed from a high shear rate (where the one-phase state is stable) to a lower shear
rate (possibly in the two-phase region), followed by the reverse. During such a shear-rate
sweep the birefringence is probed. Due to slowing down of theorientational dynamics close
to a spinodal line, the birefringence will exhibit a hysteresis, the magnitude of which depends
on the sweep rate. Such time resolved birefringence measurements probe a line in the non-
equilibrium phase diagram that is in between the two spinodal concentrations (see Lenstra
et al. (2001)). The system that is used here consists of dispersions of fd virus, which has been
used for the first time for systematic studies on phase behaviour and phase separation kinetics
by et al. (1989), Tang and Fraden (1993), Tang and Fraden (1995) and Grelet and Fraden
(2003), including suspensions of Tobacco Mosaic Virus (seealso the chapter by Fraden and
Dogic in this book). Paranematic-nematic phase separationfor this system is slow enough to
perform a shear-rate sweep during a time interval where phase separation does not play a role
for the measured birefringence. Fd-virus is a semi-flexiblerod rather then a perfectly rigid rod,
and the potential between the rods is not a perfect hard-corepotential. The contour length of
a fd-virus particle is880 nm, while its persistence length is2200 nm. This is the reason why,
in the absence of shear flow, the experimental binodal concentrations (indicated by the two
dots in fig.20) are found not to agree quantitatively with those predicted by Onsager. As can
be seen in fig.20, the shear-induced shift of spinodals is much more pronounced as compared
to the prediction in fig.19b. The origin of this discrepancy is most probably the flexibility
of fd virus. The critical shear rate, however, is in reasonable agreement with the predicted
critical shear ratePe0

r ≈ 0.159 (the bare rotational diffusion coefficient of fd is known to be
10 − 20 s−1). So far, there is no theory dealing with the dynamics of semi-flexible Brownian
particles on the same level as the Smoluchowski approach forstiff rods outlined above.

0.11.2 The binodal

An experimental binodal of a fd-virus suspension is given infig.21. Binodal points are de-
termined from time-dependent viscosity measurements after a shear-rate quench from a high
shear rate, where the one-phase state is stable, to a lower shear rate,̇γ− say. Wheneveṙγ− is
within the paranematic-nematic two-phase region, demixing will occur after the quench into a
paranematic and a nematic phase. Developing inhomogeneities give rise to a temporal change
of the viscosity, the amplitude of which increases with the depth of the quench. The ampli-
tude of the time dependent response of the viscosity vanishes on the binodal. A point on the
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Figure 21: The paranematic-nematic binodal of a fd-virus suspensions, where dextran is added to in-
duced attractions between the rods, leading to faster phaseseparation. Here,ϕnem is the fraction of
coexisting nematic that is mixed with the corresponding isotropic bulk phase (at zero shear rate). The
lower figures depict (from left to right) the isotropic state, polarization microscopy image of tactoids
that form during phase separation (courtesy of Kyongok Kang) and the nematic state. The vertical line
indicates a possible shear-rate quench.

binodal can thus be obtained by interpolation of the amplitude as a function oḟγ− to zero.
For more details see Lettinga and Dhont (2004). Contrary to the experiments on the location
of the spinodal as described in the previous subsection, here dextran is added to the fd-virus
suspension in order to enhance phase separation, which renders these experiments feasible.

0.11.3 A remark on pattern formation and time-periodic states

There are two regions in the non-equilibrium phase diagram to be distinguished that are re-
lated to pattern formation and time-periodic states. As will be seen later, shear flow can induce
pattern formation within the two-phase region, that is, theregion bounded by the paranematic-
nematic binodal. Here “bands” are alternately stacked in the vorticity direction, where the
average orientational order within the bands differ. This type of shear-induced pattern forma-
tion is referred to asvorticity banding. In addition, coherent rotation of rods in the otherwise
nematic state leads to oscillations of the director under stationary shear flow. Suchtumbling
and wagging stateshave been analyzed in great detail by Marrucci and Maffettone (1990a),
Marrucci and Maffettone (1990b), Rienäcker and Hess (1999), Forest and Wang (2003) and
Hess and Kröger (2004). As stated before, the closure relation that is employed for the fourth
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(a) (b) (c)

Figure 22: A sketch to explain the origin of “dynamic correlations”. (a) depicts an initial configuration
of rods, which for simplicity is taken as a perfectly alignedstate. The orientational dynamics of the
shaded rod is considered in the main text. (b) After a small time, the shaded rod has moved to a different
orientation due to Brownian motion. For clarity, the corresponding movements of the other rods is not
depicted here. (c) the surrounding rods need a finite time to adjust to the new orientation of the shaded
rod.

order tensor in eq.(220) in terms ofS sensitively determines whether these periodic states are
correctly described. Our closure relation (227), althoughaccurate to within about10%, does
not give rise to tumbling and wagging at all, like many other closures. Instead it is more ap-
propriate to analyze eq.(213) as such. A numerical analysisof this equation of motion indeed
predicts tumbling and wagging regimes in the non-equilibrium phase diagram, although the
time-periodic states as predicted by eq.(213) are not yet fully explored. In all of these equa-
tions of motion, however, dynamic correlations are neglected. As will be discussed in section
12, such correlations might play some role of importance.

0.12 How important are dynamic correlations?

Dynamic correlations find their origin in the finite time thatit takes for the surroundings of
a given particle to adjust to the changing position and orientation of that particle. Consider
for example an assembly of rods as depicted in fig.22a. For convenience, the orientations of
all rods in this figure are taken equal in the initial state. Suppose that one is interested in
the orientational dynamics of the rod in fig.22 that is depicted as a shaded cylinder. During
a small time interval, the shaded rod moves to a new orientation due to rotational Brownian
motion, as depicted in fig.22b. If one would then freeze the orientation of the shaded rod, the
surrounding rods will change their average orientation to adjust to the field imposed by the
frozen shaded rod, as depicted in fig.22c. This adjustment takes a finite time. The shaded rod
thus experiences a surrounding configuration of other rods that is always “lagging behind”
the configuration that would have existed in case of “coexistence” with the shaded rod. The
surrounding rods therefore act with a finite torque on the shaded rod, even in an isotropic sus-
pension, due to such dynamic correlations. This is not what is found from eq.(206), when the
pdf P (û′, t) of surrounding rods is taken equal to the its isotropic form1/4π andg is approx-
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imated by the Boltzmann exponential (208). In order to describe self rotational diffusionof a
rod on the basis of eq.(206), dynamic correlations are essential.

The neglect of dynamic correlations in the derivation of theDoi-Edwards equation (219)
becomes more clear on calculating the correlation function< û(t) · û(0) > for an isotropic
dispersion. Thus, consider a rod (the dashed rod in fig.22) with a specified orientation̂u(0) at
time t = 0. Noting that,

d

dt
< û(t) · û(0) > = û(0) ·

∮

dû û
∂P (û, t)

∂t

multiplying both sides of the Smoluchowski equation (206) with û · û(0) and integrating with
respect tôu readily leads to,

d

dt
< û(t) · û(0) > = −2 Deff

s (t) < û(t) · û(0) > , (232)

where the effective self-rotational diffusion coefficientis equal to,

Deff
s (t) ≡ Dr

{

1 − 1
2
β

< T̄(û(t)) · (û(t) × û(0)) >

< û(t) · û(0) >

}

, (233)

where the torquēT(û(t)) is given by eq.(206) with an obvious change of notation. The pdf
P (û′, t) in the expression (206) for the torque is that of the other rods (the non-dashed rods in
fig.22). When the pdfP (û′, t) of the other rods is taken equal to1/4π and approximating the
pair-correlation function with the Boltzmann exponential(208), one finds that̄T(û(t)) = 0.
Hence,Deff

s (t) = Dr which is obviously wrong, since rotational motion of the dashed rod
is certainly hindered by the presence of other rods. A non-zero torque results from dynamic
correlations :P (û′, t) of rods in the neighbourhood of the dashed rod differs from1/4π due
to the presence of the moving dashed rod, and the pair-correlation function is not equal to the
equilibrium Boltzmann exponential for the same reason.

The linear concentration dependence of the effective diffusion coefficient (230), which is
a collective diffusion coefficient, is entirely due to the neglect of dynamic correlations. MD
computer simulations, where the tail of the orientational correlation function is fitted to obtain
the effective diffusion coefficient, show a strong non-linear concentration dependence Tao
et al. (2004), as is shown in fig.23. This indicates that dynamic correlations are of importance.
As yet, no attempt has been made to incorporate dynamic correlations in the analysis of the
Smoluchowski equation (206). As will be seen later, computer simulations do predict a linear
concentration dependence of the shear viscosity. It thus seems that dynamic correlations. are
of minor importance for the viscoelastic response of suspensions of rods, contrary to diffusive
behaviour.

0.13 The Stress Tensor for Rod Suspensions

In addition to the orientational order of rods in shear flow, the viscous behaviour of these
systems is of interest. In this section we shall derive a microscopic expression for the stress
tensor and express it in terms of the orientational order parameter tensor (see also Dhont
and Briels (2002) and Dhont and Briels (2003)). Viscoelastic response functions can then be
calculated once the equation of motion (219) forS(t) is solved.
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Figure 23: The effective diffusion coefficient as defined in the previous section from the theory eq.(230)
where dynamic correlations are neglected and from simulations by Tao et al. (2004) (the solid line
through simulation data points are a guide to the eye.)

0.13.1 The basic idea

Let U(r, t) andρm(r, t) denote the suspension velocity and mass density, respectively. The
velocity satisfies the Navier-Stokes equation (13), were the divergence of the stress tensor is
averaged over the phase space coordinatesΓ of the colloidal rods,

ρm(r, t)

[

∂U(r, t)

∂t
+ U(r, t) · ∇U(r, t)

]

= < ∇ · σ(r | Γ(t)) > . (234)

Here,σ is the stress tensor of the solvent in which the rods are embedded, or of the core
material of the rods, depending on whetherr is within the solvent or inside the core of a rod.
Clearly,σ depends on the phase space coordinatesΓ of all the rods.

The fundamental quantity in hydrodynamics is the momentum densityρv, with ρ andv

the microscopic density and velocity, respectively. Therefore, the appropriate definition of the
macroscopic velocityU is,

ρm(r, t)U = < ρv > . (235)

It can be shown (see Dhont and Briels (2002)) that if the mass density between the fluid and
the core material of which the rods consist and/or the volumefraction of colloidal material is
very small, the definition in eq.(235) reduces simply to,

U(r, t) = < v(r |Γ(t)) > , (236)
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whereu is equal to the fluid velocity or the velocity of a piece of colloidal material, depending
on whetherr is within the solvent or inside the core of a colloidal rod.

Let P (Γ, t) denote the probability density function ofΓ, which is the solution of the
Smoluchowski equation (173). By definition we then have,

U(r, t) =

∫

dΓP (Γ, t)v(r |Γ) . (237)

In the derivation of the general expression for the divergence of the stress tensor, we shall
encounter the ensemble average,

< ∇2v(r) > =

∫

dΓP (Γ, t)∇2v(r |Γ) .

Since the Laplace operator can be taken in front of the phase-space integral, and the suspension
flow velocity is given by eq.(236), it trivially follows that,

< ∇2v(r) > = ∇2U(r, t) . (238)

This result will be of importance later in this section.
In order to obtain an explicit Navier-Stokes equation, the ensemble average of the body

force∇ · σ(r | Γ) should be expressed in terms of suspension properties. To this end, con-
sider a rectangular volume elementδV located atr, with linear dimensionsδx, δy andδz in
the x−, y− andz−direction, respectively. In the formal limit that the size of the volume
element vanishes, the ensemble averaged total force per unit volume of the surrounding ma-
terial on the volume element is nothing but the divergence ofthe stress tensor that should be
used in the Navier-Stokes equation (234). This force consists of three parts : forces that arise
from interactions between colloidal particles outside on those within the rectangular volume
element, from interactions between solvent molecules and colloidal particles, and from inter-
actions between solvent molecules on either side of the boundary of the volume element. The
corresponding stress tensors will be referred to as the “particle-particle stress tensor”Σpp, the
“particle-solvent stress tensor”Σps, and the “solvent-solvent stress tensor”Σss, respectively.
The divergence of the suspension stress tensorΣ is the sum of these three body forces,

∇ · Σ ≡ < ∇ · σ(r | Γ(t)) > = ∇ ·Σpp + ∇ · Σps + ∇ · Σss . (239)

These three contributions will be calculated explicitly inthe next subsections. First of all, a
general expression for the ensemble averaged body force∇ · Σ will be derived, after which
this expression will be expressed in terms of a probability density density function. Finally,
this expression will be simplified by means of the same Ginsburg-Landau expansion used to
derive the Doi-Edwards equation (219), which leads to an expression for the stress tensor
involving the concentration and the orientational order parameter tensorS.

The particle-particle stress tensorΣpp

The force that colloidal particles outside the volume element exert on those within the volume
element is equal to,

⋆
∑

j

Fj ,
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whereFj is the force that all colloidal particles exert on colloidalparticlej, and the⋆ on the
summation is used to indicate that the summation ranges onlyover those colloidal particles
that are inside the volume element, that is, for whichrj ∈ δV . Note that mutual interactions
between colloidal particles within the volume element can not give rise to a net force on
that volume element. The force per unit volume, for formallyvanishing size of the volume
element, is thus equal to,

∇ ·Σpp = lim
δx,δy,δz→0

1

δx δy δz

N
∑

j=1

< χ
r
(rj)Fj > , (240)

whereN is the total number of colloidal particles in the system under consideration,rj is the
position coordinate of a colloidal particle andχ

r
is the characteristic function of the rectan-

gular volume element that was introduced in the previous section. The characteristic function
is defined as,

χ
r
(R) = 1 when R ∈ δV ,

= 0 otherwise. (241)

The subscript “r ” on the characteristic function is used to indicate that thevolume element
δV is located at positionr. The characteristic function effectively limits the summation to
colloidal particles that are insideδV , that is, for whichrj ∈ δV . Furthermore, as discussed
before, the total forceFj on thejth colloidal particle due to interactions with all other colloidal
particles is equal to,

Fj = −∇jΦ − kBT∇j ln{P} , (242)

whereΨ is the total potential energy of the assembly ofN rods in the suspension, andP is the
probability density function of the phase space coordinates of all the colloidal rods :−∇jΦ
is the force due to potential interactions, and−kBT∇j ln{P} is the Brownian force, where
∇j is the gradient operator with respect torj . Since (withδ(r − rj) the 3-dimensional delta
distribution),

lim
δx,δy,δz→0

χ
r
(rj)/δx δy δz = δ(r − rj) , (243)

as is easily verified by integration of both sides with respect to rj , this immediately leads to,

∇ ·Σpp =

N
∑

j=1

< δ(r − rj) Fj > . (244)

Together with eq.(242) for the forces, this is the microscopic expression for the contribution
to the divergence of the stress tensor which is due to inter-colloidal particle forces.

The particle-solvent stress tensorΣps

The particle-solvent stress arises from forces on the volume element due to interactions be-
tween colloidal particles and solvent molecules. These forces are mediated to the volume
element by colloidal particles that intersect with the surface enclosing the rectangular volume
element. Consider first the force that is mediated to the solvent within the volume element by
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Figure 24: The rectangular volume elementδV at positionr intersects with the core of colloidal rodj
with its position coordinaterj outside the volume element.∂V (out) is that part of the surface area∂Vj

of the rod that is outside the volume element, and∂V
(in)
j is the part inside.

a colloidal particle with its position coordinate outside the volume element (see fig.24). The
instantaneous force that the colloidal particle exerts on the solvent inside the volume element
is equal to,

−
∫

∂V
(in)

j
(rj ,ûj)

dS′ · σ(r′) .

Here, the surface area∂V
(in)
j is that part of the surface area of the colloidal particle that is

inside the volume element (see fig.24). This range of integration depends both on the position
rj of colloidal particlej and its orientation̂uj . Furthermore,dS′ is the normal surface element
on the surface area of the colloidal particle, andσ is the stress tensor of the solvent. The minus
sign in eq.(245) arises from the fact thatdS′ ·σ(r′) is equal todS′ fh(r′), with fh(r′) the force
per unit area that the fluid exerts on the surface elementdS′, which is minus the force that this
surface element exerts on the fluid. In terms of this hydrodynamic force, eq.(245) is more
conveniently written as,

−
∫

∂V
(in)

j
(rj ,ûj)

dS′ fh(r′) .
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The ensemble averaged forceFout of all colloidal particles outside the volume element on the
solvent inside the element, is thus equal to,

Fout = − <

N
∑

j=1

[1 − χ
r
(rj)]

∮

∂Vj(rj ,ûj)

dS′ fh(r′)χ
r
(r′) > , (245)

where, as before,χ
r

is the characteristic function of the volume element. The characteristic
function1−χ

r
(rj) for the volume outside the volume element assures that in thesummation

over all colloidal particles, only those are counted which are outside the volume element. Fur-
thermore, the characteristic functionχ

r
(r′) assures that only pointsr′ on the surface of the

colloidal particle inside the volume element are taken intoaccount. Including the character-
istic function in the integrand in eq.(245) allows for the extension of the integration range to
the entire surface area∂Vj(rj , ûj) of thejth colloidal particle.

Similarly, in case a colloidal particle is located inside the volume element, that is, when
rj ∈ δV , the instantaneous force that the colloidal particle exerts on the solvent outside the
volume element is equal to,

−
∫

∂V
(out)

j
(rj ,ûj)

dS′ fh(r′) ,

with ∂V
(out)
j the part of the surface area of the colloidal particle located outside the volume

element (see fig.24. This is minus the force that is exerted onthe colloidal particle by the
solvent outside the volume element. Hence, similarly as before, the ensemble averaged force
Fin on the volume element due to interactions between solvent molecules outside and col-
loidal particles inside the volume element is found to be equal to,

Fin = <
N

∑

j=1

χ
r
(rj)

∮

∂Vj(rj ,ûj)

dS′ fh(r′) [1 − χ
r
(r′)] > , (246)

where it is used again that1 −χ
r
(r′) is the characteristic function for the volume outside the

volume element. From the representation (243) of the delta distribution it is thus found that,

∇ ·Σps = lim
δx,δy,δz→0

[

Fout + Fin
]

/δx δy δz (247)

= <
N

∑

j=1

δ(r − rj)F
h
j > − <

N
∑

j=1

∮

∂Vj(rj ,ûj)

dS′ δ(r − r′) fh(r′) > ,

where,

Fh
j =

∮

∂Vj(rj ,ûj)

dS′ fh(r′) , (248)

is the total force that the solvent exerts on thejth colloidal particle.

The solvent-solvent stress tensorΣss

The force per unit volume that the solvent outside the volumeelementδV exerts on the solvent
inside, for formally vanishing size of the volume element, is equal to,

∇ ·Σss = lim
δx,δy,δz→0

1

δx δy δz
<

∫

As

dS′ · σ(r′) > , (249)
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Figure 25: The part of the surface area∂δV of the volume element that is occupied by solvent is denoted
asAs. This is∂δV minus the areasAj of intersection of∂δV with the core of colloidal rodj. The part
of As on the upperz-side of the volume is denoted asAz,+

s , and on the lower side asAz,−
s .

whereAs is the part of the surface area of the volume element that is occupied by solvent,
which is the surface area of the volume element minus the partthat is cut by cores of colloidal
particles (see fig.25). Here,dS′ points outward ofδV . The subscript “s ” on the integration
As refers to “solvent”. For an incompressible solvent we have,

σ(r′) = η0

[

∇′v(r′) + (∇′v(r′))
T

]

− p(r′) Î , (250)

with η0 the solvent shear viscosity andv the solvent flow velocity. Furthermore,p is the
mechanical pressure in the solvent, andÎ is the identity tensor. The superscript “T ” stands
for the transpose of a tensor. Note that since∇2p(r) = 0 within the incompressible solvent,p
is entirely determined by the boundary conditions for the solvent flow imposed by surfaces of
the colloidal particles and the container walls. Hence,p(r′) depends implicitly on the position
and orientations of all rods. Substitution of eq.(250) intoeq.(249) leads to,

∇ · Σss = M(1) + M(2) , (251)
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where,

M(1) ≡ lim
δx,δy,δz→0

η0

δx δy δz
<

∫

As

dS′ ·
[

∇′v(r′) + (∇′v(r′))
T

]

> , (252)

and,

M(2) ≡ − lim
δx,δy,δz→0

1

δx δy δz
<

∫

As

dS′ p(r′) > , (253)

Consider first the contributionM(1). We can rewrite the integral as,

<

∫

As

dS′ ·
[

∇′v(r′)+(∇′v(r′))T
]

> = <





∮

∂δV

−
N

∑

j=1

∫

Aj



 dS′ ·
[

∇′v(r′)+(∇′v(r′))
T
]

>,

(254)

whereAj is the area of intersection of the surface area∂δV of the volume element and the
core of colloidal particlej (see fig.25). For a rigid colloidal particle, the velocity inside the
core is given by,

v(r′) = vj + Ωj × (r′ − rj) , r′ ∈ core of particlej , (255)

wherevj is the translational velocity andΩj the rotational velocity of colloidal particlej.
Hence (withǫ the Levi-Cevita tensor, andΩj,p thepth component ofΩj),

∇′
m vn = ∇m [Ωj × (r′ − rj) ]n = ∇′

m ǫnpq Ωj,p r′q = ǫnpm Ωj,p ,

where summation over repeated indices is assumed. From the anti-symmetry of the Levi-
Cevita tensor, it is thus found that,

∫

Aj

dS′ ·
[

∇′v(r′) + (∇′v(r′))
T

]

= 0 . (256)

Using Gauss’s integral theorem, we thus find from eqs.(254,256), for incompressible solvents,

<

∫

As

dS′ ·
[

∇′v(r′)+(∇′v(r′))
T

]

> = <

∫

δV

dr′ ∇′ 2v(r′) > ,

Hence, eq.(252) reduces to,

M(1) = lim
δx,δy,δz→0

η0

δx δy δz
<

∫

δV

dr′ ∇′ 2v(r′)> = η0 < ∇2v(r) > .

From eq.(238), it is thus finally found that,

M(1) = η0 ∇2U(r, t) . (257)

The contributionM(2) can be expressed in terms of suspension properties as follows. Let
Az,+

s denote the top-side ofAs, and similarlyAz,−
s the lower-side, as indicated in fig.25.

Furthermore, let̂ez denote the unit vector along the positivez-axis. Since the unit normal on
Az,+

s is êz while the unit normal onAz,−
s is −êz, the contributionM(2)

z from the top- and
lower-side ofAs to M(2) is equal to,

M(2)
z = −êz lim

δx,δy,δz→0

1

δx δy δz
<

[∫

Az,+
s

−
∫

Az,−
s

]

dS′ p(r′) > .
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For small sizes of the volume element, the scalar,

P ss(r + 1
2
δz êz, t) ≡ 1

δx δy
<

∫

Az,+
s

dS′ p(r′) > , (258)

defines the contribution to the suspension pressure due solvent-solvent interactions at the po-
sition of the top-side of the volume element. A similar expression can be written down for
P ss at the lower-side. It thus follows that,

M(2)
z = −êz lim

δz→0

1

δz
[P ss(r + 1

2
δz êz, t) − P ss(r − 1

2
δz êz, t)] = −êz

∂P ss(r, t)

∂z
.

In the same way the contribution toM(2) from the left- and right-sides, and front- and back-
sides of the volume element are obtained. Adding these contributions leads to,

M(2) = −∇P ss(r, t) . (259)

We thus find from eqs.(251,257,259) the following expression for the divergence of the
stress tensor that arises from solvent-solvent interactions,

∇ · Σss = η0 ∇2U(r, t) −∇P ss(r, t) . (260)

Note thatP ss is not just determined by boundary conditions when the suspension is inhomo-
geneous.

0.13.2 The total stress tensor

On the Smoluchowski time scale, as discussed before, the interaction forceFj in eq.(242)
balances with the hydrodynamic force in eq.(248), that is,

Fj + Fh
j = 0 . (261)

The first term in eq.(247) for the particle-solvent stress thus cancels against the particle-
particle stress in eq.(244). Adding eqs.(244,247,260) therefore leads to the following ex-
pression for the divergence of the total stress tensor,

∇ · Σ = η0 ∇2U(r, t) −∇P ss(r, t) −
N

∑

j=1

<

∮

∂Vj(rj ,ûj)

dS′ δ(r − r′) fh(r′) > . (262)

This seemingly simple expression is valid for homogeneous suspensions as well as systems
with large gradients in shear rate, concentration and orientational order parameter. Suspension
properties should not vary significantly over distances equal to the thickness of the rods, but
may vary significantly over distances equal to the length of the rods.

0.13.3 The stress tensor for homogeneous suspensions

Sincer′ ∈ ∂Vj in the integrand in eq.(262), the magnitude ofr′ − rj is never larger than
the linear dimension of the rigid colloidal particles. Hence, for not too large gradients of
suspension properties, the delta distributionδ(r− r′) can be Taylor expanded aroundr′ = rj ,

δ(r − r′) = δ(r − rj) +

∞
∑

n=1

1

n!
(rj − r′)n ⊙∇nδ(r − rj) ,
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where(rj − r′)n and∇n are polyadic products, and⊙ is then-fold contraction of these two
products. Substitution of this expansion into eq.(262) gives,

∇ · Σ = η0 ∇2U(r, t) −∇P ss(r, t) −
N

∑

j=1

< δ(r − rj) Fh
j > (263)

−
∞
∑

n=1

1

n!
∇n

N
∑

j=1

< δ(r − rj) ⊙
∮

∂Vj(rj ,ûj)

dS′ (rj − r′)n fh(r′) > .

Consider a flow in thex-direction with its gradient in they-direction (see fig.1a). Since all
suspension properties, including the suspension flow velocity, do not vary onxz-planes, the
stress tensor is a function ofy only. Hence,

∇ ·Σ(r) = ê2 ·
dΣ(y)

dy
.

where ê2 is the unit vector in they-direction. Since in a homogeneous system the force
<δ(r − rj)F

h
j > on rodj atr is independent ofr, it follows that the contribution∆Σ to the

stress tensor corresponding to the last term in the first linein eq.(263) is equal to,

ê2 · ∆Σ(y) = −y

N
∑

j=1

< δ(r − rj)F
h
j > = − ê2 ·

N
∑

j=1

< δ(r − rj) rj Fh
j > .

Here, the integration constant is set equal to0, since it does not contribute to the force on a
given volume element, and is therefore irrelevant. Hence,

∆Σ = −
N

∑

j=1

< δ(r − rj) rj Fh
j > . (264)

In the last term in eq.(263), only the leading order gradientcontribution is non-zero for homo-
geneous suspensions, so that,

∞
∑

n=1

1

n!
∇n

N
∑

j=1

< δ(r − rj) ⊙
∮

∂Vj(rj ,ûj)

dS′ (rj − r′)n fh(r′) > =

−∇ ·
N

∑

j=1

< δ(r − rj)

∮

∂Vj(rj ,ûj)

dS′ (r′ − rj) f
h(r′) > . (265)

From eqs.(263,264,265), the stress tensor is found to be equal to,

Σ = η0

[

∇U + (∇U)
T

]

− P ss Î−
N

∑

j=1

< δ(r − rj) rj Fh
j >

+

N
∑

j=1

< δ(r − rj)

∮

∂Vj(rj ,ûj)

dS′ (r′ − rj) f
h(r′) > . (266)

On volume averaging, one recovers the expression for the stress tensor as derived by Batchelor
(1970) and later by Strating (1995) in different ways. Note that a divergence-less contribution
to the stress tensor is of no significance, since the suspension flow velocity is determined
solely by the body force that is equal to the divergence of thestress tensor.
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0.13.4 Explicit evaluation of the stress tensor
for very Long and thin rods

Within the bead model for the rods (see fig.3), the surface integral that appears in eq.(262) for
the stress tensor can be written as a sum over beads as (with∂Vα the surface area of beadα),

∮

∂Vj(rj ,ûj)

dS′ δ(r−r′) fh(r′) =
∑

α

δ(r−rj−α Dûj)F
h
j,α ,

whereFh
j,α is the force that the fluid exerts on theα’th bead of rodj. Hence,

∇ · Σ = η0∇2U(r, t) −∇P ss(r, t) −
N

∑

j=1

∑

α

< δ(r − rj − α D ûj)F
h
j,α > . (267)

In order to evaluate the summation over beads, an explicit expression forFh
j,α must be found.

Consider the flow velocityu0,α of the fluid that would have existed in the absence of beadα.
This velocity is equal to, according to eq.(18),

u0,α = U⋆
α −

∑

β 6=α

∫

∂Vβ

dS′ T(rα − r′) · fh,⋆
β (r′) , (268)

where the⋆ is used to indicate the absence of beadα. Here,U⋆ is the fluid flow velocity at the
position of beadα that is due to the presence of the remaining rods and the externally imposed
flow field, in the absence of beadα. The forcefh,⋆

β (r′) is the force per unit area that the fluid
exerts on the surface element atr′ on the surface∂Vβ of beadβ, again in the absence of bead
α. For very long and thin rods, the majority of beadsβ experience a flow and force that is
only a little different from those in the absence of beadα. We shall therefore setfh,⋆

β equal
to the actual forcefh

β in the presence of beadα. Within the bead model for the rod, eq.(268)
then reads,

u0,α = U⋆
α −

∑

β 6=α

T(rα − rβ) · Fh
β , (269)

where, as before,Fh
β is the total force that the fluid exerts on beadβ. When gradients in

the fluid flow velocityU⋆
α, stemming from other rods and an externally imposed field, are

negligible on the length scale equal to the thicknessD of the rod, the force on beadα is
simply equal toFh

α = −γ [vα − u0,α ] , whereγ = 3πη0D is the Stokes friction coefficient
of a single bead andvα is the translational velocity of beadα. Hence, from eq.(269) and
eq.(23) for the Oseen tensor,

Fh
j,α = −γ

[

vj,α − U⋆
j,α

]

− 3
8

[

Î + ûj ûj

]

·
∑

β 6=α

1

| α − β | F
h
j,β . (270)

Now consider summations of the form,
∑

α

G(α)Fh
j,α . (271)
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Multiplying both sides of eq.(270) withG(α) and summing overα leads to,

∑

α

G(α)Fh
j,α = −γ

∑

α

G(α)
[

vj,α − U⋆
j,α

]

− 3
8

[

Î + ûj ûj

]

·
∑

α

∑

β 6=α

G(α)

| α − β | F
h
j,β .

(272)

In appendix D it is shown that for specific functionsG(α) it follows from the above relation
that,

∑

α

G(α)Fh
j,α = − 4

3

γ

ln{L/D}
[

Î − 1
2
ûj ûj

]

·
∑

α

G(α)
[

vj,α − U⋆
j,α

]

. (273)

For the sum in eq.(267), the functionG(α) is identified in appendix D, and the validity of
eq.(272) for that particularG(α) is proven. Using this result in eq.(267) immediately leads to,

∇ · Σ = η0∇2U(r, t) −∇P ss(r, t) (274)

+ 4
3

γ
ln{L/D}

<

N
∑

j=1

[

Î − 1
2
ûjûj

]

·
∑

α

δ(r − rj − α Dûj)
[

vj,α − U⋆
j,α

]

> .

For eachj, the ensemble average that involves the solvent velocityU⋆, can be written as,

<
[

Î− 1
2
ûjûj

]

·
∑

α

δ(r − rj − α Dûj)U
⋆
j,α > =

∫

drj

∮

dûj P (rj , ûj , t)
[

Î− 1
2
ûjûj

]

·
∑

α

δ(r − rj − α Dûj) < U⋆
j,α >(c) ,

where< · · · >(c) denotes ensemble averaging with respect to the conditionalpdf P (c) of
{r1, · · · , rj−1, rj+1, · · · , rN , û2, · · · , ûj−1, ûj+1, · · · , ûN} for prescribedrj andûj , which
is equal to,

P (c)(r1, · · · , rj−1, rj+1, · · · , rN , û1, · · · , ûj−1, ûj+1, · · · , ûN |rj , ûj , t) ≡
P (r1, · · · , rN , û1, · · · , ûN , t)/P (r1, û1, t) .

We can thus rewrite the eq.(267) for the divergence of the stress tensor as,

∇ · Σ = η0∇2U(r, t) −∇P ss(r, t) + 4
3

γ
ln{L/D}

1

N

N
∑

j=1

∫

drj

∮

dûj ρ(rj , ûj , t)

[

Î− 1
2
ûjûj

]

·
∑

α

δ(r − rj − α Dûj)
[

vj,α− < U⋆
j,α >(c)

]

, (275)

whereρ(r, û, t) is the density of rods with orientation̂u at positionr,

ρ(r, û, t) = N P (r, û, t) . (276)

The conditional ensemble average< U⋆
j,α >(c) is the contribution to the solvent flow velocity

at the position of beadα of rodj, in the absence of that bead, that originates from the presence
of other rods and the externally imposed flow, averaged over the positions and orientations of
all other rods with a prescribed position and orientation ofrod j. This average is to a good
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approximation equal to the suspension flow velocityUj,α at the position of beadα of rod j,
that is,

< U⋆
j,α >(c) = Uj,α . (277)

Using that the bead velocity is given by,

vj,α = vj + α D Ωj × ûj , (278)

together with eqs.(170,166) for the translational and rotational velocity of a rod, eq.(275) for
the divergence of the stress tensor thus leads to (mathematical details are given in appendix
E),

∇ ·Σ(r, t) = η0∇2U(r, t)−∇P ss(r, t)

+ kBT
L2

∮

dû

∫ L/2

−L/2

dx

{

12
x

L
û×

[

R̂ρ(r−xû0, û, t)
]

û0=û

−L∇ρ(r−xû, û, t)

}

+ 2D kBT
L2

∮

dû

∮

dû′

∫ L/2

−L/2

dx

∫ L/2

−L/2

dl

∫ L/2

−L/2

dl′ ρ(r−xû, û, t)

{

12
x

L
û×

[

R̂ | û×û
′ | ρ(r−xû0−lû−l′û′, û′, t)

]

û0=û

− | û×û
′ | L∇ρ(r−(x+l)û−l′û′, û′, t)

}

+ 4πη0
L ln{L/D}

∮

dû

∫ L/2

−L/2

dx

∫ L/2

−L/2

dx′ ρ(r−xû, û, t) (279)

[

Î− 1
2
ûû

]

·
{

U(r+(x′−x)û, t)−U(r, t)−12
xx′

L2
û×[û×U(r+(x′−x)û, t)]

}

.

Here, summations over bead indicesα andβ are replaced by integrals with respect tox andx′,

respectively (see eqs.(321,324) in appendix E). The notation
[

R̂(· · · )
]

û0=û

is used to indicate

that the differentiation with respect tôu should be performed first, after whicĥu0 should be
taken equal tôu.

The first two contributions to the stress tensor are solvent contributions. The third term
stems from Brownian forces, the fourth term from direct interactions, while the last term
accounts for the suspension flow.

Contrary to commonly used expressions for the stress tensorfor inhomogeneous suspen-
sions, eq.(279) contains convolution-type integrals. An expression that is similar to commonly
used expressions for the stress tensor is obtained by gradient expanding the convolution-type
integrals and truncating this expansion after the fourth order in∇-contributions. Such a trun-
cation is expected to work only when gradients are not very large. Our expression (279) for
the divergence of the stress tensor, however, is valid even in the presence of large gradients.

0.13.5 The stress tensor for a homogeneous system expressedin
terms of the order parameter

For a homogeneous system, where the concentration, the orientational order parameter and
the shear rate are independent of position, the probabilitydensity functionρ in the integrals in
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eq.(279) can be gradient expanded up to leading order in gradients that survives the convolu-
tion type of integrals. For example,

ρ(r−xû, û, t) = ρ(r, û, t)−x û ·∇ρ(r, û, t)+ 1
2
x2 ûû : ∇∇ ρ(r, û, t)+”O(∇3)” .

(280)

Using the same Ginzburg-Landau expansion (217) as before, alengthy but straightforward
calculation leads to the following expression for the stress tensor (where the fourth order
tensorS(4) is defined in eq.(220)),

Σ = −P Î + ΣD , (281)

with ΣD the deviatoric part of the stress tensor,

ΣD = 2 η0 γ̇ Ê +

3 ρ̄kBT
[

S − 1
3
Î + L

D
ϕ

{

S(4) : S− S · S
}

+ 1
6
Per

{

S(4) : Ê− 1
3
Î S : Ê

}]

, (282)

where eq.(169) forDr has been used. Here,ρ̄ = N/V is the number density of the homo-
geneous system,ϕ = π

4
D2Lρ̄ is the volume fraction of rods, andPer = γ̇/Dr is the same

bare rotational Peclet numberthat we encountered before. The tensorÊ is, as before, equal
to E/γ̇. Furthermore,

P = P ss + ρ̄ kBT
[

1 + 5
4

L
D

ϕ {1 − 3
5
S : S} − 1

6
Per S : Ê

]

. (283)

is the pressure.
The first termS − 1

3
Î stems from the Brownian contribution in eq.(279), the second term

∼ L
D

from the direct interaction terms, and the term∼ Per from the suspension flow terms.
Note that from eq.(219), using the expression (169) forDr, the deviatoric stress tensor can

be rewritten more elegantly as,

ΣD = 2 η0 γ̇

[

Ê +
(L/D)

2

3 ln{L/D} ϕ

{

Γ̂ · S + S · Γ̂T − S(4) : Ê− 1
3
Î S : Ê− 1

γ̇

dS

dt

}

]

.

(284)

This form makes the proportionality of the stress tensor with the shear-rate more explicit.
A similar expression for the stress tensor has been derived by Doi and Edwards (1978a),

Doi and Edwards (1978b), Doi (1981), Kuzuu and Doi (1983) andMarrucci and Maffettone
(1989). For non-interacting rods, that is, forL

D
ϕ = 0, Hinch and Leal (1976) found a con-

stitutive relation similar to eq.(284) by interpolating between known expressions for low and
high shear-rates.

0.14 Viscoelastic Response Functions

In the present section we shall analyze the viscous behaviour of rod suspensions on the basis
of the equation of motion (219) forS(t) and the Navier-Stokes equation with eq.(284) for
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the stress tensor (together with the closure relation (227)). The equations (219) and (284)
are quite similar to those derived on the basis of phenomenological arguments by Doi and
Edwards (1978a), Doi and Edwards (1978b), Doi (1981), Kuzuuand Doi (1983) and Doi and
Edwards (1986). We shall refer to this latter theory as the DEK-theory, where DEK stands for
“Doi, Edwards, Kuzuu”. Our predictions will be compared to those of the DEK-theory.

The DEK theory appears in literature in various forms. Sometimes an effective rotational
diffusion coefficient is used in the Smoluchowski equation and the equation of motion (219)
instead of the bare diffusion coefficientDr. This effective diffusion coefficient is calculated
independently as a function of the order parameter and concentration. The present approach
shows that this is not correct : the bare diffusion coefficient should be used in the equation
of motion (219) and expressions (282,284) for the stress tensor. Interactions between rods
are explicitly accounted for in these expressions. Sometimes the interaction contributions
are omitted, and the above mentioned effective diffusion coefficient is used. The effective
diffusion coefficient is then assumed to account for interactions between rods. Either the
interaction contributions are kept as they stand and the bare diffusion coefficient is used, or
the interaction contributions are omitted and an effectivediffusion coefficient should be used.

Viscoelastic response functions will be discussed both forlow shear rates, where analytic
expressions can be derived, and high shear rates, where numerical results will be given. For
higher shear rates, shear thinning curves and non-linear oscillatory response functions will
be discussed. These results will be compared to other theories, computer simulations and
experiments. A remarkable feature is that the shear viscosity is predicted to vary linear with
concentration up to the isotropic-nematic phase transition, which is confirmed by computer
simulations. Comparing theory with experimental data on fd-virus suspensions, it turns out
that a slight degree of flexibility has a large effect on viscoelastic response functions.

0.14.1 Shear viscosity and normal stresses for low shear-rates

In order to obtain analytic results for the leading order shear rate dependence of the zero-
frequency shear viscosity and normal stress differences, the orientational order parameter ten-
sor is expanded up to third power in the shear rate,

S = 1
3
Î + γ̇ ∆S1 + γ̇2 ∆S2 + γ̇3 ∆S3 + · · · . (285)

Substitution of this expansion into the stationary form of the equation of motion (219) and
noting thatÎ : ∆Sj = 0, a straightforward but somewhat lengthy calculation leadsto the
following expressions for the∆Sj ’s,

γ̇ ∆S1 =
1

15

γ̇

Deff
r

Ê ,

γ̇2 ∆S2 =
1

450

(

γ̇

Deff
r

)2




0

@

3 0 0
0 −2 0
0 0 −1

1

A +
1

10

Dr

Deff
r

L

D
ϕ

0

@

1 0 0
0 1 0
0 0 −2

1

A



 ,

γ̇3 ∆S3 =
1

1125

(

γ̇

Deff
r

)3
[

−7

3
+

3

10

Dr

Deff
r

L

D
ϕ +

1

50

(

Dr

Deff
r

L

D
ϕ

)2
]

Ê . (286)

The concentration dependent, effective rotational diffusion coefficientDeff
r is given in eq.(230).
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As can be seen from the above expressions, the actual expansion parameter isthe dressed
rotational Peclet number,

Peeff
r = γ̇/Deff

r . (287)

The expansion (285) is therefore valid only whenγ̇/Deff
r is small. For concentrations close

to the spinodal line, whereDeff
r is much smaller than the free rotational diffusion coefficient

Dr, the shear-rate should be equally smaller in order for the expansion (285) to be valid.
Substitution of eqs.(286) into eq.(284) for the deviatoricpart of the stress tensor leads to,

ΣD = 2 ηeff γ̇ Ê + η0
1

120

γ̇2

Deff
r

α ϕ

0

@

19 0 0
0 −11 0
0 0 −8

1

A, (288)

where the coefficientα is equal to,

α =
8

45

(L/D)2

ln{L/D} , (289)

and the suspension shear viscosityηeff is found to be equal to,

ηeff = η0






1 +

{

1 − 1

50

(

γ̇

Deff
r

)2
}

α ϕ +
1

1500

γ̇2 Dr
(

Deff
r

)3 α
L

D
ϕ2






, (290)

up to second order in the shear-rate. Expanding the dressed Peclet number with respect to the
concentration yields, up to second order in concentration,

ηeff = η0

[

1 +

{

1 − 1

50

(

γ̇

Dr

)2
}

α ϕ − 11

1500

(

γ̇

Dr

)2

α
L

D
ϕ2

]

. (291)

Note that the Huggins coefficient vanishes at zero shear-rates. There is a non-zero Huggins
coefficient at zero shear-rates when hydrodynamic interactions would have been taken into
account. As discussed before, hydrodynamic interactions are not so important for the very
long and thin rods under consideration here.

For zero shear-rate, eq.(291) for the effective viscosity is the rigid-rod analogue of Ein-
stein’s equationηeff = η0[1 + 5

2
ϕ] for the viscosity of very dilute suspensions of spheres.

Note, however, that eq.(291) is valid also for larger concentrations. That is, higher order
concentration contributions to the zero shear viscosity are absent. This linear concentration
dependence of the zero shear suspension viscosity is the result of the use of the form (208)
for the pair-correlation function and the neglect of hydrodynamic interactions. As will be
seen later in this section, such a linear concentration dependence is also seen in computer
simulations for very long and thin rods.

Normal stress differences due to a weak shear flow follow immediately from eq.(288) as,

N1 ≡ Σ11 − Σ22 = η0
1

4

γ̇2

Deff
r

α ϕ ,

N2 ≡ Σ22 − Σ33 = − η0
1

40

γ̇2

Deff
r

α ϕ . (292)
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Note thatα ϕ can be large for very long and thin rods, even at low volume fractionsϕ, so that
normal stress differences are predicted to be quite significant.

Expressions for linear response functions to oscillatory shear flow can be obtained by
substitution of,

S(t) = 1
3
Î + γ̇0 [ ∆Sc cos{ωt} + ∆Ss sin{ωt} ] , (293)

into the equation of motion (219). Linearization with respect to the in- and out-of-phase
response functions∆Sc and∆Ss, respectively, keeping only linear terms inγ̇0, and using
eq.(6) for the shear ratėγ, one readily finds in dimensionless form,

S(t) =
1

3
Î +

2

5

γ̇0

ω
F (Ωeff/6)

[

cos{ωt} + 1
6
Ωeff sin{ωt}

]

Ê , (294)

where,

F (x) ≡ x

1 + x2
, and , Ωeff = ω/Deff

r . (295)

The dimensionless frequencyΩeff is a dressed, concentration dependentrotational Deborah
number. Substitution of eqs.(294,295) into eq.(284) for the stress tensor, gives,

ΣD = 2 γ̇0Ê [ η′ cos{ωt} + η′′ sin{ωt} ] , (296)

where the dissipative and storage shear viscosity are respectively equal to,

η′ = η0

[

1 +

(

1

4
+

9

2

F (Ωeff/6)

Ωeff

)

α ϕ

]

,

η′′ = η0
3

4
F (Ωeff/6) α ϕ . (297)

To leading order in shear-rate, we thus find a Maxwellian behaviour of the viscoelastic re-
sponse function, with a concentration dependent relaxation time that is set by the effective
rotational diffusion coefficient. Note that,

ηeff − ηeff
∞

η0
=

3

4
α ϕ = 6 lim

Ω→∞

η′′

Ωeff
. (298)

whereηeff = η0[ 1 + α ϕ ] shear viscosity (291) at zero shear rate, andηeff
∞ ≡ η′(Ωeff →

∞) is the high frequency, zero shear-rate viscosity. These arerelationships that could be
tested experimentally. As before, the predicted linear concentration dependence in eq.(297)
should hold over the entire concentration regime (up to the isotropic-nematic phase transition
concentration), and could serve as an experimental test forthe validity of the approximation
(208) for the pair-correlation function.

0.14.2 Viscoelastic response at high shear-rates

For larger shear-rates no analytical results can be obtained in view of the complexity of the
equation of motion (219). Instead, eq.(219) must be time-integrated numerically, either with
a stationary or an oscillating shear-rate, until transients have relaxed. The resulting solution is
substituted into eq.(284) for the stress tensor, from whichviscoelastic response functions can
be deduced.
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Figure 26: (a) The suspension viscosityηeff for the otherwise isotropic state, normalized with the
solvent shear viscosityη0, as a function of the squared Peclet number for several concentrations, as
indicated in the figure. The dashed lines correspond to the low shear-rate expansion (290). Here, and
in the other figures,L/D = 50. (b) The same as (a) for the nematic state. (c) The shear viscosity as a
function of the concentration for various shear-rates, as indicated in the figure. The isotropic-to-nematic
and nematic-to-isotropic spinodal concentrations are also indicated.

The dimensionless numbers on which stress response functions under stationary shear flow
conditions depends areL

D
, L

D
ϕ, and the bare rotational Peclet number (189) for dilute systems

or the dressed Peclet number (287) for strongly interactingsystems. As will turn out, under
oscillatory shear flow, the same Peclet numbers are of interest, except that the shear-rate is
replaced by the shear-amplitudeγ̇0 in eq.(6). The frequency dependence is expressed in terms
the dressed Deborah number in eq.(295) or the bare Deborah number,

Ω = ω/Dr . (299)

Numerical results are shown here forL
D

= 50 as functions of the other dimensionless numbers
: essential features of viscoelastic response functions donot depend on the aspect ratio for
aspect ratios larger than about10.

In figs.26a,b, the suspension viscosity is plotted as a function of the squared rotational
Peclet number for various concentrations, both in the otherwise isotropic phase (in fig.26a) and
for the nematic state (in fig.26b). The dashed lines in fig.26acorrespond to the small Peclet
number expansion (290). The range of validity of this expansion is seen to decrease for larger
concentrations. The reason for this is that eq.(290) is actually an expansion with respect to
the dressed rotational Peclet number (287), while the effective rotational diffusion coefficient
(230) becomes smaller on approach of the isotropic-to-nematic spinodal point. Note that
for a nematic there seems to be no regime at small shear-rateswhere the viscosity varies
linearly with γ̇2, contrary to a paranematic. Furthermore, the suspension viscosity of a nematic
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decreases with increasing concentration : the rise in stress on adding rods is smaller than its
decrease due to the increase of degree of orientational order. In fig.26c, the dependence of the
viscosity on concentration is shown for various shear-rates. For shear-rates close to the critical
shear-ratePer = 0.159 · · · , the viscosity sharply decreases with increasing concentration due
to the sharp increase of the degree of alignment as the corresponding branch in the bifurcation
diagram fig.19a is traced. For shear-rates below the critical shear-rate, the curves in fig.26c
develop discontinuous jumps. Such jumps are probably of no experimental relevance, since
phase separation will occur during an experiment. In the limit of zero shear-rate, the viscosity
depends linearly on concentration (see eq.(290) withγ̇ = 0).

The normal stress differencesN1 andN2 (normalized withη0 γ̇), are plotted as functions
of the shear-rate for various concentrations in figs.27a andb, respectively, for the paranematic
state and in figs.27c and d for the nematic state. The dashed lines in figs.27a,b correspond to
the low shear-rate expansions (292). Note the strong shear-rate dependencies in the otherwise
isotropic state. As for the suspension viscosity, absolutevalues of normal stress differences
for the nematic decrease on increasing the concentration. In figs.27e and f, the normal stress
differences are given as functions of the concentrations for various shear-rates. The dashed
lines correspond, as before, to the low shear-rate expansions (292). For the same reason as
with the suspension viscosity discussed above, there is a very strong concentration dependence
for shear-rates close to the critical shear-rate.

0.14.3 Non-linear viscoelastic response

Dynamic response functions can be obtained from a Fourier analysis of the time dependence
of eq.(284) for the stress tensor after substitution of solutions of eq.(219) under oscillatory
shear flow, when transients have relaxed. The frequency dependence ofη′ andη′′ for the
otherwise isotropic state are given in figs.28a,b, respectively, for various values of the Peclet
number,

Per,0 = γ̇0/Dr , (300)

whereγ̇0 is the shear-amplitude as defined in eq.(6). Response functions are plotted as func-
tions of the dimensionless bare Deborah number (299). The dashed curves correspond to
the leading Peclet number expansions (297). As soon asPer,0 > 1 (or rather,Peeff

r,0 =

γ̇0/Deff
r > 1), there are deviations from the leading order expansions (297). Higher order,

non-linear response functions now come into play as well. For these higher shear-amplitudes,
the time dependent stress tensor can be Fourier expanded as,

ΣD = 2 γ̇0 Ê

∞
∑

n=0

[ η′
n cos{nωt} + η′′

n sin{nωt} ] . (301)

whereη′
0 andη′′

0 are henceforth simply denoted asη′ andη′′, respectively. The non-linear
dissipative- and elasticity response functionsη′

n andη′′
n are plotted forn = 3 and5 in figs.28c-

f, for the paranematic state. The response functions for even n are zero. The non-linear re-
sponse functions exhibit oscillatory behaviour as functions of the frequency. Note the very
different frequency dependence of third and fifth order functions. Except for the maximum
in η′′

3 , the third order response functions behave qualitatively similar to those for near-critical
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Figure 27: (a) The normal stress differenceN1 for the otherwise isotropic state, normalized byη0γ̇ as a
function of shear-rate for various concentrations, as indicated in the figure. The dashed lines correspond
to the low shear-rate expansion (292). Here, and in the otherfigures,L/D = 50. (b) The same as in (a)
for the normal stress differenceN2. The dashed lines correspond to the expansion (292). (c) Thesame as
in (a) for the nematic state. (d) The same as in (b) for the nematic state. (e) The normal stress difference
N1 as a function of concentration for various shear-rates, as indicated in the figure. The dashed lines
correspond to the low shear-rate expansion (292). (f) The same as in (e) for the normal stress difference
N2. The dashed lines correspond to the low shear-rate expansion (292).
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systems of spherical colloids (see Dhont and Nägele (1998)). The corresponding response
functions for the nematic state are given in figs.29a-f. There are pronounced differences be-
tween the viscoelastic response of the paranematic and nematic state. First of all, the response
functions for the nematic state are only non-zero in a much smaller frequency range. The
response functions for the nematic state are strongly varying functions of frequency in this
small frequency range. Furthermore, the frequency dependence of, for exampleη′′, changes
with Per,0 in a quite different fashion as compared to the paranematic state. In a paranematic,
η′′ decreases on increasingPer,0 without changing the location of its maximum too much,
contrary to the nematic state, where the predominant effectof increasingPer,0 is to shift the
location of the maximum value ofη′′, while the maximum value itself does not change that
drastically.

The present approach allows for the straightforward (numerical) calculation of response
functions for superimposed oscillatory shear flow as well. We shall not discuss such response
functions here.

0.14.4 Comparison with other theories, simulations and experiments

An expression for the effective viscosityηeff
ellips at zero shear rate for non-interacting ellip-

soidally shaped rods is due to Kuhn and Kuhn (1945) and Simha (1940) (see Larson (1999)
for an extensive overview). They found,

ηeff
ellips = η0

[

1 +

{

8

5
+

p2
e

5

(

1

3(ln{2pe} − 3/2)
+

1

ln{2pe} − 1/2

)}

ϕ

]

. (302)

wherepe = Le/De is the total length (Le) over total thickness (De) ratio of the ellipsoidal
rod. Expanding to leading order inpe gives,

ηeff
ellips = η0

[

1 +
3

2

8

45

p2
e

ln{pe}
ϕ

]

. (303)

In order to compare this result with eq.(291) forγ̇ = 0, note that for cylindrical rods (with
ρ̄ = N/V the number density of rods),

(

L

D

)2

ϕ =

(

L

D

)2
π

4
D2L ρ̄ =

π

4
L3 ρ̄ ,

while for ellipsoidal rods,
(

Le

De

)2

ϕ =

(

Le

De

)2
π

6
D2

eLe ρ̄ =
π

6
L3

e ρ̄ .

When we choose the lengths of the cylindrical and ellipsoidal rods to be equal, that is,

L = Le , (304)

it follows, for equal volume fractions, that our result (291) is identical to eq.(303) (note that
ln{pe} = ln{L/D} + O(1)). This identification also applies to the rotational and trans-
lational diffusion coefficients of free, non-interacting cylinders and ellipsoids : the leading
order expressions for these diffusion coefficients are identical for very long and thin cylinders
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Figure 28: Non-linear response functions for the otherwiseisotropic state: (a) The dissipative response
functionη′ as a function of the Deborah number (299) for various values of the Peclet number (300), as
indicated in the figure. The dashed line corresponds to the leading order expansion (297). Here, and in
the other figures,L/D = 50. (b) The same for the elasticity response functionη′′, where the dashed line
corresponds to the eq.(297). (c) The same for the leading order non-linear dissipative response function
η′
3. (d) The leading order non-linear elasticity response function η′′

3 . (e), (f) The same as figures (c) and
(d) for the response functionsη′

5 andη′′
5 , respectively.
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Figure 29: The same as in fig.28, now for thenematic state.
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Figure 30: (a) Brownian dynamics simulation data from Claeys et al. (1993) for the suspension shear
viscosity (at zero shear-rate and infinite frequency) of ellipsoidal rods as a function of their volume
fraction for various aspect ratiospe, as indicated in the figure. (b) Linear concentration dependence of
the shear viscosity as found in simulations by Yamane et al. (1994).

and ellipsoids, when their lengths are taken equal. In the above we have chosen equal vol-
ume fraction and number density of the cylindrical and ellipsoidal rods. This implies equal
volumes of the rods, from which a relation between the thickness of the rods follows as,

De/D =
√

3/2 . (305)

Other choices for mapping results for ellipsoidal rods ontothose for cylindrical rods can be
used. The above mapping is simple, and correctly compares not only viscosity coefficients but
also diffusion coefficients.

The leading shear thinning behaviour of the zero frequency shear viscosity as found in
eq.(291) may be compared to the result obtained by Berry and Russel (1987), which reads in
our notation,

ηeff = η0

[

1 +

{

1 − 1

50

(

γ̇

Dr

)2
}

α ϕ +
2

5

{

1 − 0.0342

(

γ̇

Dr

)2
}

α2 ϕ2

]

. (306)

up to second order in concentration and shear-rate. This result is valid in the dilute regime,
where

`

L
D

´2
ϕ ≪ 1. To first order in volume fraction this agrees with our result(291). There

are serious differences, however, for theϕ2-contribution. First of all, as discussed in the
previous section, we predict a linear volume fraction dependence of the shear viscosity at zero
shear-rate. From eqs.(290), and from eq.(297) at infinite frequency, we obtain,

ηeff = η0 [ 1 + α ϕ ] , ηeff
∞ = η0 [ 1 + 1

4
α ϕ ] , (307)

where, as before,ηeff is the zero frequency andηeff
∞ the high frequency viscosity. The above

result (306) for zero frequency of Berry and Russel predictson the other hand, at zero-shear-
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rates and up to second order in concentration,

ηeff = η0

[

1 + α ϕ +
2

5
α2 ϕ2

]

. (308)

On the basis of this latter prediction, a pronouncedϕ2-dependence for long and thin rods is
expected, sinceαϕ ∼ L

D
/ ln{ L

D
} → ∞ as L

D
→ ∞, for a given value ofL

D
ϕ. For zero shear-

rates, we may compare the above predictions with computer simulations by Claeys and Brady
(1993) on ellipsoidal rods. In fig.30a, simulation data fromClaeys and Brady (1993) for the
effective zero shear-rate viscosities at infinite frequencies are plotted for three aspect ratiospe

of the ellipsoidal rods :pe = 50, 20 and10. There is a remarkable linear concentration de-
pendence over a large concentration range, especially for the longer rods. In fact, Claeys and
Brady (1993) remark that “Somewhat surprisingly, the dispersion containing1% rods of as-
pect ratio50 still responds hydrodynamically as if it were dilute, even thoughnφ

4
3
πa3 = 25”

(in their notation,nφ is the number density of rods anda = L/2). Such a linear concentration
dependence is also found in computer simulations on non-Brownian rods by et al. (1994) (see
fig.30b). They state that “· · · the excess viscosity is proportional to the number densityn even
in the regionnL3 ≈ 40, · · · ”. The magnitude of the second order in volume fraction contribu-
tion in the Berry-Russel equation (306), relative to the first order contribution is2

5
αϕ ≈ 50%

for the highest concentration shown in fig.30 for bothpe = 20 and50. The large second order
in concentration contributions predicted by Berry and Russel are thus in disagreement with
the linear relationship found in fig.30. A decrease of the Huggins coefficient with increasing
aspect ratio is confirmed in experiments on spindle-type colloidal hematite rods by Solomon
and Boger (1998) (see fig.2 and table III in this reference).

The slope of the simulation results for the high frequency viscosityηeff
∞ versus the volume

fraction in fig.30, taken from Claeys and Brady (1993), may becompared to the slopeα/4
as predicted in eq.(307). Noting that the volume fraction ofellipsoids in fig.30a is equal to
π
6

DL2 ρ̄ while for the cylindrical particles under consideration here the volume fraction is
equal toπ

4
DL2 ρ̄, a slope of36 is found from the simulation data forL/D = 50, whereas

from eq.(289) we find a slope of 29. ForL/D = 20 one finds a slope of9 from fig.30,
while α/4 = 6, and forL/D = 10 one finds3.8 andα/4 = 1.9. The slope found from
simulations thus seems to converge to the asymptotic resultin eq.(307) when the aspect ratio
is large enough.

The linear concentration dependence of the zero-shear viscosity is not found within the
DEK-theory (Doi and Edwards (1986)), where the concentration dependence originates from
the assumed state dependence of the rotational tracer diffusion coefficient.

The experiments by Graf et al. (1993) and Schmidt et al. (2000) on fd-virus suspensions
do not show a linear concentration dependence of the zero-shear and zero-frequency viscosity
(except maybe for the salt free case in fig.3 of Graf et al. (1993), which result should not be
taken as proof of the present theory in view of the not well understood behaviour of fd-virus
at very low ionic strength). The higher order concentrationdependence as found for fd-virus,
however, is much weaker than for hard-spheres, indicating that, in accordance with our find-
ings, elongated objects tend to diminish non-linear concentration dependence. Similarly, a
considerable second order concentration dependence of theshear viscosity is found experi-
mentally for Xanthan gum by Chauveteau (1982). It is known that fd-virus is relatively stiff
(contour length is880 nm, intrinsic persistence length is2200 nm), but nevertheless behaves
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quite non-Onsager like, in the sense that the relative isotropic-nematic bi-phasic gapwidth
in the absence of shear flow is much narrower than the width forvery long and thin, truely
rigid rods (see Tang and Fraden (1995)). Hence, even for relatively stiff rod like particles, the
approximation (208) for the pair-correlation function is not very good. Xanthan and “stiff”
polymers like PBLG (Yang (1987) and Mead and Larson (1990)),are even more flexible than
fd-virus. The non-zero Huggins coefficient at zero shear-rate found experimentally for fd-
virus by Graf et al. (1993), Xanthan gum by Chauveteau (1982)and PBLG by Yang (1987)
and Mead and Larson (1990) is probably due to flexibility. In view of this sensitivity on
flexibility, it would be very interesting to include flexibility (even up to leading order in the
inverse persistence length) in stress calculations. The sensitivity on slight flexibility obscures
the comparison of theories for truly stiff rods with experiments.

The difference between the experimental rods mentioned above and the model rods in
computer simulations, is their degree of stiffness. The advantage of computer simulations is
that the persistence length of rods can be made infinite. In the computer simulations mentioned
above, hydrodynamics are taken into account. The differentconcentration dependence of the
zero shear viscosity (at least for long and thin rods) found in experiments as compared to
simulations, as far as the Huggins coefficient is concerned,is therefore most likely due to
flexibility.

Despite the sensitivity of viscoelastic response functions on flexibility, we shall neverthe-
less compare experimental data with our theoretical predictions. This comparison should be
taken seriously only on a qualitative level. Fig.31 shows experimental data for the shear-rate
dependence of the shear viscosity of Xanthan (Chauveteau (1982)) with two different molar
weights, PBLG (Yang (1987)) and a salt free fd-virus suspension (Graf et al. (1993)). Plotted
is the intrinsic viscosity[η] = η/η0 − 1, with η0 the solvent shear viscosity, relative to its
value[η]0 at zero shear-rate. For Xanthan we tookDr = 133 s−1 and103 s−1 for the low and
high molecular weight, respectively, as reported by Berry and Russel (1987), for PBLG we
tookDr = 167 s−1, as reported by Larson (1999), and for salt free fd we tookDr = 11 s−1

(see Graf et al. (1993)). The solid lines refer to the presenttheory withL/D = 50 (the precise
form of these curves is insensitive to the aspect ratio). TheXanthan and PBLG suspensions
are dilute, and are seen to be in reasonable agreement with theory. The concentration of the
salt free fd-virus suspension is equal to6 c∗, wherec∗ is the overlap concentration. There is
some deviation from the fd-data in comparison to theory, which may be either due to flexibility
or aggregation at low ionic strength.

The linear concentration dependence in eq.(307) holds up tothe isotropic-nematic phase
transition. Within the nematic state this result is no longer valid, since in deriving eq.(307)
we linearized around the isotropic state (see eq.(285)). Ascan be seen from fig.26b, the
viscosity decreases with increasing concentration for a nematic. As was mentioned before,
this is the result of an increase in alignment on increasing the concentration. Such a decrease
of the shear viscosity with increasing concentration is indeed observed experimentally (see for
example fig.10.5 in Doi and Edwards (1986) and fig.1 in Kiss andPorter (1978)). Furthermore,
the type of concentration dependence of the shear viscosityat higher shear-rates as found in
fig.26c is also seen in experiments (see for example fig.10.9 in Doi and Edwards (1986)).

To leading order in concentration, the low shear limiting expressions (292) for normal
stress differences are also found by Hinch and Leal (1972), except that instead of the prefactor



100

0.01 0.1 1 10
0.0

0.5

1.0

4
2

L/D f= 0[h] / [h]
0

Pe
r

Figure 31: The intrinsic viscosity[η] = η/η0 − 1, relative to its value[η]0 at zero shear-rate, as
a function of the bare rotational Peclet number. The solid line are theoretical predictions for various
values of L

D
ϕ, as indicated in the figure, forL/D = 50 (the theoretical curves are insensitive to the

precise value of the aspect ratio). The symbols relate to experimental data for Xanthan by Chauveteau
(1982) (O-small molecular weight,△-large molecular weight), for PBLG by Yang (1987) (�) and for
salt-free fd by Graf et al. (1993) (♦).

−1/40 they find−1/28. Within the DEK-theory, it is found that, to leading order inshear-rate,

N1 = η0
1

30
ρ̄ kBT

γ̇2

D̃2
r

,

N2 = −η0
1

105
ρ̄kBT

γ̇2

D̃2
r

,

whereρ̄ is the number concentration of rods andD̃r is their state dependent rotational tracer
diffusion coefficient. Using thatDr = 3kBT ln{L/D}/πη0L

3 in the expression (289) forα,
we find from eqs.(292) that,

N1 = η0
1

30
ρ̄ kBT

γ̇2

Dr Deff
r

,

N2 = −η0
1

300
ρ̄kBT

γ̇2

Dr Deff
r

,
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where the effective rotational, collective diffusion coefficient Deff is given in eq.(230). The
prefactor forN2 is almost a factor of3 smaller than in the DEK-theory, and in both expres-
sions we find the combinationDr Deff

r instead ofD̃2
r . Experimental results for normal stress

differences on fibers are reported by Zirnsak et al. (1994). Here, Brownian motion is very
weak as compared to shear forces, so that one should compare with the high shear-rate results
as plotted in fig.27. One should be careful in comparing, since inertial effects in fiber suspen-
sions may play a role. As can be seen from figs.27a,b, both normal stress differences become
linear functions of the shear-rate for high shear-rates (sinceN1/γ̇ andN2/γ̇ tend to constant,
shear-rate independent values). This remarkable linear shear-rate dependence is indeed typ-
ically found in experiments on fibers (see, for example, fig.11 in Zirnsak et al. (1994)). In
addition, in figs.16,17 of the same reference, it is found that the first normal stress difference
varies linearly with concentration. This is also found in our fig.27e for high shear-rates, for
concentrations whereL

D
ϕ is less than about3. The concentrations in the experiments on fibers

is indeed well within this range.

Normal stress differences that change from being positive to negative on increasing the
shear-rate, and for larger shear-rates from negative to positive again, were reported by Iizuka
(1978), Kiss and Porter (1978), Kiss (1996) and Larson (1996) for PBLG solutions in m-
cresol, and later for the same polymer by Magda et al. (1991).Marrucci and Maffettone
(1989) predict, on the basis of a two-dimensional DEK-like approach for a homogeneous
nematic, that the normal stress differenceN1 is negative at low shear-rates and becomes pos-
itive at higher shear-rates (see their fig.10). This behaviour is found for shear-rates which are
large enough to assure that stationary solutions of equations of motion exist, that is, where
tumbling or wagging are absent. Larson (1990) analyzed the full 3-dimensional DEK-theory
(using closures as obtained by Hinch and Leal (1976)), and suggests that the experimentally
observed sign changes of normal stress differences are due to the existence of tumbling or
wagging nematic domains. By time-averaging of stresses generated by tumbling domains
over a number of oscillations, he indeed finds the kind of signchanges for normal stress dif-
ferences that are observed experimentally. This kind of behaviour is essentially also found
within the two-dimensional DEK-like approach by Marrucci and Maffettone (1990a), Mar-
rucci and Maffettone (1990b). Magda et al. (1991) suggestedthat polydomain nematics may
exhibit apparent steady flow behaviour, even though each individual domain exhibits tum-
bling or wagging, since in a rheometer averages over many independent tumbling domains are
probed. Tumbling and wagging can be observed in an experiments by flow reversal, which
renders the various domains coherently tumbling/wagging for some time. As mentioned be-
fore, whether a theory predicts tumbling and wagging is verysensitive to the closure relation
that is used. Our closure relation (227) is not suited to describe tumbling and wagging. Other
closure relations can be used to study these time-periodic states (see Marrucci and Maffettone
(1989), Larson (1990), Marrucci and Maffettone (1990a), Marrucci and Maffettone (1990b)
and Forest and Wang (2003)). Due to the sensitivity for the prediction of time-periodic states
on the closure relation, the most sensible thing to do seems to employ the original equation of
motion (213), before introducing a Ginzburg-Landau expansion.
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Figure 32: A photograph from the side of an optical couette cell betweentwo crossed polarizers. The
couette cell contains an fd-virus suspensions in a vorticity banded state. The width of the shear cell is
about5 cm, while the height of the bands is about1 mm.

0.15 Current Research Topics

Some of the current research interests related to what has discussed in the present chapter will
be briefly described in this last section. Current research interests include,

(i) shear-banding transitions,

(ii) the non-equilibrium phase behaviour under shear flow,

and,

(iii) phase separation kinetics under flow conditions.

0.15.1 Shear-banding transitions

There are essentially two types of banding transitions observed experimentally in various types
of systems containing mesoscopic entities : vorticity banding and gradient banding. Here,
“bands” refer to coexisting regions under stationary flow which have different microstruc-
tural order and can sustain different shear rates and/or stresses. In case of vorticity banding,
regularly stacked bands in the vorticity direction are observed, which differ in their average
orientational order. For gradient banding, two regions coexists, extending along the gradient
direction, each with a different shear rate.
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Figure 33: Experimental phase diagram of fd virus (with added dextran)including the vorticity banding
region.

Vorticity banding Within part of the two-phase region (the region enclosed by the binodal),
fd-virus suspensions exhibit vorticity banding, where regularly stacked bands are formed
along the vorticity direction. The height of these bands canbe up tomm′s. A photograph
of such a banded state in an optical couette cell between two crossed polarizers is given in
fig.32. The difference in contrast of the two types of bands between crossed polarizers is
due to the different orientational order in the bands. The director has different orientations in
the two bands. The concentration difference in the two bandshas been shown to be zero to
within experimental error. The region in the phase diagram where vorticity banding is found
is indicated in fig.33. At lower concentrations, the boundary of the region where vorticity
banding occurs coincides exactly with the binodal. It thus seems that inhomogeneities that
are formed right after a shear-rate quench into the two-phase region (the region bounded by
the paranematic-nematic binodal) are necessary to render normal stresses such that they in-
duce an instability along the vorticity direction leading to banding. If this is indeed the case,
equations of motion need to be analyzed which account for large gradients in concentration,
orientational order parameter and/or shear rate. For stiffcolloidal rods, such equations of mo-
tions have been derived by Dhont and Briels (2002), Dhont andBriels (2003). The particular
normal stress behaviour that leads to vorticity banding andthe role of inhomogeneities leading
to that behaviour is not yet understood (see, however Olmsted and Lu (1999), where vorticity
banding is assumed to occur whenever the velocity-gradientstress versus the shear rate rela-
tion is multi-valued). At higher concentrations, there areindications that banding ceases to



104

0.10 0.15 0.20 0.25
1.0

1.5

2.0

4.28

L/Df = 4.2

s
12

Pe
r

0.15 0.16 0.17
0.65

0.66

0.67

0.68

0.10 0.15 0.20 0.25
1.0

1.5

2.0

4.28

L/Df = 4.2

s
12

Pe
r

0.15 0.16 0.17
0.65

0.66

0.67

0.68

Figure 34: The dimensionless flow-gradient componentσ12 ≡ Σ12/η0 Dr of the stress tensor as a
function of the shear-rate for concentrations close to the critical concentrationL

D
ϕ = 4.281 · · · ; see

fig.19b. The smaller figure on the right side is a blow-up of thevan der Waals loop.

occur when tumbling/wagging sets in.

Gradient banding On the basis of the stationary forms of the equation of motion(219) and
the expression (284) for the deviatoric stress tensor (where Dr is the bare, state-independent
rotational diffusion coefficient), a non-monotonic behaviour of the shear-stress as a function of
shear-rate is found. Such a “van der Waals loop-like” behaviour is only found for concentra-
tions very close to the critical concentrationL

D
ϕ = 4.281 · · · , as can be seen in fig.34, where

the dimensionless flow-gradient componentσ12 = Σ12/η0 Dr of the stress tensor is plotted
as a function of shear-rate. Such a decrease of the stress in acertain shear-rate interval implies
that the usual linear flow profile as depicted in fig.1a is unstable. The stable flow profile is now
a banded flow, where two regions with different shear rates are in coexistence. Within these
two regions (the “bands”), the shear rate is constant, independent of position. The shear rates
within the two bands can be found from a modified equal area construction on the van der
Waals loop in fig.34 (see Olmsted and Lu (1999), Olmsted (1999), Olmsted et al. (2000), Lu
et al. (2000), Fielding and Olmsted (2003) and Dhont (1999)). As can be seen, the difference
between these shear rates is very small. Since the concentration range where gradient banding
is expected to occur and the difference in shear rates as sustained in the two bands is very
small, gradient banding in suspensions of stiff rods will bedifficult to detect experimentally.
In addition, passing the critical point at a fixed concentration by increasing the shear rate, the



0.15 Current Research Topics 105

two-phase region is also probed (see figs.19b and 21), as a result of which phase separation
will occur during a rheological experiment. It is possible,however, that gradient banding also
occurs within the two-phase region (the region bounded by the paranematic-nematic binodal),
which has not been studied experimentally yet. The situation for worm-like micellar systems
is different. Here strong gradient banding has been observed outside the two-phase region.
The reason for such pronounced gradient banding is probablythat shear flow enhances align-
ment, which enhances head-to-tail collisions leading to longer worms, leading in turn to a
higher degree of alignment. This mechanism probably renders wormlike micellar systems
much more strongly shear thinning as compared to, for example, fd-virus suspensions, giving
rise to a more pronounced van der Waals loop like behaviour ofthe stress versus shear rate.

Although gradient banding of suspensions of stiff rods is experimentally possibly less
relevant, these systems do allow to gain in understanding onthe microscopic origin of the van
der Waals loop-like behaviour of the stress tensor. The reason for the strong shear-thinning
behaviour on passing the critical point is that rotational motion is very slow at the critical
point (since thereDeff

r = 0, as discussed in subsection 11.1), so that shear-aligning forces are
not counterbalanced any more by rotational diffusion. A small increase in shear-rate near the
critical point therefore results in an appreciable increase of the degree of alignment, leading to
strong shear thinning, giving rise to the van der Waals loop like behaviour of the stress tensor.
It may be a general feature for the origin of gradient banding, that the dynamics of a variable,
that strongly couples to the stress, becomes very slow on increasing the shear rate.

0.15.2 The non-equilibrium phase diagram under shear flow

A sketch of a possible complete phase diagram of rods subjected to simple shear flow, for
concentrations below the nematic-to-smectic transition,is given in fig.35. As discussed before,
the location of the binodal and the region within the two-phase region (as enclosed by the
binodal) where vorticity banding occurs has been obtained experimentally for an fd-virus
suspension with added dextran that induced slight attractions between the rods. At lower
concentrations, the region where vorticity banding ceasesto occur coincides with the binodal.
There are indications that the vorticity-banding ceases tooccur at higher concentrations where
non-stationary, time-periodic states become stable. Gradient banding is expected to occur in
a very small concentration interval close to the critical point (as discussed above), but has so
far not been observed experimentally.

Characteristic features of vorticity bands have not been investigated yet. It is not known
how the band height varies with shear rate and concentration, the internal orientational order
within the bands has not been investigated, and it is not known whether or not there is a
dependence on the gap width of the shear cell.

The various types of non-stationary states as described in detail by Rienäcker and Hess
(1999) and Hess and Kröger (2004). These various types of time-periodic states are difficult
to distinguish experimentally. So far, only tumbling and wagging states have been seen in fd-
virus suspensions by Lettinga and Dhont (2004). The phase diagram in fig.35 may, however,
be more complicated as far as these time-periodic states areconcerned.
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Figure 35: A sketch of the possible non-equilibrium phase diagram of stiff rods.

0.15.3 Phase separation kinetics under flow conditions

No experimental results for demixing kinetics of colloidalsystems consisting of either spheri-
cal or rod-like colloids under shear flow have been publishedso far. An analysis of a simplified
Smoluchowski equation in the initial stage of spinodal demixing of suspensions of rods in the
absence of flowhas been discussed by Winters et al. (2000). Initial spinodal decomposition
of suspensions of spheres in the presence of shear flowhas been analyzed by Dhont (1996),
which analysis reproduces features that are seen experimentally for fluid mixtures by Baum-
berger et al. (1991). There are as yet no theories on spinodaldecomposition of suspensions
of rod-like colloidsunder shear flow, although much work has been done on polymer blend
demixing under flow conditions.

There are regions in the phase diagram where decomposition proceeds through spinodal
demixing or by nucleation and growth, depending on the degree of orientational order of
the initial state. These regions are most conveniently identified by means of the bifurcation
diagrams as discussed in section 11.

The kinetics of vorticity-band formation has not been studied so far. Experiments indicate
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that these bands are formed from an unstable state, that is, by means of a spinodal type of
demixing, with a time constant that varies with shear rate and concentration. The same ex-
periments show a remarkably strong dependence of the heightof the bands and the rate with
which bands are formed on the gapwidth of the shear cell (Kanget al. (2004)).

Appendix A

This appendix deals with the mathematical details of how bead index summations can be
calculated by means of integration.

Consider the function appearing in eq.(35),

f(L/D) =

1
2n
∑

j=− 1
2n

1
2 n
∑

i = − 1
2

n , i 6= j

1

| i − j | .

Let us first evaluate the sum,
1
2n
∑

i = − 1
2

n , i 6= j

1

| i − j | .

This sum equals the surface area of all the rectangles in fig.36. It can be replaced by an
integral, when the summation range(− 1

2n, 1
2n) is large,

1
2n
∑

i = − 1
2

n , i 6= j

1

| i − j | ≈
[

∫ j− 1
2

− 1
2 (n+1)

+

∫ 1
2 (n+1)

j+ 1
2

]

di
1

| i − j | . (309)

The difference between the sum and the integral is the sum of the dashed surface areas in
fig.36 (with their proper sign). For increasingL/D-ratios, this difference tends to a constant,
while the sum itself goes to infinity. The relative error thatis made by replacing the sum by

i
j j+1 j+2 j+3j-1j-2j-3

ji -

1

i
j j+1 j+2 j+3j-1j-2j-3

ji -

1

Figure 36: The sum in eq.(309) equals the surface area of all rectangles, and the integral is the surface
area under the solid curve.
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an integral thus tends to zero asL/D tends to infinity. The leading terms in the above integral
are,

ln{j +
1

2
(n + 1)} + ln{1

2
(n + 1) − j} .

This expression is substituted into eq.(309), where the sumover j is again replaced by an
integral. Using the standard integral,

∫

dz zm ln{z} = zm+1

[

ln{z}
m + 1

− 1

(m + 1)2

]

,

one ends up, to leading order inD/L, with the result given in eq.(36). The two values of
j = ±n/2 do not contribute to leading order, so that in the evaluationof summations,j may
always be assumed in the interior of the summation range.

Appendix B : Useful mathematical identities

Useful mathematical identities which are frequently used in the present chapter are,

R̂2
(· · · ) = −2û · ∇u(· · · ) − ûû : ∇u∇u(· · · ) + ∇2

u(· · · ) ,

R̂2
(a · û)2 = 2

[

a2 − 3(a · û)2
]

,

R̂2
(û ·M · û) = −6 (û · M · û) + 2 Tr{M} ,

R̂2
(ûû) = −6ûû + 2Î ,

(û× M · û) · R̂(· · · ) = [∇u(· · · )]·(M·û)−(û·[∇u(· · · )])(û·M·û) ,

R̂ · [û × (M · û)] = −3(û · M · û) + Tr{M} ,

R̂ · ((· · · )(û · M · û)) = [Tr{M} − 3(û ·M · û)] (· · · ) + (M · û) ·
[

Î − ûû
]

· ∇u(· · · ) ,

R̂ · (û× a) = −2(û · a) ,

R̂(û ·M · û) = û×
[

M · û + MT · û
]

,

a · R̂û = a× û .

Here,M anda denoteû-independent tensor and vector, respectively, and(· · · ) denotes an
arbitrary, but differentiable, scalar or vector field. The above identities are easily verified by
explicit differentiation.

Appendix C : On the accuracy of the closure relation (227)

In order to asses the accuracy of the closure relation (227),we numerically solve the Smolu-
chowski equation (213) for a single rod in shear flow, that is,without the interaction term.
From the stationary numerical solutionP (û, t → ∞), bothS andS(4) can be obtained by
numerical integration. This allows to compare the approximation (227) with the exact form of
S(4). Note that the stationary solution of eq.(213) is a functionof the shear rate through the
dimensionless rotational Peclet numberPer = γ̇/Dr.
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Figure 37: A test of the accuracy of the closure relation (227) for (a)M = Ŝ and (b)M = Ê. Solid
lines are obtained from numerical solution of the Smoluchowski equation (213), and dotted lines are
obtained fromS using the closure relation (227). The numbers indicate the tensor elements. Tensor
elements that are not shown are0.

A comparison between the exact values (solid lines) and values obtained from the closure
relation (227) (dotted lines) for the non-zero components of the tensorsS(4) : S andS(4) : Ê

are given in figs.37a,b, respectively. As can be seen, the shear-rate dependence of the various
components is well reproduced by the closure relation. Moreover, the accuracy of the closure
relation (227) is seen to be accurate to within1% for M = S, and about10% in caseM = Ê.
Computer simulations indicate the same accuracy for largerconcentrations.

Appendix D : Evaluation of sums over bead index numbers

Consider the evaluation of eq.(272) to obtain an explicit expression for the sum in eq.(271).
As a first step, the double summation in eq.(272) is rewrittenas,

∑

α

∑

β 6=α

G(α)

|α − β | F
h
j,β =

∑

α

∑

β 6=α

G(β)

|α − β | F
h
j,β +

∑

α

∑

β 6=α

G(α) − G(β)

|α − β | Fh
j,β . (310)

The last term in this equation can be rewritten, by first interchanging the summation indicesα
andβ, and subsequently interchanging the order of summations, as,

∑

α

∑

β 6=α

G(α) − G(β)

|α − β | Fh
j,β =

∑

β

∑

α6=β

G(β) − G(α)

|α − β | Fh
j,α =

∑

α

Fh
j,α

∑

β 6=α

G(β) − G(α)

|β − α | .

(311)
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After a similar interchange of the order of summation in the first term on the right hand-side
of eq.(310), substitution of eqs.(310,311) into eq.(272) gives,

∑

α

G(α)Fh
j,α = −γ

∑

α

G(α) [vj,α − Uj,α]− 3
8

[

Î + ûjûj

]

·





∑

α

G(α)Fh
j,α

∑

β 6=α

1

|α − β | + ∆



 ,

(312)

where,

∆ =
∑

α

Fh
j,α

∑

β 6=α

G(β) − G(α)

|β − α | . (313)

Consider the first contribution between the square bracketsin eq.(312),
∑

α

G(α)Fh
α

∑

β 6=α

1

|α − β | . (314)

The sumS(α) ≡ ∑

β 6=α 1/ |α− β | can be approximated by an integral. To leading order one
finds,

S(α) ≡
∑

β 6=α

1

|α − β | =

[

∫ α− 1
2

− 1
2 ( L

D
−1)

+

∫ 1
2 ( L

D
−1)

α+ 1
2

]

dx
1

|x − β | .

The integrals are easily evaluated to yield,

S(α) = 2 ln{2} + ln { 1
2
( L

D
− 1) + α} + ln { 1

2
( L

D
− 1) − α} .

Except forα’s close to the ends of the rod, this gives to leading order,

S(α) ≈ 2 ln { L
D
} . (315)

In fig.38a,S(α)/2 ln{L/D} is plotted as a function ofα/m, with 2m + 1 the number of
beads (so thatα/m ranges from−1 to +1). As can be seen, the approximation (315) is good
to within about10 %, except at the very ends of the rod. In fact, the width of the region at
the tips of the rod where eq.(315) is not a good approximationasymptotically vanishes in the
limit whereL/D → ∞. Hence, except whenG(α)Fh

j,α in eq.(314) peaks at the ends of rod
j, eq.(315) can be used as a good approximation. For our purpose, there is no reason for the
functionG(α)Fh

j,α to peak at the very ends of the rod. A quantitative estimate for the error
made in using eq.(315), is the differences between the sums

∑

α S(α) and
∑

α 2 ln{L/D} =
2(L/D − 1) ln{L/D}. These sums are plotted as functions ofL/D in fig.38b. The relative
error does not exceed8 % (for L/D ≤ 5), and very slowly converges to0 with increasing
aspect ratio. Hence, to within about10 % error, we can approximate the expression in eq.(314)
by,

∑

α

G(α)Fh
α

∑

β 6=α

1

|α − β | = 2 ln{L/D}
∑

α

G(α)Fh
j,α . (316)

The term on the left hand-side in eq.(312) can be neglected against this contribution, which is
logarithmically larger.
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Figure 38: (a) S(α)/2 ln{L/D} as a function ofα/m with 2m + 1 the total number of beads (where
S(α) ≡

P

β 6=α 1/ | α − β |). The lower curve is forL/D = 20, the upper curve forL/D = 201. (b)
the sums

P

α S(α) and
P

α 2ln{L/D} = 2(L/D − 1) ln{L/D} as a function ofL/D. The relative
error between the two sums never exceeds8%, and very slowly converges to0 with increasingL/D.

For the divergence of the stress tensor in eq.(267) we need toevaluate the sum,

S ≡
∑

α

< δ(r − r1 − α D û1)F
h
1,α > .

wherej is taken equal to1 for convenience. Writing the ensemble average in terms of an
integral with respect to the probability density function (pdf)P , of all phase space coordinates
of the colloidal rods, the integration with respect tor1 can be done immediately due to the
delta distribution, leading to,

S =

∮

dû1

∫

dΓ
∑

α

P (r1 = r − α Dû1, û1,Γ, t)Fh
1,α(r1 = r − α Dû1, û1,Γ),

whereΓ stands for the phase space coordinatesr2, · · · , rN , û2, · · · , ûN . The integrand is of
the form of the left hand-side of eq.(272), except that inFh

1,α the positionr1 is taken equal to
r−α Dû1, which does not affect the present analysis leading to eq.(273). The functionG(α)
is now equal to,

G(α) = P (r1 = r − α Dû1, û1,Γ, t) .

Since the pdf is a continuous differentiable function ofr1, there is a scalarz betweenα and
β, such that,

G(β) − G(α)

β − α
=

dG(z)

dz
≡ dP (r1 = r− z Dû1, û1,Γ, t)

dz
.
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The latter derivative is just the change ofP on changing the position of rod number1 by
D û1, that is, its center is shifted over a distanceD in the direction of its orientation. Since
for the very large aspect ratios under consideration, suspension properties are essentially
constant over distances of the orderD, so that this is a very small number. The number
R = (L/D)d ln{G(z)}/dz measures the change of “the entropy”ln{P} over distances of
the order of the length of the rods. In terms of this number we have the order of magnitude
estimate,

∆ ∼ R
∑

α

G(α)Fh
1,α .

Hence, according to eq.(316), as long as relative changes ofsuspension properties over the
contour of the rods are much smaller thanln{L/D}, ∆ can be neglected against the first term
between the square brackets in eq.(312). This justifies the step from eqs.(267) to eq.(273,274).

Appendix E : Derivation of eq.(279)

After substitution of eqs.(278,170,166,172,277) into eq.(275) it is immediately found that,

∇ · Σ = η0∇2U(r, t) −∇P ss(r, t) + Ir + It + Iu , (317)

where,

Ir = − γ D̄ Dr

ln{L/D}
<

N
∑

j=1

∑

α

α δ(r − rj − α Dûj)
[

βR̂jΨ + R̂j ln{P}
]

× ûj > , (318)

It = − γ D̄
ln{L/D}

<

N
∑

j=1

∑

α

δ(r − rj − α Dûj) [β∇jΨ + ∇j ln{P}] > , (319)

and,

Iu = 4
3

γ
ln{L/D}

<

N
∑

j=1

[

Î− 1
2
ûjûj

]

·
∑

α

δ(r − rj − α Dûj)

×





D
L

∑

β

Uj,β − Uj,α − 12 α (D
L

)
3
ûj × {ûj ×

∑

β

β Uj,β}



 > . (320)

First consider the relatively simple contribution,

I ≡ <

N
∑

j=1

∑

α

α δ(r − rj − α Dûj) ûj × R̂j ln{P} >

=

N
∑

j=1

∑

α

α

∫

dr1 · · ·
∫

drN

∮

dû1 · · ·
∮

dûN δ(r−rj−αDûj) ûj × R̂j P .
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that appears in eq.(318) forIr. In the second line it is used thatP R̂j ln{P} = R̂jP , where,
P ≡ P (r1, · · · , ûN , t) is theN -particle pdf. For eachj, the integrations with respect torm

andûm with m 6= j can be done immediately. Assuming identical rods gives,

I = N
∑

α

α

∫

dr1

∮

dû1 δ(r−r1−α Dû1) û1 × R̂1 P (r1, û1, t) .

It is to be noted that the differentiation with respect toû1 must be performed, after whichr1

can be replaced byr − αDû1 upon integration with respect tor1. Hence,

I = N
∑

α

α

∮

dû1 û1 ×
[

R̂1 P (r− α Dû0, û1, t)
]

û0=û1

.

The corresponding contribution to the divergence of the stress tensor in eq.(279) follows by
replacing the summation over the bead index numberα by an integral as,

∑

α

f(· · · − α Dû1) = D−1

∫ L/2

−L/2

dx f(· · · − x û1) . (321)

Next consider the somewhat more complicated contribution,

I ≡ β <
N

∑

j=1

∑

α

α δ(r − rj − α Dûj) ûj × R̂jΨ >

= β

N
∑

j=1

∑

α

α

∫

dr1 · · ·
∫

drN

∮

dû1 · · ·
∮

dûN δ(r−rj−α Dûj) P ûj × R̂jΨ ,

which appears in eq.(318) forIr. Using pair-wise additivity (see eq.(203)), substitutionof
eq.(207) together with eq.(209), and assuming identical rods, it is readily found that,

I =
∑

α

α

∫

dr1

∮

dû1

∮

dû2 δ(r−r1−α Dû1) ρ(r1, û1, t)

û1×R̂1

∫

dr2 ρ(r2, û2, t)χ(r1−r2, û1, û2) . (322)

The integration with respect tor2 can be performed after transforming to the integration vari-
ableR = r1 − r2,

∫

dr2 ρ(r2, û2, t)χ(r1−r2, û1, û2) =

∫

dR ρ(r1−R, û2, t)χ(R, û1, û2)

= 2D | û1×û2 |
∫ L/2

−L/2

dl

∫ L/2

−L/2

dl′ ρ(r1−l û1−l′ û2, û2, t) .

In the second equation, the integration with respect toR is transformed to integration with
respect to{l, l′, l′′}, which are defined as, ,

R = l û1 + l′ û2 + l′′
û1 × û2

| û1 × û2 |
,

− 1
2
L ≤ l , l′ ≤ 1

2
L , −D ≤ l′′ ≤ D . (323)
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The Jacobian of this transformation is equal to| û1 × û2 |. Since the suspension properties
do not significantly change over distances of the order of thethicknessD of the rods, the
integration with respect tol′′ gives rise to a prefactor2D. Hence,

I = 2D
∑

α

α

∫

dr1

∮

dû1

∮

dû2

∫ L/2

−L/2

dl

∫ L/2

−L/2

dl′ δ(r−r1−α Dû1) ρ(r1, û1, t)

û1×R̂1 | û1×û2 | ρ(r1−l û1−l′ û2, û2, t) .

As before it should be noted that upon integration with respect to r1, the delta distribution
rendersr1 = r − αDû1 after the differentiation with respect tôu1 has been performed.
Hence,

I = 2D
∑

α

α

∮

dû1

∮

dû2

∫ L/2

−L/2

dl

∫ L/2

−L/2

dl′ ρ(r − α Dû1, û1, t)

û1×
[

R̂1 | û1×û2 | ρ(r − α Dû0−l û1−l′ û2, û2, t)
]

û0=û

.

The bead index summation is replaced by an integral similarly as in eq.(321), leading to (with
û = û1 andû

′ = û2),

I = 2
D

∮

dû

∮

dû′

∫ L/2

−L/2

dx

∫ L/2

−L/2

dl

∫ l/2

−L/2

dl′ xρ(r − x, û, t)

û×
[

R̂ | û×û
′ | ρ(r − x û0 − l û− l′ û′, û, t)

]

û0=û

.

This expression can be found in eq.(279).
The contributionIt to the stress tensor in eq.(319) is evaluated similarly.
Theβ-summations in the contributionIu in eq.(320) are replaced by integrals, similar to

eq.(321), as,
∑

β

β Uj,β = D−2

∫

dx′ x′ U(rj +x′ ûj) . (324)

The prefactors in eqs.(318,319,320) are found from eqs.(169,171) to be equal to,

γ D̄

ln{L/D}
= D

L
kBT , and , 4

3
γ D Dr

ln{L/D}
= 12D2

L3 kBT .

This concludes the mathematical details leading to eq.(279).
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