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Preface

This chapter is a self-contained treatment of various aspmmcerning suspensions of uni-
axial rod-like colloidal particles in flow. First of all, &ttion coefficients of rods in an otherwise
unbounded fluid will be calculated and the motion of a single in flow will be discussed,
both for a non-Brownian and a Brownian rod. The generalizéfidgion equation for inter-
acting rods, the so-called N-particle Smoluchowski equmis then discussed, on the basis
of which the Doi-Edwards equation of motion for the orieittaal order parameter tensor is
derived. This microscopic derivation reveals the appr@tions that are involved in the Doi-
Edwards theory. One of the approximations involves theeawglf dynamical correlations.
Computer simulations indicate that such correlations mighimportant. On the basis of
the Doi-Edwards equation (supplemented with an apprapdiaisure relation) together with
experimental results, the phase behaviour of rods in sisipdar flow is addressed. A mi-
croscopic expression for the stress tensor for suspensfongid colloidal particles is then
derived, and subsequently expressed in terms of the oti@méhorder parameter tensor. The
viscoelastic response of suspensions of stiff rods is disel, and theory is compared with
experiments and simulations. In the last section, curresearch interests will be briefly
discussed, including banding transitions, the non-dapilm phase diagram under flow con-
ditions and phase separation kinetics.
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0.1 Introduction

Flow affects microstructural order of colloidal systemdviro respects : center-to-center cor-
relations are affected by flow and flow can induce changesémtational order. For spherical
colloids, flow-induced changes of macroscopic properties fineir origin entirely in shear-
induced changes of center-to-center correlations. Forspberical colloidal particles, there
is the additional effect that flow tends to align single cigléd particles due to the torques that
the flowing solvent exerts on their cores. For very elongatdbbidal cores, single particle
alignment is dominant over shear-induced changes of cémvegnter correlations. For such
systems, equations for one-particle orientational diistion functions, with the neglect of
flow-induced distortions of center-to-center correlagicare sufficient to predict their macro-
scopic behaviour under flow. For spherical colloidal p&eschowever, one-particle distribu-
tion functions are not affected by flow, so that theory foresjgls should be based on equations
for correlation functions.

This chapter deals with stiff, uni-axial colloidal rods v very large aspect ratio in shear
flow. It will be assumed throughout the chapter that the geioteenter correlation function is
not affected by flow, and is thus equal to the correspondingtation function in equilibrium,
in the absence of flow. In addition, the singlet function afssurrounding a given rod is taken
equal to the singlet function of that given rod at the sameimtf time. As will be discussed,
these two simplifications are equivalent to the neglect afayical correlations. There are
indications from computer simulations, however, that dyital correlations might play a
role.

Examples of flow-affected macroscopic phenomena whichbeilliscussed in the present
chapter are the shear-induced shift of the isotropic-niempagse transition and the shear-rate
dependent viscoelastic response. The effect of shear flanianostructural order, which is at
the origin of shear-induced macroscopic phenomena, witidmsidered in detail. In addition,
shear flow induces phenomena which do not occur in the abs#ritev, such as pattern
formation (or more specific, shear banding) and dynamieakestunder stationary applied
flow. These will be addressed only briefly at the end of thigptéra

The aim of this chapter is to set up, in a self contained faghaomicroscopic theory of
the behaviour of rods in flow. Some of the results presented & on a text book level,
some are re-derivations of well-known equations and somatahe edge of current research
interests. Much of the introductory material on colloidalso discussed by Doi and Edwards
(1986), Russel, Saville, and Schowalter (1991) and Dhafig).

First of all, the so-calledelocity gradient tensawill be defined in section 2. This tensor
describes the type of flow that is applied. Two types of flow @fr@articular importance
: simple shear flow and elongational (or, extensional) floimpe shear flow is a velocity
profile where the gradient in the fluid flow velocity is congtavhereas for elongational flow
the sample is compressed in one direction and elongateaiottter direction. Such flows
can be either stationary or oscillatory.

Colloidal rods tend to align in a flow field due to the interantiof the solvent with the
surface of the core of the rods. As a first step to understawdhientational order is affected
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by flow, the force and torque of the solvent on a single rod imwerwise unbounded fluid
must be calculated. Since the linear dimensions of the mdsuich larger than the size of
solvent molecules, the solvent can be described on the bahkigdrodynamics. The rod is
treated as a macroscopic object as far as its interactichssefvent molecules is concerned.
The basic knowledge of hydrodynamics relevant for collagddeveloped in section 3. The
main result here is that inertial effects can be neglected time scale that is relevant for
colloids, leading to the so-callenteeping flow equationf®r the solvent flow velocity. These
are linear equations of motion for which the Greens func¢tiotown asthe Oseen tenspis
derived in section 3. Friction of rods in a flowing solventh&m treated on basis of these
basic hydrodynamic equations in section 4. Friction coieffits can be calculated exactly
for ellipsoidal rods of arbitrary aspect ratio, which inve$ an exact solution of the creeping
flow equations, Happel and Brenner (1983). Alternativeigtibn coefficients are derived in
section 4 on the basis of the bead model for a rod, by analyeitgs that act on beads.

Once the hydrodynamic friction coefficients are known, tsrbf the orientation of a non-
Brownian rod in a flow field can be analyzed. These so-calidfery orbitsare discussed in
section 5. Here, interactions between rods are not incatedy that is, the orbits of a single
rod in an otherwise unbounded fluid are considered.

Brownian motion in the absence of flow is then analyzed iniee@& on the basis of New-
ton’s equation of motion. This equation of motion includesiadom force which describes
forces originating from collisions of solvent moleculegiwihe surface of the colloidal par-
ticle. Such equations of motion containing a fluctuatingntexre referred to akangevin
equations Specifying certain statistical properties of the randomnté allows to distinguish
between several important time scales and the calculafitreanean squared displacement
Again, this analysis is performed for a single rod in an athige unbounded solvent.

For the description of Brownian motion and diffusion of rad$igher rod concentration,
where interactions between rods are important, it is mongeoient to employ equations of
motion for probability density functions. The fundamergglation of motion of this sort,
the so-calledSmoluchowski equatian derived in section 7. In the same section it is shown
that the diffusive properties as obtained in section 6 orbtses of the Langevin equation are
reproduced by the Smoluchowski equation.

At higher concentrations and when a flow field is applied, thendational order can be
quantified by means of tharientational order parameter tens@. This tensor is introduced
in section 8. It is shown that the largest eigenvalue of #isor is a measure for the degree
of orientational order and that the corresponding eigelovelefines the preferred orientation
of the rods.

Orientational order for very dilute rod-suspensions urilbev are discussed in section 9.
Interactions between rods are neglected here. Solutiotiseo®moluchowski equation are
shown to be in accordance with computer simulations.

Orientational order and phase behaviour of concentrategesisions in flow is analyzed
by means of an equation of motion for the order parameteotefiswhich is known aghe
Doi-Edwards equation In section 10 this equation of motion is derived from the 8mo
chowski equation. This derivation is a microscopic basithefDoi-Edwards equation, which
reveals the approximations that are implicit in the Doi-Bdds equation. To obtain a closed
equation of motion for the second order tenSpa closure relation must be used for a fourth
order tensor. There are a number of propositions for sucbsa relation. A simple closure



relation will be discussed in section 10, which is shown t@beurate to within about0 %.
This particular closure relation, however, can not degcnibn-stationary states under station-
ary flow conditions like tumbling and wagging. To describetsgtates, the Smoluchowski
equation itself should be solved numerically. This will betdiscussed in the present chapter.

The isotropic-nematic phase transition is discussed itiged 1, both without and with
simple shear flow. The bifurcation diagram is introduced #hrecdparanematic-to-nematic and
nematic-to-paranematic spinodals in the shear-rate semucentration plane are calculated.
The prediction of the shear-rate dependent location ofdat®is much more complicated,
and requires equations of motion for the orientational pplrameter tensand the flow
field velocity, which should accurately account for strongdmogeneities in concentration,
orientational order parameter and shear rate. Such egsaifanotion will not be derived in
this chapter, but only briefly discussed in the last sectioowrrent research.

In the derivation of the Doi-Edwards equation of motion frtile Smoluchowski equa-
tion, dynamical correlations are neglected. Computer kitimns indicate, however, that such
correlations are important for the description of diffusiolhe discrepancy between the an-
alytically obtained effective collective diffusion coeifents within the Doi-Edwards theory
and that found in computer simulations is discussed in@edtp.

A microscopic derivation of the stress tensor in terms ofdtvecentration and the orien-
tational order parameter tensor is given in section 13. Mitkrtain approximations, a very
similar expression as in the Doi-Edwards-Kuzuu theory igmled. On the basis of this ex-
pression for the stress tensor, (non-linear) viscoelaistic response of rod suspensions is
discussed in section 14. Analytical and numerical pregitstiare compared to experiments
and computer simulations. A surprising finding is that theozghear, zero-frequency shear
viscosity is a linear function of the concentration up topeigh concentrations, in accordance
with computer simulations. Comparison with experimendiidates a sensitive dependence of
the viscoelastic behaviour on the flexiblity of the core of tiods. So far, no theory on the
dynamics and viscoelastic response is available thatracates flexibility.

Section 15 is a (certainly biased) overview of the curreseagech interests in the field of
rod suspensions under shear flow. The possible non-equitighase diagram is addressed,
together with banding transitions, non-stationary statas kinetics of phase separation and
band formation.

0.2 The Velocity Gradient Tensor

A linear flow profile is characterized by means of the so-cdallelocity gradient tensog,
where the flow velocityU at positionr is written asU = G - r. For spatially varying
flow profiles, velocities can locally be described by suchaedr flow profile, provided that
gradients are small on the length scale set by the size ofolledal particles. The velocity
gradient tensor can have several different forms. In cas®-afalledsimple shear flonthe
gradient velocity tensor is usually denotedlgsand is equal to,

010
r=410 0 0 , simple shear flow Q)
0 00
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Figure 1: (a) Simple shear flow, wherg is the gapwidth. (b) Depicts elongational flow, sometimes
also referred to as extensional flow (where the elongatiandicompression axes are indicated), and (c)
depicts rotational flow. Arrows indicate the flow direction.

The corresponding flow profile is a flow in thedirection, with its gradient in thg-direction,
as sketched in fig.1la. Thedirection is commonly referred to as the vorticity directi The
strength of the flow is characterized by thleear ratey, which equals the spatial gradient
oU,, /9y of the flow velocityU, in thez-direction. For so-calledlongational or extensional
flow, where the velocity gradient tensor is denotedasve have,

0 1 0
E=4%1 00 , elongational flow, (2)
0 0 0

which flow is sketched in fig.1b. In such an elongational floafodmable objects tend to
elongate along the so-called extensional axis, and sugpgntedong the compressional axis.
These two directions are indicated in fig.1b. Whenever ibisspecified whether simple shear
flow or elongational flow is considered, the velocity gradiemsor will be denoted &s.

We will encounter the symmetric palit = 1 [G + G| of the velocity gradient tensor,
where the superscripf™” stands for the transpose of the corresponding tensor. [Bage-
tional flow, the velocity gradient tensor is already symiieetrthis is why we denoted the
velocity gradient tensor for elongational flow by &hin eq.(2). For simple shear flow we
have,

E =

N|=

010
A1 1 0 0 , simple shear flow 3)
0 0 O

We will sometimes also encounter the anti-symmetric faet 3 [G — G”] of the velocity
gradient tensor. For elongational flow the anti-symmetait 5 zero, while for simple shear
flow we have,

1 0
Q=14 -1 0 0 | , simpleshear flow (4)
0 0
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The flow velocities corresponding to flow with a velocity giertt tensor equal ti in eq.(3)
or eq.(4) are sketched in fig.1b and c, respectively. The dorrase is an elongational flow,
also referred to as extensional flow, while the second is piegional flow. Note that,

I =E+Q, (5)

so that simple shear flow can be decomposed into a linear catidn of elongational and
rotational flow.

In laboratory experiments, the shear rate is either indegeinof time, or the shear rate
can be sinusoidally oscillating,

4 = timeindependent, stationary flow,
F(t) = Ay cos{wt} , oscillatory flow, (6)

wherew is the frequency of oscillation ant, is referred to as thehear-rate amplitude
Oscillatory experiments can be employed to probe the dycswii a system of Brownian
particles.

0.3 Hydrodynamics

Consider a system containing large rod-like particles imsme in a fluid. There are three
types of interactions to be distinguished in such a systenteractions of rods with rods,
solvent molecules with solvent molecules and rods with eativmolecules. The latter two
types of interactions can be described on the basis of phemological equations for fluid
flow, provided that the linear dimensions of the rods are magier than the size of solvent
molecules. Such solutions of large molecules are refeesBrownian or colloidal sys-
tems The large difference in relevant length scales betweesdahaent and the assembly of
Brownian rods allows to describe the solvent on a phenonogial level, without losing the
microscopics for the assembly of Brownian particles. Inhsagphenomenological treatment,
only macroscopic quantities of the fluid like its viscositydamass density enter the equations
of interest. In the present section, friction coefficientsaals are calculated, which will be
used later in this chapter in microscopic equations of nmdfibw rod-like Brownian particles.
The mechanical state of the solvent is characterized byt Velocityu(r, t) at position
r at timet, the pressure(r, t) and the mass densip(r, ¢t). All these fields are averages over
small volume elements that are located at the various pasiti. These volume elements
must be so small that the state of the fluid hardly changesmiitle volume elements. At the
same time, the volume elements should contain many fluid catds, to be able to properly
define such averages. In particular we wish to define the théymamic state of volume
elements, which is possible when they contain a large anafsaivent molecules, and when
they are in internal equilibrium, that is, when therelasal equilibrium In this way the
temperature field (r, t) may be defined. The temperature dependence of, for exarhple, t
mass density is then described by thermodynamic relatibhese thermodynamic relations
are an important ingredient in a general theory of hydrodyina. For our purposes, however,
the temperature and mass density may be considered canitamperature variations due to
viscous dissipation in the solvent are assumed to be nbtgight constant temperature, the
only mechanism to change the mass density of the solvenwariothe pressure. For fluids,
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however, exceedingly large pressures are needed to chamgkemsity significantly, that is,
fluids are quitancompressible Brownian motion is not so vigorous to induce such extreme
pressure differences, so that the density will also be asdwonstant. The assumption of
constant temperature and density is also a matter of tinlesscRelaxation times for local
temperature and pressure differences in the solvent aré fagter than typical time scales
relevant for Brownian motion.

Assuming constant temperature and mass density leavas/jusariables which describe
the state of the fluid : the fluid flow velocity(r, t) and the pressurg(r, t). Thermodynamic
relations need not be considered in this case, simplifyiiegohenomenological analysis con-
siderably.

0.3.1 The continuity equation

The rate of change of the mass of fluid contained in some arpittolume)V is equal to the
mass of fluid flowing through its boundaéy)V. The local velocity at surface elements on
0V can be written as the sum of its component parallel and pedipeglar to the surface. The
parallel component does not contribute to in and out flux odsrtarough the boundatyv.
Only the component - i of the flow perpendicular to the surface gives rise to in artdlax
of mass, wheré is the unit normal of the corresponding surface elementcigen
G | o) == 4 a5 {otr a0}
dat Jw ow
wheredS = ndS, with dS an infinitesimal surface area. The minus sign on the rightthan
side is added, because the masglimlecreases whamis along the outward normal. The time
derivative on the left hand-side can be taken inside thgratewhile the integral on the right
hand-side can be written as an integral over the volubheusing Gauss's integral theorem.
This leads to,

[ ar o0+ - (ot} = 0.

whereV is the gradient operator with respecttdSince the voluméV is an arbitrary volume,
the integrand must be equal to zero. This can be seen by clygddsias a sphere centered at
some positiorr, with a (infinitesimally) small radius. Within that smalltsgre the integrand
in the above integral is constant, so that the integral resitie the product of the volume of
W and the value of the integrand at the paintence,

E p(r7t) + V- {p(r7t)u(r7ﬁ)} = 0.
This equation expresses conservation of mass, and isedferias theontinuity equation
For a fluid with a constant mass density, the continuity eéqnatduces to,

V-u(r,t) = 0. @)

Fluids with an essentially constant mass density are eddo asncompressible fluidsand
eq.(7) is therefore sometimes referred to asitttempressibility equatian Being nothing
more than the condition to ensure conservation of masssithige equation is not sufficient
to calculate the fluid flow velocity. It must be supplementgdNewton’s equation of motion
to obtain a closed set of equations.
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0.3.2 The Navier-Stokes equation

The Navier-Stokes equation is Newton’s equation of motmrafsmall amount of mass con-

tained in a volume element within the fluid. Consider suchrdimitesimally small volume

element, the volume of which is denoteddas The positionr of that volume element as a

function of time is set by Newton’s equation of motion. Thememtum that is carried by the

mass element is equal tdr, ¢) (ér)u(r, ¢), so that Newton’s equation of motion reads,
du(r,t)

t)or —— = f
plr.t) o T~ f,

wheref is the total force that is exerted on the mass element. Smisewton’s equations of
motionr is the time dependent position coordinate of the volume efgpanddr /dt = u is
the velocity of the volume element, the above equation camrhiten as,

du(r,t)
ot

Here,Vu is a dyadic product, that is, it is a tensor of which & component is equal to
Viu;, with V; the differentiation with respect tq, thei!” component of-.

The total forcef on the volume element consists of two parts. First of allyghmay
be external fields which exert forces on the fluid. These foere denoted b{gr) £***(r),
that is, f*** is the external force on the fluid per unit volume. The secomd @rises from
interactions of the volume element with the surroundingflui

The forces due to interactions with the surrounding fluidfarmally expressed in terms
of the stress tenso&(r, ¢), which is defined as follows. Consider an infinitesimally §ma
surface area in the fluid, with surface ar#and a normal unit vectai. The force per unit
area exerted by the fluid located at the side of the surfagetarehich the unit normal is
directed, on the fluid on the opposite side of the surface &sdwy definition equal ta'S - X,
with dS=ndS (see fig.2).

Hence, by definition, the force of surrounding fluid on thewné elemenér is equal to,

7§ s’ -E(r',t) = / dr’' V' - E(r',t) = ér V- X(r,t),
dér or

whereddr is the boundary of the volume element. We used Gauss'’s altégrorem to rewrite
the surface integral as a volume integral. The last equéiealid due to the infinitesimal size
dr of the volume element at positian The forcef” on the volume element due to interaction
with the surrounding fluid is thus given by,

p(r,t) or +u(r,t) - Vu(r,t)| = f.

fi(r,t) = (61) V- S(r,1). 8)

There are two contributions to the stress tensor : a cotitvibuesulting from gradients in the
fluid flow velocity, and a contribution due to pressure gratie

Consider first the forces due to pressure gradients. Letkesttee volume elemenir
cubic, with sides of lengthi. The pressure is a force per unit area, so that the force on the
volume element in the-direction is equal to,

1 1 )
2 —_ = — — = — 3 o
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=N

force =dS e 3(F 1)

Figure 2: Definition of the stress tens@.

where (§1)? is the area of the faces of the cube. The force on the volunmegieis thus
—(0r)Vp(r,t). We therefore arrive al/ - ¥ =—Vp. The contribution of pressure gradients
to the stress tensor is thus easily seen to be equal to,

3(r,t) = —p(r,t)i7
with I the3 x 3-dimensional unit tensor. This contribution to the stressor is referred to as
the isotropic part of the stress tensaince it is proportional to the unit tensor and therefore
does not have a preferred spatial direction.

Next, consider the forces on the volume element due to gntie the fluid flow veloc-
ity. When the fluid flow velocity is uniform, that is, when tleeare no gradients in the fluid
flow velocity, the only forces on the volume element are dygréssure and possibly external
forces. There are friction forces in addition, only in calse volume element attains a ve-
locity which differs from that of the surrounding fluid. Thertribution to the stress tensor
due to friction forces is therefore a function of spatialidstives of the flow velocity, not of
the velocity itself. This contribution to the stress tensan be formally expanded in a power
series with respect to the gradients in the fluid flow velodityr not too large gradients (such
that the fluid velocity is approximately constant over dists of many times the molecular
dimension) the leading term in such an expansion sufficesgoribe friction forces. The con-
tribution of gradients in the fluid flow velocity to the strasssor is thus a linear combination
of the derivative$/,u;(r, t), whereV; is the derivative with respect to thi& component of
r, andu,(r, t) is thej** component ofa(r, t).

There are also no friction forces when the fluid is in unifoltation, in which case the
flow velocity is equal tax = € x r, with © the angular velocity. Such a fluid flow corresponds
to rotation of the vessel containing the fluid, relative te tbserver. Linear combinations of
the form,

Viuj (I', t) + Vjui(r, t) y (9)
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are easily verified to vanish in case= € x r. The stress tensor is thus proportional to such
linear combinations of gradients in the fluid velocity field.

For isotropic fluids, with no preferred spatial directidme most general expression for the
componentg;; of the stress tensor as a result of friction is therefore,

2
Xpyij = Mo {viuj + Vju; — g%‘v ' U(I‘J)} +¢00;V-u, (10)

where the subscriptD” stands forthe deviatoric part of the stress tensomhe terms~
V - u(r,t) on the right hand-side are due to the linear combinationsv{®) ¢ = j. The
term—%V -u(r,t) is introduced to make the expression between the curly btattaceless
(meaning that the sum of the diagonal elements of that darion is zero). It could also
have been absorbed in the last term on the right hand-side .cdhstants, and(,, which
are scalar quantities for isotropic fluids, are #ear viscosityandbulk viscosityof the fluid,
respectively. Notice that all terms proportionaMou(r, t) are zero for incompressible fluids.
We thus find the following expression for the total stressterior an isotropic fluid,

2.
S(r,t) = 1o {Vu(r, t) + [Vu(r, 1))’ — 3 IV - u(r, t)}
+ {CO = u(r, t) - p(ra t)} i ) (11)
where the superscrifit stands for transposition.
The above expression for the stress tensor leads tNdkier-Stokes equation

Ou(r,t)

ot +p u(r, t) ’ Vu(ra t) = Mo VQU(I‘, t) - Vp(ra t)

+ (Co + %770) V(V-u(r,t)) + fezt(r) , (12)

where the mass density, and the shear- and bulk viscosityavdaken independent of po-
sition. For incompressible fluids, for whicti - u(r,¢) = 0 (see eq.(7)), the Navier-Stokes
equation reduces to,

w +P u(r; t) . Vu(r; t) = V . E(I‘, t) +f€It (r7 t) = n()VQH(r7 t) _ vp(r7 t) +f€xt (r) )

(13)

Together with the continuity equation (7) for incompresssittuids, this equation fully deter-
mines the fluid flow and pressure once the external force anddary conditions are speci-
fied.

0.3.3 The creeping flow equations

The different terms in the Navier-Stokes equation (13) carvédry different in magnitude,
depending on the problem at hand. In the present case wetarested in fluid flow around
small sized objects (the colloidal particles). Let us eatgrthe magnitude of the various terms
in the Navier-Stokes equation for this case. A typical vdbrethe fluid flow velocity is the
velocity v of the colloidal objects. The fluid flow velocity decreasemfra valuev, close to
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a Brownian particle, to a much smaller value, over a distaricbe order of a typical linear
dimensionu of the particles (for spherical particleds the radius, for a rotating rodis the
length of the rod). Hence, typically,V?u |~ v/a?. Similarly,| u- Vu |~ v?/a. The rate
of change ofu is v divided by the time it takes the colloidal particle to losevelocity due
to friction with the fluid. This time interval is equal to a feines M /-, with M the mass of
the colloidal particle and its friction coefficient (this will be discussed in more délater in
this chapter). Introducing the rescaled variables,

u = ufv,
r = r/a,
t = t/(M/),

transforms the Navier-Stokes equation (13) to,

pyv o pv* . v

4+ VY = B2

M ot + a v a?

whereV’ is the gradient operator with respectifo Introducing further the dimensionless
pressure and external force,

1
V/2u/ _ Evlp+ fe:nt ,

/ a
p = —D,
Tov
f/ea;t — a_2fewt
Tov ’
transforms the Navier-Stokes equation further to,
a27 ou’ ’ , 121 1 / ext
pMnOW+Reu~Vu:V u —Vp £, (14)
The dimensionless numb@&e is the so-calledReynolds numbewhich is equal to,
Re = 22V (15)
Mo

By construction we have,
|u-Vu' |~| V' |~ 1.

Hence, for very small values of the Reynolds number, the teroportional tou - Vu in
the left hand-side in eq.(14) may be neglected. Furtherpforespherical particles we have
v = 6mnoa so thatp a®y/Mny = 9p/2p, ~ 9/2, with p, the mass density of the Brownian
particle. The prefactor ofu’/0t’ is thus approximately equal ®/2. The time deriva-
tive should generally be kept as it stands, also for smalln@lels numbers. Now suppose,
however, that one is interested in a description on the sliffutime scalep > M/~ (the
significance of the diffusive time scale will be discussaddan this chapter). For such times,
the time derivativé)u’ /9t’ is long zero, sinca goes to zero as a result of friction during the
time intervalM//~v. One may then neglect the contribution to the time derieatihich is due
to relaxation of momentum of the Brownian particle as a ttesifriction with the solvent.
The remaining time dependencewfn the diffusive time scale is due to the possible time
dependence of the external force and to interactions whikrdBrownian rods, which vary
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significantly only over time intervals larger than the d#ffe time scale. The value of the
corresponding derivativeu/d¢ can now be estimated as above : the only difference is that
the time should not be rescaled with respect to the fiffyey, but with respect to the diffusive
time scalerp. We now havet’ = t/7p, u’ = u/v, and| du’/dt’ |~ 1. The transformed
Navier-Stokes equation in this case reads,

9 p M/vy ou

s P = R /'VIIZVIQI—V/I f/ewt,
2y o 8t’+ eu u u P+

where all derivatives of the fluid flow velocity’ are of the ordet. Sincerp > M/~, the
time derivative due to changes of the fluid flow velocity assuleof the time varying external
force and interactions with other Brownian particles mawy io@ neglected in addition.

For small Reynolds numbers and on the diffusive time schieNavier-Stokes equation
(16), written in terms of the original unprimed quantitidggrefore simplifies to,

Vp(r,t) —noV2u(r,t) = £ (r). (16)

This equation, together with the incompressibility equat{7), are thereeping flow equa-
tions “Creeping” refers to the fact that the Reynolds number ialmwhich is the case when
the typical fluid flow velocityv is small.

A typical value for the velocity of a Brownian particle canéstimated from the equipar-
tition theorem 1 M < v? >=3kpT (kg is Boltzmann's constant arifl is the temperature).
Estimatingv ~ v/<v? >, using a typical mass af0—'7 kg for a spherical particle with a
radius of100 nm and the density and viscosity of water, the Reynolds nunsbinind to be
equal tol0~2. Hydrodynamics of a fluid in which colloidal particles aretedded can thus
be described on the basis of the creeping flow equations.

For small Reynolds numbers and on the Brownian time scagetiah forces on fluid el-
ements are thus small in comparison to pressure- and friftices. The neglect of inertial
contributions in the Navier-Stokes equation leads to thedi equation (16), which can be
solved analytically in some cases.

0.3.4 The Oseen tensor

An external force acting only in a single poiriton the fluid is mathematically described by a
delta distribution,

fert(r) = fo0(r —1r'). 17)

The prefactoff; is the total force[dr’ £¢**(r’) acting on the fluid. Since the creeping flow
equations are linear, the fluid flow velocity at some paiint the fluid, due to the point force
in r’, is directly proportional to that point force. Hence,

u(r) = T(r—1') .

The tensofT is commonly referred to as t@seen tensgomnamed after the scientist who first
derived an explicit expression for this tensor, Oseen (1L92ZFe Oseen tensor connects the
point force at a point’ to the resulting fluid flow velocity at a poimt Note thatT is only a
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function of the difference coordinate— r’ due to translational invariance of a homogeneous
fluid. Similarly, the pressure at a poinis linearly related to the point force,

pr) = g(r—1')-fo.

The vectorg is referred to here as thpessure vector

Consider an external force which is continuously distelolbver the entire fluid. Due to
the linearity of the creeping flow equations, the fluid flowogaity at some point is simply
the superposition of the fluid flow velocities resulting fréime forces acting in each point on
the fluid. Hence,

u(r) = /dr’T(r —r) - f(x) . (18)

The same holds for the pressure,

p(r) = /dr'g(r —1') - £ () (29)

In mathematical language, the Oseen tensor and the pre&stiog are the Green’s functions
of the creeping flow equations for the fluid flow velocity andgsure, respectively. Once these
Green’s functions are known and the external force is spekifhe resulting fluid velocity and
pressure can be calculated through the evaluation of theeahbtegrals. The calculation of
the Green'’s functions is thus equivalent to solving the girggeflow equations, provided that
the external forces are known.

Let us calculate the Oseen tensor and pressure vector. sTertj substitute eqgs.(18,19)
into the creeping flow equations (7,16). This leads to,

/dr' [V -T(r—1")] f“'(r') = 0,
/dr/ {Vg(r —1') = V*T(r — 1) — ié(r —1r)| - £y = 0,

where, as beford, is the3 x 3-dimensional unit tensor. Since the external force is eahyjt
the expressions in the square brackets must be equal tostetbat the Green'’s functions
satisfy the following differential equations,

V-T(r) = 0,
Vg(r) —nV>T(x) = I4(r). (20)

A single equation for the pressure vector is obtained byntakiie divergence of the second
equation, with the use of the first equation,

Vig(r) = V-16(r) = Vi(r).
Using,

Lvel o s, (21)

47 r
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it follows that,
(r) = 1 vl + G(r)
g(r) = 1 , r).

Here,G is a vector for whictv2G=0, while G — 0 asr — co. It can be shown that such a
vector is0. Hence,

1_1 1 r

The differential equation to be satisfied by the Green's fiondor the fluid flow velocity (the
Oseen tensor), is found by substitution of eq.(22) into2&),(
1 1. 1 rr 1.
2l ——I—nT = — [3— — —1I|.
7 eyt owrte] = g 5 -5
An obvious choice for the term between the square bracketseoleft hand-side of the above
expression is of the form,

i%I —noT(r) = aorinl + o
with a1, n andm constants. These constants can indeed be chosen suchishahsiatz
is the solution of the differential equation (with the boang condition thatT'(r) — 0 as
r — 00). A somewhat lengthy, but straightforward calculatiorigée

1 1

A rr
) = oo [I+ T—Q} . (23)

1l rr

rmr_Q’

This concludes the determination of the Green’s functionstfe creeping flow equations.

0.4 Hydrodynamic Friction of a Single Rod

The behaviour of rod-like colloids in shear flow is strongbupled to friction of solvent with
the rod’s surface. In the present section, friction coedfits for very long and thin rods will be
calculated on the basis of the creeping flow equations. $mwist easily done by considering
a rod consisting of spherical beads with diaméeiefas depicted in fig.3). For very long and
thin rods, friction coefficients for such necklaces are thea as for cylindrical rods with
thicknessD. The number of spherical beads is equahte¢ 1 = L/D (with L the length of
the rod), where the bead index number ranges frojn to +1n. The position of the central
bead (for whichn = 0) defines the position coordinate of the rod.

The flow velocity around a moving rod in shear flow is given,ading to eq.(18), by,

u(r) = G~r+j{ ds’T(r—r1') - f(x'), (24)
oV

where the integral ranges over the surf@&€of the rod. Here, the forc&r’) is the force per

unit area that a surface elementraexerts on the fluid. The first term on the right-hand side

in eg.(24) is the flow that would have existed in the absend¢hefod, the second term is the

contribution due to the presence of the rod. For stick bogndanditions we have that,

ur) = v+ Qx(r—r,) , for redv, (25)
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=

Figure 3: The necklace representation of a very long and thin rod, l@definition of the vectoR. on
the surface of a bead, relative to the position of that bead.

wherev, is the translational velocity of the center of the rogdthe position of the center of
the rod, and? is the rod’s angular velocity relative to its center.

Within the bead model discussed abod¥, is the sum of the surfacés/; of the beads,
with j ranging from—1n to +in. The center position of thg'” bead will be denoted as
r; =r. + j D, wheret is the unit vector along the long axis of the rod, which spesifis
orientation. Within the bead model, eq.(24) reads,

uR+r;) = G- (R+rj)+

f ds’ T(R —-R + I‘ji) . fZ(RI) , (26)
" Jovo

with R =r — r; andR’ = r’ — r; position vectors with lengt) /2 on the surfac&V° of a
bead with its center at; (see fig.(3)). The stick boundary condition (25) now becames
uR+r;) = ve+QxR+r; —r.)
= v.+Qx(R+jDu) , for R=D/2andall j. (27)
In the next two subsections we consider translation (witlmotation) and rotation (without
translation). Motion of a translatirgndrotating rod is a linear superposition of the results for

these two special cases, due to the linearity of the credfingequations and its boundary
condition.

0.4.1 Translational friction

Let us first consider a translating rod in an otherwise q@iestiuid, without shear flow. The
boundary condition (27) reduces simply toR + r;) = v.. The representation (26) far
thus yields,

ve= ), éVUdS’T(RfR%rﬁyfi(R’) , for R=D/2 andallj. (28)

—In
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Integration of both sides over the surface of the entiretiwat,is, operating on both sides with
Y2 4, $ove dS, yields,

1 3n in
Ve = —— dsS dS' T(R — R/ 1) fl R’ . 29
LD J:z—:ln iz_:lnfg‘/o Vo ( J ) ( ) (29)

Using that,

, . D D 1/D\*l. |D D\?| rr
avodST(I‘—R)Zrm{lg+§(§)‘|l+l§—(§)‘|r—2},(30)

it is found that, fori = j, the surface integrals in eq.(29) are equal to,

D .
dST(R—RI-i-I'ji):—I, forz’:j. (31)
Vo 3no
Fori # j, the Oseen tensor may be Taylor expanded as,
T(R - RI + rji) = T(I'ij) + (R - RI) . VLT(I‘U) +--- 5 (32)

with V; the gradient operator with respectitp Only the leading order term in this Taylor
expansion must be retained to obtain expressions fordriatoefficients that are valid to
leading order inL/D (if you wish you may include the next higher order Taylor terand
convince yourself that these terms do not contribute initepdrder). Using eq.(31) and
eg.(32) to leading order in eq.(29) gives,

n in in

1 & D
Ve & 3oL l:z: Fi - L Z Z T(ry) | Fi- (33)

—%n j:—%n i:—%n,m;ﬁj

where,
7{ ds'f;(R) = —FI, (34)
avo

is the total force of the fluid on beadThe first term on the right-hand side is simply the sum
of Stokesian friction forces on the beads, while the secenu represents the contribution
due to hydrodynamic interaction between the beads. Forleagrods, all force¥” may be
taken equal, that is, end-effects may be neglected, simcen#jority of beads (away from the
ends of the rod) experience approximately the same fordestButingF? = 2F", with F"

the total force on the rod, yields,

1 2
Ve = — F" — D
3mnoL L

The double bead index summation can be calculated up toigadder by replacing sums by
integrals (for details see appendix A). It is thus found that

In in

j=-3n i=-dn,i#;

1 1
2" 2"
1

Z Z Tri) = 8mnoD {iJrﬁﬁ} i Z |Zij|

G=—kn i=—dn,i#j j=-3ni=—-4n,i#;

1 . 1L, (L
~ D {I+uu}51n{5}. (36)

In
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We finally obtain, to leading order,

1 1 )
o= = Fh Ind = [I } } Fh
M 3tl dmnpol H{D} tuu
1 L)
~ - In{ =% [T+ adl - Fr. 37
47T77()L n{ D } |: + uui| ( )

Notice that the Stokesian friction of each bead does notitrté in leading order : the major
contribution comes from hydrodynamic fields near each beatkted by the remaining
beads. Hydrodynamic interaction between the beads is thsen#al for the friction of a
translating rod.

Inversion of eq.(37) yields,

. Aol | 1. .
F' = —I';-v,, with Ty = —"— |[I—= , 38

sy r= ity 1 5 (39)
where the tensaF s is referred to as théiction tensor Contrary to a spherical particle, the
friction force is generally not co-linear with its velocityhen the motion of the rod is parallel
to its orientation, the friction force of the rod with the fiuis found from eq.(38) to be equal
to,

Fh = _,YH Ve, (39)
with + the friction coefficient for parallel motign
27T77()L
= ——. 40
T {L/D} (40)
For motion perpendicular to the center line it is likewisarid that,
Fh = —7YL Ve, (41)
with ~, the friction coefficient for parallel motign
4oL
= ——. 42
gas n{L/D} (42)

Notice that this friction constant is twice as large as foraflal motion. This is only true
for very long and thin rods. For rods with smaller aspecbosgtcorrections to the limiting
expressions (40) and (42) were considered by de la Torre &ahBield (1981). Also note
that the friction tensor can be written as,

Ty = ai+7, [ifﬁﬁ} : (43)

where the dyadic produéia is the projection operator parallel to the orientation clien of
the rod and — i is the projection operator in the direction perpendicwai.t This expres-
sion for the friction tensor is generally valid, also for gieo rods, in which case, however,
correction terms should be added to the limiting express{dn,42), as discussed by de la
Torre and Bloomfield (1981).

Consider now the additional contribution of shear flow. TokeésF” as a function of the
bead index may be obtained directly from the above considerations lksifs. Each bead
has a velocity, relative to the externally imposed fluid floglocity, equal tov, — G - r; =
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v.—G-r.—iDG-u. Therelativechange of this velocity between neighbouring beads is thus

~ 1/i, and is small for beads away from the center. Large groupsadbtherefore experience

a friction force as in the case of a uniformly translating neén otherwise quiescent fluid.

Beads away from the center therefore experience a frictocefparallel to the center line

equal to,
F!

il

D
= —f’YHflﬁ-(Vc—G-rc—iDG-fl) ,
and perpendicular to the center line,
h D T P . R
F/ | = 7L [I—uu} (ve— G-r.—iDG- 1) .

Here, the apparent local velocity of the fluid is decomposeisi component parallel and
perpendicular to the rods center line, and the friction ficieht on the bead is equal to that
of an entire rod divided by the number+ 1 = L/D of beads. The total force that the fluid
exerts on the rod is now simply found by summation over altsea

1n

F'o= Z [F?,HJFF?,L}:*('Y||1A11A1+’YJ_[ifﬁﬁ})(vch.rC)
St 174 L N (44)

The last equation is only valid for very long and thin rodseTinst equation is also valid for

shorter rods, where expressions for the two friction coieffits were calculated by de la Torre
and Bloomfield (1981). This resultis precisely eq.(38) fanslational motion in an otherwise
quiescent fluid, where the velocity of the rods center isaledative to the local shear flow

velocity. Such a result is intuitively clear, as additiofrédtion forces due to the shear flow
on the beads with a positive bead index simply cancel withstivae forces on beads with a
negative index.

0.4.2 Rotational friction

Consider a rod in shear flow with its center at the origin (st th = 0 = r.) and with a
prescribed angular veloci§® perpendicular to its center line. The rotational frictiarefi-
cient may be obtained directly from the above results orstedional friction, with arguments
similar to the ones given at the end of the previous subseetiwere the effect of shearing
motion of the fluid on translational friction is considerethe velocity of bead relative to
the local fluid flow velocity is equal t§2 xr; — G - r; = iDQ x 1 — —iD G - 4. The
relativechange of this velocity between neighbouring beads is thus/i, and is small for
beads away from the origin. Large groups of beads therefqrergence a friction force as
in case of a uniformly translating rod in an otherwise quéestdluid. Beads away from the
origin therefore experience a friction force parallel te ttenter line equal to,

T,

D
F! = -7y (iDQxa—iDG W), (45)
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Figure 4: A rod in simple shear flow with its center line parallel to thewfldirection experiences a
non-zero torque entirely due to its non-zero thickness.

and perpendicular to the center line,

D .
F/ | = -7 [[-ud] - (iDRxa-iDG ) (46)
The torque on the rod is thus equal to,
in
Th = Z I'Z'XI:F?7”+F?7J_]
i:—%n
1,
D3 -
- —Tfu[ﬁx(ﬂxﬁ)—ﬁx(Gil)].Zl i%, (47)
1=—35n

where it is used that, = 27 (see egs.(40,42)). Sinde L 2, and using thaEf:1 i? =
th(k +1)(2k + 1) ~ £k for largek, it is thus found that,

Th = 3 [Q-0x (G )], (48)
where,

= Apen o L
T o127 T 3m{L/Dy’

is therotational friction coefficientNotice that a torque-free rod in shear flow thus attains an
angular velocity equal t& x (G - 0). For rods with smaller aspect ratios, corrections to the
limiting expression (49) are given by de la Torre and Bloofdf{(@981).

For the special case of simple shear flow, wh&re= T" as given in eq.(1), the above
result predicts a zero torque on the rod when it is orientedgthe flow direction, since
thena x (T - 1) = 0. From symmetry it follows that for such orientations theatdbrce
F’ of the fluid on each bead is zero, so that the torque is in@eewhat is neglected in
eq.(47) is the variation of the fluid flow velocity over the faue of each bead, which is a good
approximation for orientations away from alignment alohg tlow direction. When the rod

(49)
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is oriented along the flow direction, however, the fluid flowigdon over the surfaces of the
beads give rise to a small but non-zero torque. The torqualisrmn-zero when the finite
thickness of the rod is taken into account, and its magnitsideleast an ordeb /L smaller
than the torque,. i x (T - @) for orientations not parallel to the flow direction.

As will be seen in the section on Jeffery orbits, which are dhgits described by of
a non-Brownian rod in shear flow, the small torque on a rod ithatiented along the flow
direction is essential to obtain the realistic periodic imfor & : without this small contri-
bution,t would simply end up in the direction parallel to the flow. Lsttherefore consider
this small, but essential contribution to the torque for4Byownian rods.

The additional contribution to the torque is due to variasiof the fluid forces over the
bead surfaces. Taking these variations into account, thyeeds by definition equal t@{/ is
again the surface of the rod),

Th = —j{ ds'r' x f(r Z f{ ds’ (R’ +r;) x f;(R/)
ov ovo

Z r; x FI — Z 7{ dS'R’ x £;(R/). (50)

. ~ avo
The last term on the nght—hand side is now extra as compartttbtcase where the additional
torque due to variations of the hydrodynamic forces overdls surface is neglected. This
is the term that is responsible for a finite torque when theisodriented along the flow
direction. The first term on the right-hand side is alreadysidered before with the neglect
of end-effects. In calculating the additional contributidZ " (the last term on the right-hand
side) end-effects will also be neglected, meaning that#hniation of the hydrodynamic forces
over the bead surface is taken equal for all beads. The wariaf the fluid flow in which a
bead is embedded is given by R’. We are only interested in the component of this flow in
the direction alongj, since the complementary perpendicular component gigegairotation
about the center line, which does not afféctThis parallel component of the flow along the
surface of the rod is equal toi - T - R/, and the corresponding parallel force is proportional
to this flow velocity. Hence,

f;(R') = Caa-T-R/, (51)
whereC is an as yet unknown constant. It now follows that,

4
h— ¢ 27{ dS'R’' x (T'-R/) = 0££ﬁx(I‘T~ﬁ), (52)

where the superscnpﬂ‘“" stands for transposition. The constantcan now be determined
by comparing this result to solutions of the creeping flowatmuns for the simple case that
the rod is oriented along the flow direction. For the case gfliader without end-effects and
for a long and thin ellipsoidal particles it can be shown that

Cc = S , for cylinders without end-effects (53)

D
S B o
= "Duw{L/D} for long and thin ellipsoids (54)
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The different results are not just the result of neglect af-effects in case of the cylindrical
particle. The precise value 6f is sensitive to the precise shape of the surface of the roal : th
torque on a rod aligned along the flow direction depends onthewiuid is “pushed away” or
“sucked in” as it flows along its surface.

We thus finally find the following expression for the torque,

Th = -y [Q@-ax (T-a)+r*ax (T7-q)], (55)
where the dimensionless consta#tis equal to,
D\’ (L . .
K2 = 3 <—) 1n{—} , for cylinders without end-effects (56)
2\ L D
D 2
= (f) , forlong and thin ellipsoid . (57)

Since for colloidal rods the precise geometry of their stefs usually not known, anef is
sensitive to that geometry, the constaftshould be considered as a fitting parameter when
performing experiments. This parameter tends to zero véthehsing values db/ L.

0.5 Motion of Non-Brownian Rods in Shear Flow :
Jeffery Orbits

The first thing that comes to mind when beginning to study ffieceof shear flow on di-
lute suspensions of rods is to ask about their motion witltousidering Brownian motion.
The trajectory of motion of a Brownian rod will be the smoathjéctory of a non-Brownian
rod that is randomly corrugated due to Brownian motion. is #ection we ask for the ori-
entational orbits that a non-Brownian rod (a “fiber”) trases when subjected to shear flow.
These orbits are commonly the referred talafery orbits named after the scientist Jefferey
(1922) who first considered this problem (a more compact @beition as compared to the
original work of Jeffery has been formulated by Hinch andIl(¢872) and Leal and Hinch
(1972)). We shall consider Jeffery orbits of rods in elorgal flow and simple shear flow,
respectively.

The expressions derived in the previous section for verg kmd thin rods will be used
to calculate such Jeffery orbits. Jefferey (1922) deriveateexpressions for ellipsoidal rods,
while Bretherton (1962) showed that the same equations dfomean be applied to arbi-
trary shaped, cylindrically symmetric, slender bodiesyvjted that the body is modelled as
an equivalent ellipsoid. The expressions obtained in tHeviing are the asymptotic limits
for large aspect ratios of those derived by Jeffery and Brédin. It turns out, however, that
for aspect ratiog,/ D larger than aboui-4, errors that are made in using these asymptotic ex-
pressions (but employing the correct value for the rotatidmiction coefficient) are typically
less about% (asymptotic limits are obtained when, typically,(1 + 72) is approximated by
1/r%, wherer = L/D). This is confirmed by simulations (see for example Ingberdondy
(1994)).

Interactions between fibers at high fiber concentration atrihsic flexibility of fibers
does of course have an effect on the orbits described by aSioaulations on Jeffery orbits
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A

Figure 5: Definition of the spherical coordinatgsand®, relative to the flow and gradient direction in
case of simple shear flow. The flow is in thedirection while the gradient is in the-direction. In this
exampley < 0.

where interactions and flexibility are considered have lpegformed by Yamamoto and Mat-
suoka (1995). The theory described here assumes rigid Podscussion and references on
the effect of interactions between fibers, wall effects amebtogy of fiber suspensions can
be found in the book by Papathanasiou and Guell (1997). Hagnrent here describes the
motion of a single fiber, which is not affected by interaciavith other fibers or a wall.
Jeffery orbits are most conveniently described in term$&iefspherical coordinatesand
© of the unit vectora that specifies the orientation of the rod. These coordinatdstive
to the flow and gradient direction in case of simple shear flemvstetched in fig.5. In case
of elongational flow, the elongation axis is oriented aldpg©} = {7/4,7/2} (compare
figs.1a,b). In fig.5¢ for the corresponding rod is negative.

0.5.1 Jeffery orbits in elongational flow

According to eq.(48), the torqug” that the fluid exerts on a very long and thin rod with an
angular velocity? in a shear field with velocity gradient tens@r = E (see eq.(2)) is equal
to,

T = - [Q-ax(E-a)], (58)
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where~, is the rotational friction coefficient. It will turn out thédr elongational flow, the
torque exerted on the rod when it is orientated parallel éoflibw direction (the last term in
eq.(55)) is of no relevance, contrary to simple shear flowekMho external torque acts on the
rod, the hydrodynamic torque in eq.(58)isso that,

Q=ux(E-q). (59)
On the other hand, by definition,

da
— =Qxu. 60
7 ! (60)
Substitution of eq.(59) into eq.(60), using thiek (1 x a) = (t-a)a — a for arbitrary vectors
a, yields,

da

dt
This equation of motion for the orientati@gndescribes the rotational orbits of a long and thin
rod, without Brownian motion, in elongational flow. Expriggsthe orientation in terms of
spherical angular coordinates, and substitution of théi@xform of E in eq.(2), the follow-
ing equations of motion for these coordinates are obtained,

—E-4a-(a-E-d)a. (61)

° cos{O} cos{p} — C(li—f sin{0} sin{p} = —¥sin*{0} sin{p} cos*{¢} + % sin{O} sin{ ¢},

dt
% cos{O} sin{p} + C(li—f sin{0} cos{p} = —7sin®*{O} sin®{p} cos{p} + % sin{©} cos{p},
% = 4sin{O} cos{O} sin{p} cos{p} . (62)

It may seem that we have here three equations for two unkn@vaady) : each one of these
equations, however, may be derived from the remaining timifation of d© /dt from one
of the first two equations, using the third equation, yieldsfollowing seemingly simple set
of two equations of motion for the spherical angular cocaitks,

d

L= —fsin*e} 4]

dO . .

i 4 sin{©} cos{O} sin{y} cos{p} . (63)

The first of these equations is easily integrated, to yield,
e dy’ (tan{p(t)} — 1) (tan{<ﬁ(t0)}+1)} :
=1 = —4t. (64

[ 5 S frrere e e e e R

Solving fortan{y(t)} leads to,
14+ C(1) . ~ tan{p(t=0)} -1

At infinite time, the spherical coordinateof u thus becomes equal to/4 (or equivalently
5m/4). Hence, the projection afi onto thexzy-plane (the flow-gradient plane) is along the

exp{—71} . (65)
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Figure 6: (a) Jeffery orbits for elongational flow for initial valuegt = 0) = 7/100 and various values
for ©(¢t = 0), as indicated in the figure. Data pointgorrespond to time steps equallto(104). The
arrows indicate the direction of the temporal evolutionhef spherical coordinates. (b) Jeffery orbits for
simple shear flow withx = 0.1, for various values 0®(¢ = 0), as indicated in the figure. The points
on the orbits mark time intervals @f/200. ¢(t) decreases with time.
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direction of the the extensional axis of the elongationakfld’he reason for this is easily
inferred from fig.1b.
Dividing the two equations of motion in eq.(63) yields,

do _ dp sin{¢} cos{p}
sin{©} cos{O} sin?{p} — :

Integration of both sides now leads to,

sin?{p(t = 0)} — 1
) 66
sin?{p(t)} — % (66)

where ¢(t) can be obtained from eq.(65). Sing€t) tends torw/4 (or 57/4), the above
solution predicts thatan{©} tends to infinity, and henc®(t) — = /2. Hence, independent
of the initial condition, a rod will end up in the velocity-agient plane along the extensional
axis. This is verified in fig.6a, which shows numerical restdir the spherical coordinates.
Here, the distance between each data poiny/{§0+). Data are shown for small values of
©(t = 0). For larger initial values forp, the orbit just starts on one of the curves shown
and then traces the same orbit. As can be seen from the most-lgfipcurve in fig.6a,
when the initial value 0B is small, the rod spends a relatively long time around théalnhs
stationary solutiod©, ¢} = {0,7/4} of the equations of motion, before reaching the final
stable statd©, ¢} = {w/2,7/4}. That s, first rotates to the extensional direction where
¢ = m/4, keeping its angl® with the vorticity direction relatively small. This anglben
slowly increases, after which there is an acceleration tdsvthe final orientation.

tan{O(t)} = tan{@(tzo)}\/

0.5.2 Jeffery orbits in simple shear flow

As we have seen in the section on hydrodynamics, the tofdughat the fluid exerts on a
very long and thin rod with an angular veloctyin a shear field with velocity gradient tensor
G =T (see eq.(1))is equal to,

Th = -y [Q@-ax (T-a)+x*ax (T7-q)], (67)

where~,. is the rotational friction coefficient. The parametértends to zero for decreasing
values ofD/L, and measures the torque of the rod when aligned suclptirad, for which
casea x (T'- 1) = 0. Neglecting this small contribution results in an orieiaabf the rod in
the flow direction for long times, while for a rod of finite thitess, whera? is small but non-
zero, a periodic motion results. Contrary to the case ofgdtional flow, considered in the
previous subsection, the small but finite contribution? is essential for a correct description
in case of simple shear flow.

When no other torque is acting on the rod, the hydrodynamigis0, so that,

Q=uaxT-a)-x>ax ((T7 q). (68)
Precisely as for elongational flow, this implies that,

da

E:I‘-ﬁfﬁr‘fﬁf(ﬁlﬂﬁ)ﬁ. (69)
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In terms of spherical coordinates, this is equivalent to,

d(;) cos{O} cos{ap}——sm{@} sin{p} = —4(1—x?) sin®*{O} sin{p} cos?{p} +7sin{O} sin{},

d(;) cos{O} 51n{<p}+— sin{0} cos{p} = —4(1—~r?)sin®*{O} sin?{p} cos{p} —Ax* sin{O} cos{ ¢},

Cé(? = 4(1—k?)sin{O} cos{O} sin{y} cos{e} . (70)

Precisely as in the previous case of elongational flow, we #ntive at the following equations
of motion for the spherical angular coordinates,

d S
2= [sin’{p} + w2cos”{p} ]
de ) o . .
- = 4(1 — k%) sin{@} cos{O} sin{p} cos{p} . (71)
The first of these equations is easily integrated to yield,
w(t) do’ 1 1
¥ ’ .
= = |arctan{ —t e —C'| = —4t, (72
/w(t—()) sin?{g'} + K2 cos2{y'} - [arc an{n an{e( )}} } it, (72)
whereC’ is an integration constant, equal to,
1
' = arctan{— tan{y(t = 0)}} ) (73)
K
Hence,
tan{p(t)} = k tan{C’ — Kt} . (74)

Sincey(t) is periodic, trajectories ofi do not depend op(t = 0), so that, without loss of
generality, we may take(t = 0) = 0. For this choice, according to eq.(78); = 0. The
solution (74) thus simplifies to,

tan{p(t)} = —k tan{ykt}. (75)

It follows thaty(¢) is a periodic function of time, with a peridB which is independent of the
initial value ofa, and is equal to,

-2 (76)
YR
It should be noted that terms of ord@p/L)? are neglected in the equation of motion (69)
for the orientation (except for the important contributienx? to the torque), so that the
expression for the periofl here is valid to within terms of that order.
Division of the two equations of motion in eq.(71) yields,

doe 9 dp sin{¢} cos{p}
—_— = (Ii -1 ) .
sin{©} cos{O} sin“{} + k2 cos?{y}
Integration of both sides leads to,

anferd) = tnfe —op [ LDl o
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Figure 7: The angley between the projection of the director onto the gradieiteity plane and the
flow direction as a function of straifi ¢, for five different shear rates4¥ = 1e, 1.70 30, 50
and7s~! A, as obtained from dichroism measurements by Vermant e2@01). The sample consists
of ellipsoidal hematite rods with an aspect ratio2ds with a polydispersity of abou25 %, dissolved
in a slightly acidic water/glycerirs/95 mixture. The average length of the rodsi) nm and their
thicknessl70 nm. The vertical line indicates the period of tirfieas obtained from eq.(76).

where p(t) follows from eq.(75). Jeffery orbits are plotted in fig.6kr fearious values of
©(t = 0) and forx = 0.1. As already mentioned above, the parametira measure for the
torque on the rod when aligned in the velocity-gradient gJand tends t6 for D/L — 0.
For long and thin rods, for whickis small, this torque is small, and the rod spends a relativel
long time around this particular orientation. Foe= 0, that is, in the unrealistic case of zero
thickness of the rod, the above result predicts that the nof$ @p at an orientation where
¢ = 0 (or a multiple ofw). The small, but finite value of, however, results in periodic
motion of the rod. In the present case of simple shear flowsthall torque as a result of
the finite thickness of the rod in the equation of motion (8%hus essential, since this small
contribution will lead to a continuing motion of the rod, nentding in an orientation in the
flow direction at infinite time. As can be seen from fig.6, the spends a relatively long time
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at orientations where is a multiple ofr. For smaller values of, this would be even more
pronounced.

An experiment

Experimental results for the anglebetween the director in the gradient-velocity plane and
the flow direction as obtained from dichroism measurementfi@matite suspensions are
shown in fig.7 (data are taken from Vermant et al. (2001)). [Eser beam is along the
vorticity direction, so that dichroism in the gradient-weity plane is probed. The flow is
imposed at tim¢ = 0, from an initially isotropic dispersion. The geometricapact ratio
of the hematite rods i8.5 with a polydispersity of abou®5 %. For small times, rods are
preferentially oriented with an angle ¢6° with the flow direction, due to the orientational
effect of the elongational part of the simple shear flow. Fsingle rod, the anglg is equal to

@ in eq.(75). Hence, according to eq.(7%)should scale with the straiipt, which is indeed
confirmed by these experiments. The temporal oscillatidng are damped because of the
polydispersity in aspect ratio. The shear rates are chasga Enough so that during the time
interval where damping occurs, orientational Brownianiomoof the rods does not play arole.
According to egs.(76,56), each different aspect ratiodd¢aa different period” of oscillation

of ¢(t), so that after some time different rods are “out of phase’ictvgives rise to damping
of the oscillations of the measured angleSince the dispersions are very dilute, so that the
rods do not interact with each other, the anglean be calculated taking polydispersity into
account (details can be found in Vermant et al. (2001)). tysire equations derived in the
present section and properly averaging with respect todiggrsity in aspect ratio fits the
experimental master curve in fig.7. The effective aspetd est obtained from this fit i$.75
(instead of the geometrical aspect rali6) and a polydispersity of5 % (instead of25 %).
These differences between the effective and geometritsdsare due to deviation of the rod
shapes from an ideal ellipsoidal shape. The period of asidilt as given by eq.(76) is seen
to be of the right magnitude (despite the fact that eq.(76hlg valid for long and thin rods,
while the present hematite rods are quite short and thick).

0.6 Brownian Motion of a Free Rod (without shear flow)

Before going to Brownian rods in shear flow, we shall constdanslational and rotational
Brownian motion of a long and thin rod in the absence of flowovatian motion can be
studied on the basis of Newton’s equation of motion, supplaed with fluctuating forces
and torques resulting from collisions of solvent molecwidth the rod. Such equations of
motion with a fluctuating component are referred toLasgevin equationsWe shall first
review Newton’s equations of motion before formulating ttemgevin equations for a long
and thin rod. On the basis of these equations, importantdoakes can be defined. Due to the
very large size and mass of the rod in comparison to the sbiwelecules, the rod moves on a
time scale that is much larger than typical relaxation timfesolvent molecules. In addition it
will turn out that velocities relax quite fast due to friativith the solvent. This enables us to
coarse grain equations of motion to the so-called Brownima scale, on which velocities and
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Figure 8: Motion of a rigid body. €2 is the angular velocity ang. is the translational velocity of the
reference point..

angular momenta have long relaxed to equilibrium with that lbath of solvent molecules.

In an experiment, the time scale is set by the time interval avhich observables are
averaged during a measurement. For example, taking plagthgrof a Brownian particle
is an experiment on a time scale that is set by the shutter dintke camera. Subsequent
photographs reveal the motion of the Brownian particle ayed over a time interval equal to
the shutter time. Any theory considering the motion of thevitian particle obtained in such
a way should of course be aimed at the calculation of obstsahveraged over that time
interval. A time scale is thus the minimum time resolutioranfexperiment or theory.

0.6.1 Newton’s equations of motion for a rigid body

Let us first recall Newton’s equations of motion for non-gjted rigid particles. The rigid
body contains a large number of molecules, with positignsnomentgp,,, and masses,,,
wheren = 1,2,3,---. The positions of the molecules are fixed relative to eackrothat
is, the body is rigid as a result of inter-molecular intei@mts. The velocityv,, of molecule
n is composed of two parts : the rigid body can rotate and teé@sITo make the distinction
between the two contributions, the velocities are written a

v = QX (r, — 1) + Vg, (78)

wherer. is an arbitrary point inside the rigid body with a translaabvelocityv., and(2 is
the angular velocity with respect to the point(see fig.8).
Newton’s equation of motion for the total momentgpneads,

d d dQQ dv,
P _ pn an = Qmen [vn—vc]—i-E X Zm” [t —r]+M =F, (79)
n n n

da d dt
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whereF is the totalexternal forceon the particle, and/ = )" m,, is the total mass of the
particle. With the following choice for the poimt,

re = Zmnrn/zm'ru (80)

which is thecenter of massf the rigid body, eq.(79) becomes similar to Newton'’s eunat
of motion for a spherical particle,

dpe
Pe _p

dt ’ (81)

wherep. = Mv.. The rotational motion of the particle is characterized by angular
momentumJ,

J =) r xpj, (82)

where the superscriptrefers to coordinates relative to the center of mass coatdi@’, =
r, —r. andpé = p,, — p.). The equation of motion of the angular momentdrfollows
simply by differentiating the defining equation (82), anéhgsNewton’s equation of motion
for each molecule separately,

dJ
- = > orixF, =T, (83)

with F,, the force on the:!” molecule. The last equality in this equation definesttrgue
7T on the particle. Equations (81) and (83) are Newton’s equatof motion for translational
and rotational motion, respectively.

Notice that the angular momentum is a linear function of theudar velocity(2, since,
according to egs.(78,80,82),

T = mar; x (Qxr5). (84)

The right-hand side can be written as a tensor multiplicediff2,
J=1I.9, (85)

with I¢ theinertia tensagrtheij!* component of which is,
I = Y ma ()7 05 = (m)ir7)s] (86)

with d;; the Kronecker deltad(; = 0 for i # j, andd;; = 1 for i = j). The torque,
angular momentum, angular velocity and inertia tensor megdnsidered as the rotational
counterparts of force, momentum, translational veloaity nass, respectively.
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Figure 9: For a long and thin rod, the angular velocity may be thougtgsobeing perpendicular to its
orientation.

For the analysis of time scales, we shall need the expre&sidhe kinetic energyey,
of a rotating rod. Using eqs.(78,80,86), one finds,

Ekin = sMpVp - Vi

1, 1
= —my, —mp (2 xrl) (Qxrf
4 5™ UC+E,L 2mL( xre)- (Qxrs)
= leQ + E 1m [Q%(r5)* = (- 1))
92 c ~ 9 n n n
= Ly + laor.a (87)
= SMv; + 5 .

The first term on the right-hand side in the last line is thegfational kinetic energy, the
second term is the kinetic energy associated with rotatimutthe center of mass.

0.6.2 The Langevin equation for a long and thin rod

Clearly, thermal collisions of solvent molecules with theoBnian particle result in both
stochastic motion of the position of its center of mass as ageits orientation. The Langevin
equations are Newton’s equations of motion (81) for traimsial motion and (83) for rota-
tional motion supplemented with a fluctuating force and wergqespectively, which account
for collisions of the rod with solvent molecules.

In the following, we specialize to a long and thin cylindtlgasymmetric rod. For such
a long and thin rod, the rotational motion around the cylmalds of symmetry need not
be considered. The components of the inertia tensor retateatational motion around the
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long cylinder axis are very small in comparison to its rerrajncomponents, and may be
disregarded. The angular velocyis therefore understood to denote the component of the
angular velocity perpendicular to the cylinder axis of syatim (see fig9). The componefit

of the angular velocity that changes the orientation of ttkis equal to,

da
Q=1ax—. 88
a x o (88)
This can be seen as follows. By definition we have,
46
d—‘t‘ - Qxa, (89)

Operating on both sides witlix, using thatii x (2 x @) = (4 -4)Q2 — (& - Q)a, and noting
thata - =1 anda - Q = 0, eq.(88) is recovered.

The force and torque of the solvent on the rod consists of artspOnce the rods attained
a finite translational and rotational velocity, there is ateynatic force equal te 'y - p/M
(see eq.(38)) and a systematic torque equai4p2 (see eq.(48)) on the rod due to friction.
The second part is the fluctuating force and torque discusstedle. Denoting the fluctuating
force byf and the fluctuating torque bB¥, the complete set of Langevin equations reads (we
omit the superscripts?” in the following),

_ Iy
dp/dt = i p -+ f(t),
dr/dt = p/M,
dyjdt = —v, Q+7T(t),
I-Q = J. (90)

Since systematic interactions with the solvent molecutesnaade explicit through friction
contributions, the ensemble average of the fluctuatingefard torque are zero,

<ft)> = 0,

<T{)> = 0. (91)
Due to the fore mentioned large separation in time scaleshichwthe solvent molecules relax
and the rod moves, it is sufficient for the calculation of thertmal movement of the Brownian
particle to use a delta correlated fluctuating force andueiq time, that is,

<fWE(t') > = Grans ot —1t'),
<TH)T{) > Gt 0(t—1'), (92)

whereé is the delta distribution an€x;,...., and G,,; are constan8 x 3-dimensional ten-
sors (where the subscripts stand for “translation” anddtion”), which may be regarded as
a measure for the strength of the fluctuating force and torqureey are referred to as the
translational and rotational fluctuation strengthespectively. Such delta correlations limit
the description to a time resolution which is large with exgpto the solvent time scale of
107135,

Note that for the rods with a large aspect ralioD considered here, the inertia tensor in
eq.(86) is easily calculated, replacing the sum over médsdoy an integral. For a constant
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local mass density of the rod material, the inertia tensor becomes,

. D\?2 3L R 1 R

I= /dr'p[r'QIfr'r'] ~oT (5) p/ dl?[I—an) = EML2 [I —aa]. (93)
—%L

The typical magnitude for the inertia tensor is tlﬂngLQ. Note that sincé? is perpendicular

to u (see eq.(88)), it follows from eq.(93) that,

I.Q=LML*Q. (94)
This result will be convenient in our further analysis of ttengevin equation.

0.6.3 The Brownian time scale :
Relaxation rates of the translational and rotational velodty

The Langevin equation (90) can be used to estimate the tiale ea which the translational
and rotational velocity decay to equilibrium with the heattof solvent molecules. First
consider the translational velocity. Ensemble averadieditst equation in (90), using eq.(92)
gives,

d<p> 'y

i = —-< 2 P > . (95)

Remember that the friction tensbr; depends on the orientation of the rod, and can therefore
not be taken outside the ensemble averaging brackets: >. However, the interest here
is in anestimateof the relaxation time of the translational velocity. Sirtbe magnitude of
the friction coefficient of a rod varies only a factor of twopgsding on its orientation, one
can use a typical magnitude of the element¥'pfin eq.(95). This typical magnitude follows
from the expression in eq.(38) asno L/ In{ L/ D}. The time scale on which the translational
velocity relaxes can thus be estimated from,

d<p> 2mno L
~ - <
dt M Wn{L/D}
It follows that (withp(0) the initial translational momentum),

M Wn{L/D}
2mno L
Atypical value for the relaxation time,..,s Of the translational velocity of a rod is thus found

to be of the order of a nano second.

The time scale on which rotational velocities relax can bereged from the last two of
the equations in (90). Ensemble averaging gives, usin@£y.(

P> . (96)

<p> (t) = p(0)exp{—t/Ttrans} , With Tyrans = ~ 1ns. (97)

d<J>
= —Ir Q )
7 Y <>
<I - Q> = <J>. (98)

Using eq.(94) in the second equation, and substitutioneofelult into the first equation leads
to,

d<Q> 127,
e v <>, (99)
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and hence (wittf2(0) the initial angular velocity),

: 12M L2 M In{L/D} _
<> (t) = Q0)exp{—t/Trot} , With 7ot o Tl 1 ns. (100)
where the expression (49) for the rotational friction caéfiit has been used. Relaxation
times for translational and rotational velocities are thath of the order of a nano second.
Within a description where time is coarse grained to a timehmarger than,....s and

Trot, IN€rtial forces and torques on the rod can be neglectddhis will turn out to be an
important fact in further theoretical developments disedslater in this chapter. The corre-
sponding coarsening in length scale and orientationakanl be discussed in the following
section. The time scale that is much larger than,.s and .., but still small enough to
resolve position and orientation in sufficient detail, iereed to aghe Brownian or diffusive
time scale

0.6.4 The Brownian length scale and Brownian angle

As discussed in the beginning of this section, a coarsemirigrie implies a coarsening of
position and angular orientation. On the Brownian timeestia spatial and angular resolution
is not better than the distance over which the Brownian gerthoves and the angle over
which a rod typically rotates, respectively, during a timeerval equal to the Brownian time
scale.

Consider first the lengtiAl that the rod traverses during the times> 74.4ns. This SO-
calledBrownian length scalés easily obtained by integration of eqs.(97),

Al = - Ttrans 1 € T/ Ttrans ~ Ttrans -
Z /O dt M M trar ( Xp{ / k }) M t ( O )

A typical value for| p(0) | is obtained from the equipartition theorem,

Ip(0)|~ v<|p|*> = V/3MkpT. (102)

The Brownian length scale is thus estimated as,

In{L/D
Al ~ BT ML/} (103)
2mng L
Using typical numerical values for the several quantitigs$
Al .
- 1074 — 1073 (104)

The conclusion is that displacements that are very smatimparison to the length of the rod
are still resolved on the Brownian time scale. Wieh/ L would have been a large number, it
would have made no sense to coarsen to the Brownian time sgate it is then not possible
to accurately describe the motion of the rod.

Next consider the typical angl®© over which a rod rotates during a time> 7,..¢. This
is the so-calleBrownian angle Integration of eq.(100) gives,

AB = /0 dt |<Q(t)>]=|Q(0)| Trot (L — exp{—7/7Trot}) = |Q(0)| 7ot . (105)
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According to eq.(94), the rotational contribution to theddic energy in eq.(87) is equal to
L ML? | Q% Hence, according to the equipartition theorem, a typiele for| 2, | can be
estimated as,

kT

1900)] ~ V/<|QZ> = 6 ﬁ (106)
The Brownian angle is thus of the order,
In{L/D}
47T7]() L? '
For typical numerical values we have (note that, accordingpt(103), the right-hand side is
equal toy/3AL/L),

A

40 4 1074 —1073. (108)

™

A ~ 6/ MkyT (107)

Very small angular displacements can thus still be resabvetthe Brownian time scale.

For the study of processes where a significant translat@amalrotational displacement
of the Brownian particle is essential, a statistical dggimn on the Brownian time scale is
therefore sufficient.

0.6.5 Calculation of fluctuation strengths

Analyzing the Langevin equation requires the determimatibthe fluctuation strengths in
eg.(92). This can be done using the equipartition theorentrémslational and rotational
motion, after having solved the Langevin equationgét) and€2(¢).

First consider the translational velocity. Integratiortlué first equation of motion in (90)
yields,

p(t) = exp{—%t} -p(0) +/t dt’ exp{—%(t—t’)}-f(t’). (109)

0
The exponent of a tensoA, say, is defined through the Taylor expansion,

exp{A} = Z %A”, (110)

n=0

whereA"is A - A--- A, ntimes, andA® = I, the identity tensor. Now, from eq.(43) it is
easily shown by induction that,

I} = qyfaa + 4} [I-aa], (111)

and hence, from the defining expression (110) for the tenquoreential,

Tro_ml _ g — ey ad -V — an
exp{ M(t t)}—exp{ M(t t)}uu—i—exp{ M(t t)}[I anl . (112)
Equation (109) can thus be written as,

p(t) = pj(t) +pL(t), withpy =aa-p,andp, =[I-aa]-p, (113)
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with,
p) (1) Eexp{f%t} p) (0) + / dt’exp{ A}( t’)}f”(t’),
put) =exp{—1=t}pL /dt exp{~T=(t =)} £.(t) . (114)

where the components of the random force parallel and pdipgar to the rods orientation
are respectively defined as,

fi(t) = a)at) -£t) , and £ (t) = [I-a()a)] £(t) . (115)

Instead of using the full tensor form in eq.(95) for the flattng force, we shall only need
correlation functions of inner products of its two compatsépandf, . Sincef (¢) varies with
time much faster thai(t), the latter is virtually constant over time intervals equamany
times the correlation time of the former. The conditionad@mble averages df | , with a
prescribedi, are therefore stild, and their correlation functions are still delta correteda a
time scale much larger than the solvent time scale. For time saason,

< f” (t) -f) (t/) >=0. (116)
We shall therefore define two independent fluctuation strenfipr the fluctuating force par-
allel and perpendicular to the rods orientation,

<f (t) - £ t)> = G| 5t —1t),

<f L (t)-fL(t')> = GLé(t—1t). (117)
Notice that we are working here with inner products instehdyadic products as for the
spherical particle, so that boti; andG, are scalars. Since py(t) - pL(t) >= 0, the
kinetic energy corresponding to translational motion a&f Brownian rod is a sum of two

guadratic terms related to the perpendicular velocity asidgle quadratic term related to the
parallel velocity. From the equipartition theorem it is $ffound that,

t{r& < pH(ﬁ) P (t)y> = M/p,
Jim <pi(t)-pu(t)> = 2M/B. (118)

Substitution of eqg.(114) into the above expressions, usiogy(116,117), it is readily found
that,

Gy = 2/8,
GL = 47 /B. (119)
This concludes the determination of the translational fiatton strengths, which will be used
to investigate the translational Brownian motion of the irothe following section.
Next consider the fluctuation strength for the correlatiomction in eq.(92) of the torque.
Using eq.(94) in the last equation in (90), substituting reasult into the third equation and
integration yields,

127, 12 [t 12,
Q) = Q(0) exp{Mz/Qt} + MLQA dt’ T(¢) exp{MZQ (tt’)} . (120)
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Using the second equation in (92) thus leads to,

6

= —GQG,. 121
’erLQGT ( )

tlim < Qt) Qt) >
From eq.(87) for the kinetic energy together with eq.(94) ane finds that the kinetic energy
due to rotational motion is equal tﬁMLQQQ(t). The equipartition theorem implies that
LML*Q?(t) = 2kT. Hence,

. ~ kT
tlggo < Qt)Q(t) >= 121 WUIE (122)
Combining this with eq.(121) identifies the rotational fluation strength,
< 2.
G, = 1% . (123)

This expression allows for the analysis of the rotational pithe Langevin equation.

0.6.6 Translational Brownian motion of a rod

The simplest quantity that characterizes translationalWBian motion is thenean squared
displacementdefined as,

W(t) = <|r(t) —r(t =0)]*>, (124)

where the brackets denote ensemble averaging. This quaatit be calculated from the
Langevin equation as follows.

We shall calculate the mean squared displacement on therBrowime scale. As men-
tioned before, inertial forces can be neglected on the Biavtime scale. Neglecting the
inertial forcedp/dt on the left hand-side of the first equation in (90) gives,

de/dt = T7'-£(t), (125)

whereI‘JI1 is the inverse of" ;. The reason for neglecting the inertial force can be mademor
explicit as follows. Let’ = t/7 be the dimensionless time in units of the Brownian time scale
7. Rescaling the first equation in eq.(90) gives,

Ttrans dp
T dt
Since the typical magnitude of the elements of the teli$gtM iS 1/ 7¢rqns (S€€ €05.(38,97)),
S0 that7y.qns I'y /M is of order unity, andr > 7.4, ON the Brownian time scale, this
is a singularly perturbed differential equation. That ts inertial term is important only
over a very small time interval iY, which is the mathematical boundary layer connected
to the singular perturbation. During this time interval thementum coordinate relaxes to
equilibrium with the solvent. Beyond this small time intakwheredp/dt’ is not very large
anymore, so that the inertial contribution can be neglectad immediately leads to eq.(125).
The inverse of the friction tensor appearing in eq.(125aslg calculated,
1 1. 1.+

r,” = —uaa+ —[I-aa]. (127)

M pan

r
= — Ttrans Mf P + Ttrans f(T t/) . (126)
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The Langevin equation can thus be written in terms of thellghend perpendicular compo-
nents of the random force (see eq.(115)),

1 1
dr/dt = ,y_”fH(t> + ’nyl(t) 5 (128)
hence,
K / 1 / L /
I'(ﬁ) = I'(ﬁ = 0) +/0 dt |:"y_f” (t ) + ~L fL(t ) . (129)

Using that the fluctuating forces are delta correlated witttélation strengths givenin eq.(119),
one readily finds that,

W(t) = 6Dt, (130)

where,
-1
D=3 (Dy+2D.). (131)

Here we introduced the Einstein translational diffusioaftioients for parallel and perpendic-
ular motion,

Dy = kgT/y,

D, = kgT/vy.. (132)
For timest < 7.-ans, Where friction with the solvent has not been effective, thkcity of
the center of mass of a rod is constant. The mean squaredcispént then varies like ¢2.
On the Brownian time scale, that is for time> 7,.,,s, Many independent collisions of the

rod with solvent molecules have occurred. This appareatigs to a linear variation 6¥ (¢)
with time. Such dynamic behaviour is calldiffusive

0.6.7 Orientational correlations

The simplest quantity that characterizes rotational Biawmotion is therotational mean
squared displacement

Wyot(t) =< 0(t) —a(t =0) |*>= 2[1-<a(t) >-a(t=0)] . (133)
This rotational displacement is calculated on the Browtirae scale. For the same reason as
for translational motion, the inertial term for the rotat#d langevin equation of motion can
be neglected on the Brownian time scale. The third of the mpumof motion in (90) thus
reduces to,

da 1
Q=ux— = —T(@). 134
ix G = T (134)

where egs.(88,94) have been used. As a first step to obtairpeession for the rotational
mean squared displacement (133), the differential equétid4) should be solved fai(¢) in
terms of the fluctuating torqu&. To this end, eq.(134) is rewritten as,

da/dt = %T(t) X1 (135)
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<T(t, ) T(t,))>

Figure 10: Integration of the correlation function of the torque ovalfithe domain of its argument.

To integrate this equation, the right-hand side is writtea &ensor multiplication,

dia/dt = A(t) -1, (136)
with,
. 0 ~Ta(t) Tt
At) = — | Ts(t) 0 -Ti(t) |, (137)
T\ —Th(t)  Tu(t) 0

whereT] is the j'* component ofT. The differential equation (136) is equivalent to the
integral equation,

at) = ﬁ(0)+f dt' A(t") -a(t'), (138)

which is solved by iteration,

o t ty to tn_2 tn—1
alt) = ﬁ(0)+2/ dtl/ dtg/ dtg-'-/ dtn_l/ dt,,
=1 Jo 0 0 0 0
A

(1) - Alt2) - -+ - Alta) - a(0). (139)

For the calculation of the ensemble averagé@f, the ensemble averages of the multiple
integrals over products dk’s must be evaluated explicitly. From the definition of theger
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@ (b

Figure 11: (a) Rotational diffusion visualized as diffusion of a poamt the unit sphere. (b) For small
time this is equivalent to diffusion of a point on a two-dins@mal surface.

A it follows immediately that,

A1) a(0) = Py—er(t)xﬁ(O), (140)

. 1 A
A%(t)-a(0) = ?T(t) x (T(t) x a(0))
1 .
= [—TQ(t)I FT(H)T®)] - a(0). (141)
Since the ensemble average of the random torque, and herkgisfzero, and its correla-
tion function is delta correlated in time, the first two terimshe ensemble averaged iterated
solution are found from eqs.(123,137),

/t dt; < A(tl) > fl(O) = 0, (142)
0

/tdtl /tl dty < A(ty) - A(tz) > -1(0) = —22E= +0a(0). (143)
0 0

Here we used that,

t1 1
/ dta§(ty —ta) = =.
0 2

Sincet; is not in the interior of the integration range here, thiggral isnotequal tol. That

its value is equal ta; can be seen as follows. On the smallest time scale, the atiorel
function < T(t1)T(t2) > of the random torque, and hence Af is a symmetric function

of the difference; — t2. The integral with respect t, in eq.(139) ranges over half of the
symmetric correlation function (see fig.10), and is thusmqm% x the integral ranging over
the entire range of the argument. To evaluate the enseménlagas over higher order products
of A in the iterated solution (139), we use that, on the Browniae scale T and hence also

A is a Gaussian variable. On the Brownian time sciles an average over many independent
realizations, so that, according to the central limit tle@orit is a Gaussian variable. All the
ensemble averages of products of an odd numbdarefre thus zero. The ensemble averages
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of products of an even number Afs can be written as a sum of products of averages of only
two A’s. Consider for example the ensemble average ofithed term in the iterated solution
(summation over the repeated indigeg, 7, s is understood hered;; is theij!* component

of A andii,(0) is thes*” component ofi(0)),

t t1 to ts
/ dty / dts / dts dty < Aip(tl)qu(tQ)Aqr(tg)A.,-s(t4) > QS(O) =
0 0 0 0

t t1 ta ts
/ it / dts / dts [ dts [ < Aip(tr)Apg(ts) >< Agr(ts) Avs(ts) > i15(0)
0 0 0
b < Aup(t) Agr(t3) >< Apg(ta) Ars (t2) > i14(0)
< Aip(t) Avs(ta) >< Apg(ta) Agr(ts) > i15(0) ]

For the respective products of ensemble averages in theeadgpation we need to evaluate
the following integrations over delta distributions,

t t1 to t3
/ dtl/ dtg/ dt3/ Aty 5(ty — t2) 6(ts — ta)
0 0 0 0
t t1 ta ts
/ dtl/ dtg/ dt3/ dty 5(ty —t3) 8(ts — ta)
0 0 0 0

t t1 to t3
/ dtl/ dtg/ dt3/ dty 5ty — 1) 5(ta — t3) .
0 0 0 0

The first of these four-fold integrals is equal to,

1 1
/ dtl/ dtg/ dtg/ dt4 tl - If2) (5(t3 — ﬁ4) (5) 5 2 7

where the facto1/2)? originates from integration of delta functions ranging okalf the
domain of their arguments, as explained above. By inspedtie other two four-fold integrals
turn out to be zero, because the arguments of the delta fursctire non-zero in the entire
integration range. Only products with the consecutive toraeringt; — to — tg — -+ —

t,, contribute. Using the expression (123) for the rotationadtfiation strength, we thus arrive
at the following result,

and,

t t1 to ts
/ dtq / dtg/ dt3/ dty < A(tl) . A(tg) . A(tg) -A(t4) > ﬁ(O)
0 0 0 0

(7)) s

In the next higher order terms in the ensemble average ofténative solution (139), the
product with the consecutive time ordering is likewise tidysurviving one. Along similar
lines one shows that, for evers,

t trn—1 4 n/2 1 n/2 1 /23
dt~~~/ dtn < A(t1)- - - Alty >< ) <—> 2T
Jan [ (t) >=(-5-) (3) =
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The iterative solution is thus,

oo

<a(t) > = [Z%(—w,.)” t”] a(0) = exp{—2D,t}a(0) , (144)

n=0

where theotational diffusion coefficienD,. is defined by the Einstein relation,

D, = kgT/v . (145)
Therotational mean squared displaceménthus equal to,

Wyot(t) = 2[1 —exp{—2D,t}] . (146)

For small times this result is quite similar to eq.(130) foe inean squared displacement of
the center of mass of a rod,

Wyot(t) = <|Q(t) —a(t=0)|*>=4D,t , D t<1. (147)

This corresponds to diffusion of a point in two dimensionstd®ional Brownian motion may
be visualized as a point on the unit spherical surface, septéng the tip of the unit vector
1, which exerts Brownian motion (see fig.11a). For small titiésis Brownian motion on a
two dimensional flat surface (see fig.11b). For larger tinmestip experiences the curvature
of the unit spherical surface, leading to the more compldvabmur as described by eq.(146).

0.7 Equations of Motion for Interacting Rods

So far, we have considered rods which do not interact witlerotbds. For systems of in-
teracting rods, properties are most easily studied by mefpsobability density functions
(pdf’s) of positions and orientations. In this section walkterive the fundamental equation
of motion for the probability density function of the positis and orientations of an assembly
of N interacting rods. This equation of motion is commonly reddrto ashe Smoluchowski
equation An essential ingredient in the derivation of this equatiémotion is the neglect
of inertia on the Brownian time scale, as discussed befdne. Imoluchowski equation also
describes the dynamics of non-interacting rods, and is stioweproduce results obtained in
previous sections. In addition, the behaviour of non-exténg rods in shear flow is discussed
at the end of this section.

0.7.1 The N-particle Smoluchowski equation

Consider a single cylindrically symmetric, rigid rod emided in solvent. The position coor-
dinate of the rod will be denoted hy while its orientation is characterized by the unit vector
a which is directed along the long axis of the rod. The “micabst of the rod is thus set by

a point inR3 (the position vector) and a point on the unit spherical surface (the tip of the
vectori), as depicted in fig.12. The points #&° and on the unit spherical surface exhibit
chaotic motion due to translational- and rotational Braaminotion, respectively. Consider
now an ensemble ok containers, where each container is filled with solvent asmtains
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=>

Figure 12: (a) Definition of the position coordinateand the orientatio of arod. (b) The “microstate”
of a single rod is set by a point lR* (the position coordinate) and a point on the unit sphericease
(the orientation).

just a single Brownian rod. The “microstate” of this enseenfals far as the colloidal rod is
concerned) is set by points inR?3 (for the positions) andV’ points on the unit spherical
surface (for the orientations). L&V denote an arbitrary volume i3, and.4 an arbitrary
surface area on the unit spherical surface (see fig.13). &hsity of points at a certain po-
sition and orientation is proportional to the probabilifyfinding a rod in that microstate. To
find an equation of motion for that probability, we shall askthe time rate of change of the
number of points insid®V and.A. The time dependent “number of poin®7(t) is related to
the probability density functiof?(r, @, ¢) for the positionr and orientationi, as,

N(t) = /Wdr /A di P(r, 1) (148)

wheredu denotes an infinitesimally small surface element on the aptierical surface (in
spherical coordinates this surface elementis equah® } dO dy). The time rate of change
of the number of points iM andA is thus given by,

dN(t) N, )
UONE /Wdr /A L (149)

The rate of change of the number of points is related to thand-out-flux of points through
the boundarie®)V andd.A of W and.A, respectively.

Consider first the flux througbV. Let v denote the translational velocity of the center
of mass of the rod. The only componentwthat contributes to in- or out-flux throughv
is the component that is perpendiculantd : whenv is locally parallel tooVV, there is no
local in- nor out-flux contribution. The componentwthat is perpendicular t6)V is equal
ton - v, wheren is the unit normal (which is chosen to be directed outward)f The local
contribution to the rate of change of the number of pointsliris equal to the local density
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Figure 13: The “microstate” of the ensemble is given by a point distiitruin % and on the unit
spherical surfaceV and A are arbitrary subspaces®? and on the unit spherical surface, respectively.

of points P(r, u,t), multiplied by the perpendicular componeint v of v. The total rate
of changed Ny (t)/dt of the number of points due to in- and out-flux throug# is thus
equal to (withdS = n dS, wheredS is an infinitesimally small surface element 8WV ; see
fig.14a),

dNw(t) . . N
o = 7{)1/\/ ds /Adu [vP(r,a,t)] . (150)

The minus sign here is due to the fact that the directiof isfpointing outward o#V : when
v ~ 10, sothath-v > 0, the number points iV decreases in time. Applyir@auss’s integral
theoremit is found that,

%@V(“ _ —/Wdr/AdﬁV-[vP(r,ﬁ,t)] . (151)

Next consider the contributiodiN 4(¢)/dt of the rate of change due to in- and out-flux
through the boundarg.A of A. This boundary is a closed curve on the unit spherical sur-
face. Sincen is always perpendicular to the unit spherical surface, #wor that is locally
perpendicular t@.A is equal todl x a, wheredl is the infinitesimally small vector that is
locally tangential to the curv@.A (see fig.14b). The component of the veloeliy/dt that is
perpendicular t®A is thus equal tddl x @) - da/dt, which is the component that determines
the in- and out-flux. Since this is equaldb- (i x dia/dt), the total rate of chang@&V 4(t)/dt
of the number of points itd is thus equal to,

dNA da i
/ dr?({aAdl (ux )P( ,a,t) . (152)

Applying Stokes's integral theorerit is found that,

dN*‘ / dr/duu {v x < —‘:) P(r,ﬁ,t)} , (153)
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dS=ndS

0 A
(a) oW (b)

Figure 14: Part of the boundarg)V (a) and of the boundar§.A (b). For an explanation of the symbols
in these figures, see the main text.

whereVy is the gradient operator with respect to the cartesian compts ofa. Using eq.(88)
for the angular velocity, and using that Vg x (---) = (it X Vga) - (---), €9.(153) can be
rewritten as,

dN
é:(t) - /W/Adﬁ (h x Vg) - [QP(r,4,1)] . (154)
Combining eqgs.(151,154) we thus find that,
AN(t)  dNa(t) dNw(t)
at dt dt
= —/Wdr/Adﬁ {v-[vP(r,ﬁ,t)]+R-[QP(r,ﬁ,t)]}, (155)

where theotation operatorR is introduced for convenience as,

R(--) =uaxVg(--). (156)
The differentiation with respect td should be taken at constant lengthtofFortunately, the
outer product withi eliminates the component alorigof V. Hence, the differentiation in
€g.(156) can be done with respect to the unconstrainedseanteoordinates ofi. Note the
similarity between the translational and rotational citmittions to the rate of change : instead
of the translational velocity, the angular velocit§2 appears in the rotational contribution,
and instead of the gradient opera®the rotation operatoR appears. From egs.(149,155) it
is now found that,

/Wdr/Adﬁ {%P(r,ﬁ,tHv[vp(r,ﬁ,t)]+7€- [QP(r,ﬁ,t)]} = 0.(157)
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Since this holds for arbitrary volumé¥ and surface area4, the integrand must be equal to
0. Hence,

%P(r, Wt) = —V-[vPraf]-R-[QPr )] (158)
Here, we considered a system that contained just a singld=arda suspension that contains

N rods, instead of jusfr, u}, the relevant phase space coordinates are,

{rlvrQa"' avaﬁlaﬁ27"' 7ﬁN} )
wherer; is the position of thej* rod, andd; its orientation. The equation of motion for
the probability density functio® of these phase space coordinates is found from eq.(158) by
simply adding the in- and out-fluxes over all rods,

0 al .

ap(rlv"' arN;ﬁlv"' aﬁN7t> = 7Z{Vj ! [VjP] +R] ’ [QJP]} . (159)

J=1

The full phase space coordinate dependence o not denoted here on the right-hand side
for brevity. Here,ﬁj is defined as in eq.(156), with is replaced byi;. This is an exact
result, since it merely expresses conservation of the nuofbyeds.

As a last step, the translational- and rotational velogitiave to be expressed in terms
of functions of the phase space coordinates. In doing so,ha# seglect hydrodynamic
interactions between the rods. The reason for this negdetda-fold. First of all, as will be
seen later, the volume fractions of interest scalBas (with D the thickness and the length
of the rods). That is, the volume fraction where the isotapématic phase transition occurs
scales agD/L. For the study of dynamics in the isotropic phase and thedpat-nematic
phase transition, volume fractions are thus very low. Tiniglies that on average two arbitrary
surface elements of distinct rods are very far apart. Toheeehydrodynamic interactions are
probably much less important than for suspensions of spdigrarticles. Secondly, the precise
form of hydrodynamic interaction functions for rods is uolem, even on the two-body level.

The key relation to express the velocities in terms of phasetfons is the force balance
equation. As has been seen before, translational and angalaentum coordinates are re-
laxed to equilibrium with the heat bath of solvent molecudasghe Brownian time scale, so
that the total force (and torque) on each Brownian part&ieero. There are three non-inertial
forces (and torques) working on each rod : the hydrodynam'rcEny (torqueTj?) that the
solvent exerts on the rod, the direct interaction fcitfe(torqueTjT) and the Brownian force
F5" (torqueT#"), which will be discussed and specified later. Hence,

Total force = 0 = F} +F) +F/",
Total torque = 0 = T/ + T+ T/ . (160)

The direct force is minus the gradient of the total potergia@rgy® of the assembly of Brow-
nian particles,

FJI':7qu)(r1a"'7rN7ﬁ1a"'7ﬁN>7 (161)
while the direct torque is related b as,

T! = —R;®. (162)
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With the neglect of hydrodynamic interactions, the hydmayic torque and force are just
the friction forces of a single rod with the solvent. Thigfion force is equal to (see eq.(44)),

F;L = (’y”ﬁﬁ + 7L {i - ﬁﬁ}) : (Vc -G- rc) . (163)
The torque due to friction with the solvent is equal to (seé4s)),

As discussed before, in case of simple shear flow, the seevndinh the square brackets is
0 when the rod’s orientation is along the flow direction. Torectly describe Jeffery orbits
of non-Brownian rods we therefore had to add the small totaeacts on rods with such an
orientation (see eq.(55)). For Brownian rods this smatjteris irrelevant, since rods oriented
parallel to the flow direction will attain other orientat®due to Brownian motion before the
mentioned small torque became active.
The translational velocity can be found from egs.(160, 583)

vi = (Dyiyiy + Do [T ity ) - {8V, @+ BFF"} + 4G oy (165)
while the rotational velocity is found from eqs.(160,164) a

Q; = D {-oR0+ BT b 451y x (G ;) . (166)
Here,G = G /4 is the “normalized” velocity gradient tensor,

D” = k}BT/’)/” , DL = k}BT/’)/L . (167)

are the translational diffusion coefficients for motiongikl and perpendicular to the rods
long axis, respectively, and,

Dr = kBT/7T ) (168)

is the rotational diffusion coefficienThese diffusion coefficients depend on the lengtnd
thicknessD of the rod, and the shear viscosify of the solvent (see eqs.(40,42,49)),

p _ 3ksTn{L/D}
" - ’/TT]() L‘3
kT In{L/D
Dy = M, (169)
27 L
DL = %D” .
Note that due to the last two equations here, eq.(165) caevix@ten as,
v; = 3D [i+ﬁjﬁ]} {—BV;® + BFP} 454Gy (170)
wherethe translational diffusion coefficied? is equal to,
- kpTIn{L/D}
D=1Dy+2D,| = 4D, =D = ———F— . 171
s[Dy+2D1] = 3D = 3Dy S L (171)

The reason for referring t®,. and D as “diffusion coefficients” will become clear in the fol-
lowing section, where diffusion of non-interacting rodsansidered. The above expressions
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for diffusion coefficients are valid for very long and thirdsa For shorter rods, corrections to
these limiting expressions are given by de la Torre and Bfead(1981).

We still have to express the Brownian contributions to thelorce and torque in terms of
phase functions. This is achieved as follows. In the absehftew, for infinite timet — oo,
when the suspension attains equilibrium, the probabil@gsity functionP is proportional
to the Boltzmann exponentiakp{—3 ®}, andoP/0t = 0. From the long-time limit of
eq.(159), together with egs.(166,170) in the absence afrdlmav, it follows that,

FP" = —kgTV;In{P},

J

TP = —kpTR;In{P}. (172)

These Brownian contributions to the total force and torgueethe result of the fact that the
force balance equations (160) are only valid on the difiagimne scale. On such a coars-
ened time scale, not only the purely microscopic forE?wnd Ff (and the corresponding
torques) act on the colloidal particles. The additionaMari@an force (and torque) arises from
interactions of the colloidal particle with the solvent maliles, averaged with respect to the
equilibrium probability density function for the phase sp&oordinates of the fluid molecules
in the external field imposed by the colloidal particles witlescribed positions and orienta-
tions. Even in a very dilute system of colloidal particles (&leal gas”), where interactions
between the colloidal particles can be neglected, theibguin state is one where the macro-
scopic density is constant, independent of position. Thesfthat drive such an ideal gas to
the homogeneous state are the Brownian forces.

In this way the following equation of motion for the probatyildensity functionP of the
phase space coordinatgs, - -- ,ry, 01, -+, Uy} iS Obtained,

P N - . . A
o = S {spv, (T+aw) (VP + 5PV, -4V, [PG o]
i=1

+D,R; - [RyP + BPR®| 4Ry - [Py x (Goy)]} . (273)

This is theSmoluchowski equaticfor very long and thin, rigid rods, where hydrodynamic
interactions are neglected.

An alternative, perhaps more satisfying derivation of tineofichowski equation, is to
start from the Liouville equation for a binary mixture : trehsent molecules and the colloidal
particles. The Smoluchowski equation is then found aftexgrating over the fast phase space
variables (the phase space coordinates of the solvent olegeand the momentum coordi-
nates of the colloidal particles). Such an approach has taéemn, for spherical colloids, by
Deutch and Oppenheim (1971) and Murphy and Aquirre (19782¢ Smoluchowski equation
for spherical particles has been used as a starting poirgrteedthe Smoluchowski equation
for rods by Erpenbeck and Kirkwood (1963).

0.7.2 Translational and rotational diffusion of non-interacting
rods without shear flow

Consider the mean squared center of mass displacemente#lg diiffusing rod. Its position
at timet = 0 will be chosen at the originz(¢ = 0) = 0. Free diffusion occurs in suspensions
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where the concentration of colloidal particles is so snibh#t on average, rods do not notice
each other. In that case, the interaction potential in thelGohowski equation (173) may be
neglected® = 0), andV can be taken equal tg resulting in,

%P(r,ﬁ,t) = 3DV [i+ﬁﬁ] VP + D,R’P (174)

whereR” = R - R. For the highly diluted systems under consideration ea@ntation
has equal probabilityP(r, 0, t) is independent ofi, and is simply proportional t&(r, t).
Equation 174 thus reduces to,

%P(r,t) — 2DV [i+fm} VP(r,1) . (175)

Integration of both sides with respectiig using that}

fdﬁ [i+ﬁﬁ] =41,

thus leads to,
%P(r, t) = DV?P(r,t). (176)
The equation of motion for the dyadic productr(¢)r(¢) > is obtained by multiplying both
sides withr r and integrating,

d d _
7 drrr P(r,t) = pn <r(t)r(t) > = D/drrrVQP(r,t)

= D/drP(r,t)Ver =2D1,

where Gauss'’s integral theorem has been used twice in tbadéne. Since<r(t = 0)r(t =
0) >= 0, time-integration immediately leads to,

<r(t)r(t) > = 2Dt1,
and hence,
W(t) =<r(t) >= 6Dt, (177)

in accordance with the result (130) as obtained from the kaimgequation. Note that on
taking the Trace of the dyadic product, each spatial dinten@ in this case) gives rise to a
factor 2 on the right-hand side in the mean squared displantimeq.(177). Diffusion in two
dimensions gives a prefactor dfinstead of6, in accordance with the result in eq.(147) for
short-time rotational diffusion.

Let us now consider the time dependence of the orientatidrit) >, given thata(t =
0) = a(0). Forahomogeneous systeR\(r, 0, t) is independent af, so that eq.(174) reduces
to,

%P(ﬁ, t) = D,R°P(i,t) . (178)

1The integral§ da (- - - ) stands for integration over the unit spherical surfaceetms of the angular spherical
coordinates® andy of u this integral isf;" d© fOQW dp sin{O} (---).
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Multiplying both sides withi and integrating over the unit spherical surface gives,
% <a(t)>= D, j{dﬁﬁﬁp(ﬁ,t) :

From Stokes’s integral theorem it follows that for any twee(lehaved) functiong andg
of u,

fdas@Rg() = - § dag@Rs(@) . (179)
Applying this result twice leads to,

fdﬁ aR? P(a,t) = fdﬁp(ﬁ,t)fz? a=-2<ult) >,

where it is used thaR2a = —2a. The equation of motion we were after thus reads,
d
— <u(t) >= —2D, <ut) >,
dt
the solution of which is,
<a(t) > = exp{—-2D,t} a(0). (180)

in accordance with eqs.(133,146) as obtained from the hangeuation. As discussed in the
section on the Langevin-equation approach, for small timesre D,.t < 1, this result can
be interpreted as translational diffusion of the tipiodn a two-dimensional surface.

0.8 The Orientational Order Parameter

At higher concentrations, where interactions between asesmportant, a transition from an
isotropic distribution of orientations to an orientatiipardered nematic state can occur (as
will be discussed in more detail later). Orientational oridealso induced by shear flow in
otherwise isotropic suspensions. For such ordered stiageddgree of orientational order
varies, depending on the concentration of rods and the shéar In the present section
the so-calledbrientational order parametewill be defined, which measures the degree of
orientational order.

<S>

Figure 15: Definition of the angle® between the orientatio of a rod and the directai.
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The preferred orientatiof of the rods is referred to ake director The most simple
measure for the degree of orientation that comes to mirttigs{©} >=< 0 > -n, where©
is the angle of the orientatiainof a given rod and the directdr (see fig.15). However, due to
symmetry, an orientatiodi is equally likely to occur as the orientatien, so that< o >= 0.
The next most simple measure would then<eos?{©} >=< i >: nn. 2. Hence, the
most simple quantity that characterizes the orientatistetke is the so-calledrientational
order parameter tensor

S =<da>= j{dﬁﬁﬁP(ﬁ), (181)

where the integration ranges over the unit spherical sarfaee 1). Furthermord’(a) is
the probability density function (pdf) for the orientatiarof a rod, which can in principle be
obtained from the solution of th&¥-particle Smoluchowski equation (173), noting that,

P(ﬁ> = /drl/drN%dﬁQ%dﬁN P(rla avaﬁvﬁQa"' aﬁN) (182)

The pdf ofa can be time dependent, in which case orientational dynaraitcde studied.

What information can be distilled from a specifi8® To answer this question, létbe a
unit vector, and lep denote the angle between the orientaficof a given rod ané. Consider
the function,

f =<cos?{p}>= S:ée = Z Sn €m €n (183)

wheres,,,, is thenm!* component o8, andé,, thent® component oé. Since the maximum
value ofcos?{¢p} is attained whenp = 0, and the most likely direction ofi is along the
director, it is evident that the unit vectérthat maximizes is the director. Maximization of
f has to be performed under the constraint ¢heta unit vector, that i¢ - € = 1. According

to Lagrange’s principle, we therefore have to maximize threfion,

fr=f-xée-& = {Spmn—Admn} bmén, (184)

mn

where is the Lagrange multiplier, andl,.,, is the Kronecker deltas(,,, = 0 whenm # n
andd,,, = 1 whenm = n). Fromdf/dé,, = 0 itis easily found that,

S-é = \é, maximizes or minimizeg* . (185)
By taking the inner product on both sides it follows that,
A = S:ée, whené maximizes or minimizesf*. (186)

We thus find that,

The eigenvector d8 with the largest eigenvalue is the directarand the largest eigen-
value is equal to< cos{©®}?>= S : nn.

2 The contraction symbol:” stands for summation over two adjacent indices, that isfio tensorsA and B,
by definition, A : B =3",  Anm Bmn
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Figure 16: For a bi-axial nematic, the projections of the rods onto the@perpendicular to the director
n have a preferred orientatiail as well. For a uni-axial nematic, the order in this plane asrizpic.

According to egs.(183,186), the largest eigenvalug oharacterizes the degree of align-
ment, and is referred to dhe scalar orientational order parametemote that the largest
eigenvalue ofS is equall/3 in the isotropic state (since theh = %i), and equal tal for
a perfectly aligned state (since thBn= nn). A commonly used equivalent measure is the
so-calledP»-order parameter, which is defined as,

Py =< Py(cos{O}) >= L {3 <cos?{O}> —1} = L {3x -1}, (187)

where P,(z) is the second order Legendre polynomial. The reason foodntring this
“rescaled” scalar order parametBs is that it isO for an isotropic state and equal tofor
a perfectly aligned state.

When for a particular nematic suspension the remaining maller eigenvalues are equal,
the nematic is referred to as “uni-axidUni-axial nematic When they are unequal, the ne-
matic is referred to as “bi-axialBi-axial nematic For a uni-axial nematic, the projections
of the rods onto the plane perpendicular to the director swapically distributed, while
for a bi-axial nematic the orientations of the rods in thisjpction have a second preferred
directionn’ (see fig.16).

Bi-axiality of nematic ordering is found, for example, whasuspension of rigid rods is
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subjected to simple shear flow. A nematic state of cylindlsichaped rods, in the absence of
an external field, is expected to be uni-axial.

The procedure to find the order parameter is to calculateetgotS and determine its
eigenvalues. The largest eigenvalue measures the degoeiemtfational order and the corre-
sponding eigenvector gives the preferred direction ofratignt. We shall derive an equation
of motion forS from the Smoluchowski equation later in this chapter.

0.9 Non-interacting Brownian Rods in Shear Flow

In the present section we shall discuss probability derigitgtions (pdf’s) and orientational
order parameter matrices for a single Brownian rod subjgatéow. On applying a stationary
flow, the orientational pdf of a single rod attains a statigrfarm. This stationary, time
independent pdf is determined by the interplay of the afigréffect of the flow and isotropy-
restoring rotational diffusion.

The stationary form of the Smoluchowski equation (173) feirgle rod reads,

0 = R2P(d) — Pe,R- [P(ﬁ) it x (G : u)} , (188)

where the dimensionless parame®er. is commonly referred to as thetational Peclet num-
ber, which is defined as,
v
Pe, = D (189)
This Peclet number is a measure for the effect of the shearétative to isotropy-restoring
rotational diffusion. For small Peclet numbers, rotatiagiffusion is relatively fast, so that
the pdf is only slightly anisotropic.

As explained below eq.(156), the differentiatiorfiris with respect to the cartesian coor-
dinates ofii, without the constraint that is unit vector.

The stationary equation of motion can be solved in closedytioal form when the ve-
locity gradient tensoG is symmetric (as for elongational flow). This solution isalissed in
the next subsection. When the velocity gradient tensor isyimmetric (as for simple shear
flow), the solution cannot be obtained in a simple closedyaical form, but must be obtained
by numerical methods. However, expansion of the oriematipdf for small Peclet numbers
is feasible.

0.9.1 Elongational flow

For pure straining motion, the velocity gradient tenébis equal to the symmetric tensbr
in eq.(2). A symmetric velocity gradient tensor admits aiioh of the simpler equation,

0 = RP(it) — Pe, [P(ﬁ) it x (Eu” : (190)
where one of th&k-operators in eq.(188) is removed. Division Bya) thus yields,

0 = RIn{P(dt)} — Pe, @ x (E : ﬁ) . (191)
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From one of the relations in appendix B, it follows immedipthat the solution is given by,

P(a) = C(%e) exp{%Per (a-E- ﬁ)} , (192)
whereC is the Pe,.-dependent normalization constant,
C(Pe,) = f{ dit exp {%Per (a-E- ﬁ)} (193)

27 ™
= / dcp/ dO sin{O} exp { Pe, sin®{O} sin{y} cos{y}}.
0 0

This normalization constant may be determined, as a fumctid?e,. by numerical integra-
tion. Alternatively,C(Pe,) may be expanded for smalte,. in a power series iPe,., or

its asymptotic form for largé’e,. may be calculated. Taylor expansion of the exponential in
eq.(193) with respect t&e,. readily gives,

21, o T 4 6
C(Pe,) = 47+ 5 Pe; + 630P€r + O (Pey) . (194)
For large (positive) Peclet numbers, asymptotic formgfPe,.) can be obtained by a saddle
point analysis, which we shall not discuss here. For intéliate values ofPe,., the integral
in eq.(193) forC'(Pe, ) must be evaluated numerically.

The orientational order parameter tensor can be calcufaded the above given forms
for the pdf P(11) and eq.(181), and from that the scalar orientational ordearpeterP, as
defined in eq.(187) and the anglebetween the director and the flow direction. These are
plotted as functions oPe,. in fig.17. Solid lines are obtained from numerical integratof
eg.(193), while the dotted lines correspond to the limitargalytical results in eq.(194) for
small Peclet numbers (including the corresponding expansi the exponential in eq.(192)
for the pdf). For elongational flow is always equal ta5°, which is obvious from the flow
field as sketched in fig.1 : rods will orient along the extenail@xis.

0.9.2 Simple shear flow

In case of pure shearing motion, the velocity gradient tesas equal to the tensdr in
eg.(1). For such a non-symmetric velocity gradient tens®above method of solution cannot
be copied, since the corresponding eq.(190) has no sofuiior@ non-symmetric tenséx.

For small rotational Peclet numbers the deviation of theffuah isotropy is small, so that
the solution of the stationary equation of motion (188) carekpanded as,

1
P() = = T Pe Pi(d) + Pe2Py(t) + -+ . (195)

Substitution of this expansion into eq.(188) and equatogffcients of equal powers dte,.,
one readily finds the following recursive set of differehiguations for the as yet unknown
functionsp;,

RO Pi(a) = R- [Pj_l(ﬁ)ﬁx (r-ﬁ)} i1, (196)
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elongational flow
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Figure 17: (a) The scalar orientational order parameter= %{3/\ — 1}, with X the largest eigenvalue
of S (see eq.(187)) as a function of the rotational Peclet nuritegr= +/ D, for elongational flow and
simple shear flow. Solid lines are numerical results, dditezs correspond to the limiting analytical
solutions (194) and (202) for elongational and simple shreapectively, and data points are computer
simulation results by Winkler et al. (2004a,b). (b) The anglbetween the director and the flow
direction. The dotted line is the angle that follows from timeiting form (202) of the pdf for simple

shear flow.
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whereP, () = 1/4 is the isotropic pdf without shear flow. Normalization rewgsithat,

?{dﬁPj(ﬁ) =0, j>1. (197)

Let us consider the first two corrections from isotropy in élxpansion (195).
Forj = 1, using thatPy (1) = 1/4r, eq.(196) reads,
.2 R 1 -~ 7. . 3 . A .
RPl(u)_ER-[ux(r-u”_—E(u-E-u), (198)
whereE is the symmetric part of the gradient velocity tenEothat is,E = 3(I'+ I'7). The

above equation follows from the relations given in apperlx Using these relations once
more immediately leads to,

NS PR S .
Pi(a) = 87T( ‘E-0) = g, oin {©} sin{p} cos{p}. (199)
Substitution of this solution foP; into eq.(196) forj = 2 yields gives,
2 p - Lp la b toal = L s b
R Py(a) = —R [(u E-a)axT u)} = = [UQ (- B u)} . (200)

From the relations in appendix B one readily verifies that(a - E - )2 = 242 + 202 —
20(a - E - )2, The third equation in the appendix now shows that the swittt eq.(200) is
given by,

1 - 1

P@) = o {(ﬁ-E-ﬁ)Q + (U] — a3) — 1—15]

= — [sin4{@} sin?{¢} cos®{p} + 1sir12{®}((2052{<p} —sin?{p}) — i] . (201)

327 3 15
The constant /15 between the square brackets has been subtracted in ortléh thatisfies
the normalization constraint (197).

Collecting results, we thus obtain the following small Reéclumber expansion (valid up

to O(Pe?)),

P(a) = L pe i(ﬁ.E-ﬁ)+P62L (ﬁ-E-ﬁ)2+1(a2—a2)—i (202)

4 " 8 " 321 3 s

The corresponding scalar orientational order paramétand the angle between the direc-
tor and the flow direction are plotted in fig.17, together vt numerical solution of eq.(188).
The dotted lines in fig.17 correspond to asymptotic solgtifmn small Peclet numbers. The
solid lines correspond to numerical solutions of egs.(188jle the data points are simula-
tion results by Winkler et al. (2004) and Winkler and Gomp{2&04). In these simulations,
the aspect ratio of the rods Is/ D = 15, and there is a finite flexibility (the average end-to-
end distance i198% of the contour length). This may be the reason for the smaibatiens
at higher Peclet numbers. For short rods the order paraisetgpected to be smaller than
for long rods. In fig.17a, however, the simulation resultstfe order parameter are slightly

SNotice that in the combinatiof - M - i1, one can replace the tensdf by its symmetric par% (M +M7T),
sinced - (M — MT) -a =0.
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above those corresponding to the numerical solution of thel@&chowski equation. This is
an indication for a sensitive dependence of orientationd¢ninduced by shear flow on the
flexibility of rods.

Contrary to elongational flow, rods subjected to simple sfiea will rotate in the velocity-
gradient plane. The orientational order parameter forgdtional flow is therefore large as
compared to simple shear flow. For small Peclet numbers,irogisnple shear flow spend
most of their time during rotation in a direction wheye= 45°. This is the result of an inter-
play between the Brownian torque on the rod and the torquetke&luid exerts on the rod.
A preferred alignment along the flow direction implies a sgly peaked orientational pdf. In
that case the Brownian torque, being equakioz TR In{ P(1)}, would be very large. The
Brownian torque thus tends to diminish the strongly pealafdmpthe flow direction. This
competition leads, according to the above analysis, to fepesl alignment along the exten-
sional axis of the shear flow at very small shear rates. FgetdPeclet numbers, where the
torque that the fluids exerts on the rod is dominant, the apdémds ta0, that is, rods are on
average aligned along the flow direction.

0.10 The Doi-Edwards Equation of Motion and the
Maier-Saupe Potential

In this section we shall derive an equation of motion for thierdational order parameter
tensorS for homogeneous systems of long and thin rods with shogeadmepulsive interac-

tions subjected to shear flow. This equation of motion is kmaw the Doi-Edwards equation
(see Doi and Edwards (1986)), which is derived here from thel8chowski equation (173).

In such a microscopic derivation, the assumptions undectwttie Doi-Edwards equation
holds will become clear. For the very long and thin rods uratersideration here, the sta-
tionary equation of motion for the pd?(a) for the orientationi of a rod, as obtained from
the Smoluchowski equation, complies with Onsager’s fregggnfunctional (Onsager (1933),
Onsager (1942), Onsager (1949)). Expanding the interatgion in the equation of motion
with respect to the orientational order parameter leadsriataral way to the Maier-Saupe
potential (Maier and Saupe (1958), Maier and Saupe (1958Mnd Saupe (1960)).

0.10.1 The equation of motion forP(u, t)

Let us first derive the equation of motion fé¥(1,t). According to egs.(182) (wherB is
now time dependent), such an equation of motion can be autdiom the Smoluchowski
equation (173) by integration with respectrtq - - - ,ry, G2, -+ , Gy

Analytical progress can be made by assuming a pair-wisdigglttital potential, that is,

(I)(rh"' 7rN;ﬁ17"' ;ﬁN) = Zv(ri _rj;ﬁ’i7ﬁj) ) (203)
1<j

with V' the pair-interaction potential. This is exact for rods wlhrd-core interactions (or
rods with very short-ranged repulsive interactions) thatshall consider. According to the
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integral theorems of Gauss and Stokes, we have, respgctivel

/drjvj-(---)zo, and , fdﬁjfzj-(---)zo. (204)
Using the above relations, integration of both sides of tmel8chowski equation (173) with
respectta,--- ,ry andug,- - -, ay, leads to (witha = 1,),

%P(ﬁ,t} - D,R- {feP(ﬁ,t) - ﬁP(ﬁ,t)T(ﬁ,t)} R {P(a,t)ax (T-a)} (205)

The torqueT is defined as (WitlR = r; — ry andd’ = 1y),
T(at) = —p / iR 74 i’ P, 1) g(R, 4,0, )RV (R, i, &) (206)

wherep = N/V is the number density of rods, and where the pair-correldtiactiong is
defined as (withr = r; andr’ = r),

P(r,r', 0,1 t) = /drg---/drN}{dfm---%dﬁNP(r,r',r&--- Ty, 0,0 g, -, G, t)

= 5 PO P 0 gl 0, 0) (207)
with P(r,r’, @, ', t) the pdf for the positions and orientations of two rods. Sithesproduct
L P, t)g(r,r', 4, 1') is the conditional pdf for the positiorf and orientationi’ of a rod,
given the orientatio and position: of the other rod, the torque in eq.(206) is the torque on a
rod, with prescribed orientatiai and positionr, averaged over the orientations and positions
of the other rods. In fact, eq.(205) is nothing but the oneigla Smoluchowski equation with
the addition of an “external torqud’.

A closed equation of motion foP (1, ¢) is obtained whery is known. For equilibrium
suspensions of very long and thin, rigid and repulsive raéigjlar arguments as used by
Onsager (1933) lead to (see subsection 10.3 for details),

g(r — v/ a,d',t) = exp{-BV(r -1/, 0,d)}, (208)
whereV is the pair-interaction potential. This expression isd/atlithe isotropic and nematic
states (provided the degree of alignment is not too high)at Elg.(208) is a good approxi-
mation for suspensions of very long and thin rods in equililoreven at high concentrations
is shown in subsection 10.3. What is neglected in using €§)(are dynamic contributions
to correlations and the influence of shear flow. So far, ngtisrknown about dynamic cor-
relations, and we shall assume here that these contrilsutiam be neglected. Furthermore,
the effect of shear flow is to align rods, that is, shear flowrggty affects the singlet pdf
P(u,t). Correlations between centers-of-mass of the very longthindrods, measured by
the pair-correlation function, are much less affected by flow.

In case of hard-core interactions we have the identity,

exp {—fV(r—r',0,a')} RV(r—r, a,4) = —57'R lexp {-pV (r—r',0,0")} — 1]
= FRX(r - aw), (209)

with x the characteristic function of the excluded volume for teds: x = 1 when the cores
of the two rods overlap ang = 0 otherwise. The torque (206) can now be written as,

T(a,t) = —RVH (1), (210)
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wherethe effective potentidt ¢/ is equal to (withR = ' — r),
vell(a,t) = B‘lﬁ/dR%dﬁ'P(ﬁ',t)X(R, a, 1)

= 2DL2ﬁ_1ﬁj{dﬁ'P(ﬁ',t) laxa|, (211)
where in the last equation it is used that,
/dR Y(R,a,4') = 2DL? [axd'|, (212)

for very long and thin rods. The effective potenfi&l// is commonly referred to ake Doi-
Edwards potentialWe thus find the following closed equation of motion fofa, ¢),

%P(ﬁ,t} _ DR {fep(ﬁ,zf) +2DI2 Pl )R 7§ i P(i, 1) | % ﬁ’|}
AR {P(ﬁ,t) it x (ru) } : (213)
Note that this equation is non-linear (u, t).
We note here, for those who are familiar with Onsager’s w@hkgager (1933), Onsager
(1942), Onsager (1949)), that the stationary solufitfiii) of the equation of motion (213)
without shear flow satisfies,

In{P(0)} + 2DLQﬁfdﬁ’P(ﬁ’,zf) laxd'|= C, (214)

whereC' is an integration constant. This is precisely the Eulerraage equation that com-
plies with the Onsager free energy functional for very lond thin rods with excluded volume
interactions.

An important thing to notice is that the outer prodiack (T - @) in eq.(213) can not be
written in the formR f, with f a scalar field. Therefore, the simple shear contributioméo t
equation of motion (213) foP (1, ¢) can not be incorporated as a potential. Simple shear flow
is thus a non-conservative external field. Since no potidotishear flow can be defined, one
can not define a free energy. Thermodynamic consideratmmsystems under shear flow
are therefore questionable. It has yet to be seen how aecimatmodynamic approaches
for systems under shear flow are. To describe coexistencer shéar flow conditions, one
must in principle resort to equations of motion, and timegnate these up to the stationary
state. Since sharp interfaces may exist in such stationatgss equations of motion should
accurately describe situations where strong gradientsrgentration and orientational order
parameter are present.

0.10.2 The equation of motion forS(¢)

Following Doi and Edwards, Doi and Edwards (1986), an eguatif motion forS can be
obtained by operating on both sides of eq.(213) withi (aa) (- - - ) (see eq.(181), wher®
is now time dependent). The first term on the right hand-sfdegd213) is easily found to
render,

j{dﬁ (@a)R’P(a,t) = j{dﬁP(ﬁ,t)fEQ(ﬁﬁ) = 2168, (215)
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where in the first equation two partial integrations haventsene, and in the second equation

it is used tha®R” (a@) = 21 — 6aa. To make further analytical progress, we shall expand
the second term in the equation of motion (213) up to thirceoid the orientational order
parameter. That is, we shall expand with respect to the e#hees of matrices likey =

aua — %i, whose eigenvalues are in betweef/3 and2/3. Such a third order Ginzburg-
Landau expansion complies with a fourth order expansioh@efitee energy in the absence
of flow. Since the outer product in eq.(213) for the effecpegential can be written as (with
q =a'a — 1),

[axd'|=V1i-aa:0'a" = /2—-q:q,
we can Taylor expand up to leading order with respeet émdq’,

|ﬁxﬁ’|z\/g[1f%q:q’]. (216)
Since the next higher order term in this Taylor expansiorf iforth order, this truncation
leads to a Ginzburg-Landau expansion up to third order ofetipgation of motion forS.
Sincey/2/3 differs by only3.8 % from the exact value /4 for the isotropic average value of
| x @' |, we shall replace/2/3 in €q.(216) byr/4. Errors due to truncation of the Taylor

expansion in eq.(216) are probably larger. Re-substituwfdhe definition of they’s in terms
of bilinear products ofi’s then leads to,

laxd|~ 3 [1-2aa:a'd] . (217)
The effective potential (211) within this Ginzburg-Landagpansion can be written as,
vell(a,t) = 2 37'DL*p{1 - ¢S : aa} , (218)

known as theMaier-Saupe potentidiaier-Saupe potential (Maier and Saupe (1958), Maier
and Saupe (1959), Maier and Saupe (1960)). Using the Gigabamdau expansion (218) in
the Smoluchowksi equation (213), and operating on bottssideh ¢ du (aa) (- - - ), leads to
the Doi-Edwards equation of motion,

%s - —6D,A{S—%i—%g@ (S-S—s<4>: s)}w {f-s+s-fT—zs<4>: E} . (219)

where the concentration is now expressed in terms of theneluactiony = ZD?Lp, and,
as beforel’ = I'/4 is the normalized velocity gradient tensor, which is introeld to make
the shear-rate dependence more explicit. Furthern$dtejs a fourth order polyadic tensor,
defined as,

SW =<anaa> . (220)

In order to obtain a closed equation of motion Srthe fourth order tensa*) should be
expressed in terms &. Such a closure relation is discussed below.

0.10.3 Density Expansion of the Pair Correlation Function

Before deriving an orientational closure relation, we wlicuss the reason why eq.(208) is
a good approximation in equilibrium for very long and thirdsowith short-ranged repulsive
interactions, even for high concentrations.
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Angle=D/L

Figure 18: The effective angular integration range correspondingéoorientation of roc.

The first two terms in the density expansion of the equilifripair-correlation function
are,

g(r1 —ro,011,02) = exp{—BV(r;1 —rg,0,02)} x (221)
{1 +ﬁ/d1‘3%dﬁ3 X(rl —1'3,111,&3))((1'3 —I‘g,ﬁg,ﬁ3) —l—}

Since the characteristic functions in the integrand arg aoh-zero when the core of rod
number3 overlaps with both the cores of rodsand2, the integration with respect tas
effectively extends over an angular range of the ofd@FL (see fig.18). The integration with
respect tar; contributes at most DL2. Hence, the second term in the above expression is at
most of orde{D/L) DL? p ~ . Since the volume fractions of interest scale lIR¢L (see
Onsager (1933), Onsager (1942), Onsager (1949) and latieisichapter), the first order in
density contribution to the pair-correlation function mgtigibly small for very long and thin
rods. Higher order terms are similarly very small.

The above arguments as far as theintegration is concerned only hold when the angle
betweend; andu, is much larger than- D/L, as is clear from fig.18. Otherwise, tlig-
integration extends over a much larger angular range theirjuD /L. Hence, the expression
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(208) for the pair-correlation function is valid for highru@entrations, provided that the degree
of alignment is not very high. Scaling of the angular intégrarange withD /L does not hold
for all configurations of the three rods. A more careful aralghows that the second term in
eq.(221)is of ordetD/L)In{L/D} instead ofD/L.

0.10.4 An Orientational Closure Relation

There are a number of orientational closure relations ferdbntraction in eq.(220) that can
be used in eq.(219) to obtain a closed equation of motioi$ foy (for an overview, see For-
est and Wang (2003)). Here we will derive a simple closurati@h which is shown to be
reasonably accurate. It turns out that the various tumtdimdy wagging phenomena where
rods coherently rotate under stationary shear flow (not todméused with the Jeffery orbits
discussed before) can not be accurately described by madke axisting closure relations.
Such periodic solutions for the orientational order shdodénalyzed on the basis of eq.(213)
without using a Ginzburg-Landau expansion ffdr x @’ |.
The fourth order average in eq.(220) occurs in the form ofwbtcontraction,

A=8SYW:.M, (222)

whereM is equal taS. As pointed out by Hinch and Leal (1976), orientational otidereases
monotonically with increasing shear-rate, so that int&tion between the known forms for
S in the isotropic state and in the perfectly aligned statéprdbably lead to quite accurate
closures. The four point avera§é® is known exactly for the two extreme cases of perfect
alignment (along the directdr) and for the isotropic state,

<0000 >4 = NDNNgn; perfect alignment
= % [5ij5kl + 5ik5jl + 5ik5jl] , isotropic, (223)
with §;; the Kronecker delta)(; = 1 wheni = j, andd;; = 0 wheni # j). Furthermore, we
have the following trivial identities,

Ay = Z <0 0 0y Gy, > My, = Ay,
n,m

DA = D) <ttty > Myy = Y SpmMyu, =S: M. (224)
The latter identity is especially important in order to emesthat the trace o8 remains equal
to 1 on time integration of the equation of motion (219). Usingstires which do not satisfy
(224) violate the time invariance of the trace of the ordeapeeter. Furthermore,

A =<aaaa>: M, (225)
with,

M=1L1M+M"], (226)

the symmetric part oM, where the superscriptl™” stands for “the transpose of’. This
equation implies that the closure relation must be a funaidvi.

Since order parameters tend to increase monotonicallyshilar rate, an accurate closure
relation can be found by constructing an interpolation far@tween the exact results (223)
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such that the conditions (224,225) are satisfied. Subistitof the most general form of linear
combinations of first and second order termS ifinsisting that no isotropic contributions I
contribute),

A = ¢S M+eM-S+¢SI: M
+c4S-S M+c¢S - M-S+¢6M-S-S+¢7SS:M+¢sMS: S,

into egs.(223-226) renders algebraic equations for th#ficeatsc;, leading to,
<taaa>: M=1{SM+M-S-SSM-M:S-S+25-MS+35S:M} . (227)

Substitution of the closure relation (227) into the equatid motion (219) finally leads to a
closed equation of motion for the orientational order pagtantensor.

The accuracy of the closure relation (227) is discussedpeagix C. Comparison of exact
numerical solutions of the Smoluchowski equation (205fon-interacting rods, shows that
the closure approximation (227) wiMl = S and withM = E are accurate to within% and
10%, respectively. Computer simulations show that this acguextends to interacting rods.

0.11 Paranematic-Nematic Spinodals and the Binodal
under Shear Flow

Since shear flow tends to align rods, it will affect the looatiof isotropic-nematic phase
transition lines. The shear induced shift of spinodalséstbtically more easily calculated as
the shift of binodals. For the prediction of the location afdrals as a function of shear rate,
equations of motion must be time-integrated up to the statipstate where two bulk phases
coexist. These equations of motion must accurately acdourthe usually sharp interface
between both bulk phases. Equations of this sort have beaedé Dhont and Briels (2002)
and Dhont and Briels (2003) (see also the next section irctidapter as far as the stress tensor
is concerned), but remain to be analyzed. On the basis obappes that partly rely on
thermodynamic arguments, similar equations of motion caddrived to predict the phase
behaviour of rods under shear flow Olmsted and Lu (1999), @idhE1999), Olmsted et al.
(2000), Lu et al. (2000) and Fielding and Olmsted (2003).sehequations of motion are in
principle valid for small gradients in concentration anéntational order parameter, and are
therefore probably not able to accurately predict of thafim of the binodal. Nevertheless,
the analysis of such equations of motion reveals interggte@haviour like gradient banding,
which will be discussed later in this chapter.

In the absence of flow, computer simulations where free éeei@e calculated can be
used to obtain binodal concentrations for arbitrary aspiis Bolhuis and Frenkel (1997).

The experimental situation is different : here it is much endifficult to measure the
location of spinodals as compared to binodals. In the fahgwve shall first discuss how the
shear-rate dependence of spinodals can be calculatednanghariment is discussed where a
line in between the paranematic-nematic and nematic-paratic spinodals is probed. As far
as the binodal is concerned, there are no theoretical (madation) results available yet. We
shall discuss an experiment where the location of the binsdaeasured by means of time
resolved rheology experiments.
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0.11.1 Spinodals

A spinodal point is defined as a point in the shear rate versnsantration diagram (the
so-callednon-equilibrium phase diagraynwhere a stable stationary solution of the equation
of motion (219) for the orientational order parameter tunts an unstable solution. In the
absence of shear flow, such spinodal points can also be founmelns of thermodynamics.
Once a solution becomes unstable, the system will start &asgbkeparate without any time
delay. In order to describe such spinodal decompositioatkis, one needs to consider the
extension of the equation of motion (213) or (219) to inhoer@gpus systems, where gradient
contributions stabilize the system against formation of/\targe gradients. In the absence
of shear flow, such equations of motion are analyzed by Dol.e{1988), Shimada et al.
(1988) and Winters et al. (2000). For spinodal decompaskioetics under shear flow, these
equations of motion must be supplemented by an effectivaei&tokes equation beyond
the initial stage of demixing. Spinodal decomposition af-fike systems will be strongly
affected by flow, since flow affects orientational order. Aming such coupled equations of
motion as derived by Dhont and Briels (2002), Dhont and Br{gD03) is in progress. In the
present section we shall limit the discussion to the shehrded shift of spinodals.

As far as the location of spinodals is concerned, the norilieum phase diagram can
most conveniently be understood on the basis of so-chifactation diagramsA bifurcation
diagram is a plot in the orientational-order-parametesugiconcentration plane, where, for
a given shear rate, the order parameter for the stationduticets of the equation of motion
(219) is indicated. There are two possible stationary &mist: stable- and unstable solutions.
Let Sy denote a stationary solution of eq.(219), that is, the flgdnid side of eq.(219) vanishes
forS = Sy. LetdS be a small perturbation. The stationary solutgris referred to as a stable
solution when an initial stat®, + ¢S relaxes back t8§ in time, providedS is small enough.
The stateS, is referred to as unstable, whéfi does not relax t®, no matter how small this
perturbation is chosen. A linear stability analysis is iieggito decide whether a stationary
solution is either stable or unstable. Such a stabilityysisfor the stationary isotropic state
Sy = %i in the absence of shear flow can be performed analyticallypndtke closure relation
(227) in eq.(219) withy = 0, substitution of,

S(t) = 11 4 6S(t), (228)
and linearization with respect &8 (¢) readily leads to,

d—(SS = —6D 68 (229)

dt
where,

D = D {1-1%¢}, (230)
is an effective rotational diffusion coefficient. The sadutof eq.(229) reads,

6S(t) = exp{—6D:t} 5S(t=0). (231)

The perturbationdS thus grows exponentially in time whene// < 0, that is whenk ¢ > 5.

For £¢ > 5, the isotropic phase becomes unstable, and the new statdéssthe nematic state
with a relatively large value fok. On subsequently lowering the concentration, the nematic
state becomes unstablefap <40/9 = 4.44 - - -, and the system returns to the isotropic state.
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Figure 19: (a) Bifurcation diagrams, where only stable stationaryohs Sy of eq.(219) (together
with the closure relation (227)) are shown. HexXds the largest eigenvalue 8 and is the volume
fraction of rods. The numbers in the plot refer®e’ = 4/D,.. (b) Spinodal points as found from the
bifurcation diagrams.

A stability analysis can in principle be done ongg is known, and hence an effective
rotational diffusion coefficient can be defined also for reeme shear rates. For non-zero
shear rates this effective diffusion coefficient is gergraltensor rather than a scalar. An
important thing to note is that the largest eigenvalue of thifusion tensor becomésat a
spinodal point. Rotational diffusion therefore becomey sow in the neighbourhood of a
spinodal point, which is reminiscent of critical slowingvao.

The isotropic-to-nematic spinodal concentratjpp = 5 should be compared to the exact
value4 found by Onsager (1933), or equivalently, from a linear itgtanalysis of eq.(213),
without performing a Ginzburg-Landau expansionanx i’ |. The difference between our
result and the exact result for the location of the isotrdpimematic spinodal point in the
absence of shear flow is mainly due to the Ginzburg-Landaaresipn (217), and to a lesser
extent to the closure relation (227) (which is accurate thiwil % for M = S).

Note thatD¢/f is a collective diffusion coefficient since it describes tudlective relax-
ation (or growth) of an initially misaligned state, wherekaod contributes to the misalign-
ment relative to the isotropic state. This diffusion coédiit is only weakly concentration
dependent because such a relaxation (or initial growth)iregvery small, collective reorien-
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Figure 20: The shear-induced shift of spinodal concentrations asguretith time resolved birefrin-
gence measurements by Lenstra et al. (2001). The tiltedditecated in between the two spinodal
concentrations. The circles below indicate the binodateatrations in the absence of shear flow.

tations of the rods. The concentration dependence of thertratational diffusion coefficient
considered by Doi and Edwards (1986), on the contrary, ishnmore pronounced due to
“entanglements”, since now large reorientations of thesraxd important. As will be shown
in section 12, the effective rotational diffusion coeffitieoes not depend in a linear fashion
on concentration. This is due to the neglect of dynamic ¢aticas.

Spinodals will be shifted to lower concentrations on apmdysimple shear-flow, since
shear flow tends to align the rods, and therefore stabillzesiématic state over the parane-
matic state. These spinodal points must be obtained nuatigricom egs.(219,227), since
generally the stationary soluti@y is not known analytically. In fig.19a, bifurcation diagrams
are given for various values of the bare Peclet nunthér= +/D,..

We note here that an otherwise isotropic stable state isedidpy shear flow. Such an
aligned state is referred to aparanematic state Similarly, an otherwise stable nematic state
is more strongly aligned by shear flow.

The shear-rate dependent paranematic-to-nematic spifvaldiere the paranematic phase
becomes unstable onincreasing the concentration) andicetmgaranematic spinodal (where
the nematic phase becomes unstable on lowering the coatien); as obtained from the
bifurcation diagram in fig.19a, are plotted in fig.19b. In #desence of shear flow, as dis-
cussed above, the isotropic-to-nematic spinodal conagmiris located af; ¢ = 5, while the
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nematic-to-isotropic spinodal concentration is foundéehual tok p = 40/9 = 4.44 - - -.

For a critical rotational Peclet numbge? = 0.159 - - -, the two spinodals meet in a non-
equilibrium critical point. For larger shear-rates, whex€! > 0.159 - - -, there is a continuous
and reversible transition between the paranematic and tiestate : here, shear forces are so
large that rod-rod interactions are not able anymore todadudiscontinuous transition.

An important thing to note is that the concentration alwaytees through the combination
£ . For long and thin rods, the volume fractions of interessthcale as- 2 < 1. This'is
the reason why hydrodynamic interactions become less itrapiior very long and thin rods,
as mentioned before. The strength of direct interactiomshe contrary, is not small, since at
Ly = O(1), these interactions are sufficiently strong to induce a@hassition.

Recent time resolved birefringence experiments by Leretted. (2001) confirm a shear
induced shift of paranematic-nematic phase boundary (seesfig.20). Here, the shear rate is
gradually changed from a high shear rate (where the oneetate is stable) to a lower shear
rate (possibly in the two-phase region), followed by theerse. During such a shear-rate
sweep the birefringence is probed. Due to slowing down obtlientational dynamics close
to a spinodal line, the birefringence will exhibit a hystsethe magnitude of which depends
on the sweep rate. Such time resolved birefringence measuts probe a line in the non-
equilibrium phase diagram that is in between the two spihodacentrations (see Lenstra
etal. (2001)). The system that is used here consists ofdiges of fd virus, which has been
used for the first time for systematic studies on phase behasind phase separation kinetics
by et al. (1989), Tang and Fraden (1993), Tang and Fraderb]1848 Grelet and Fraden
(2003), including suspensions of Tobacco Mosaic Virus édse the chapter by Fraden and
Dogic in this book). Paranematic-nematic phase separtdichis system is slow enough to
perform a shear-rate sweep during a time interval wheregobggzaration does not play a role
for the measured birefringence. Fd-virus is a semi-flexibderather then a perfectly rigid rod,
and the potential between the rods is not a perfect hardpmisntial. The contour length of
a fd-virus particle i®80 nm, while its persistence length2200 nm. This is the reason why,
in the absence of shear flow, the experimental binodal cdrat@ns (indicated by the two
dots in fig.20) are found not to agree quantitatively withsthpredicted by Onsager. As can
be seen in fig.20, the shear-induced shift of spinodals ishmuare pronounced as compared
to the prediction in fig.19b. The origin of this discrepansymost probably the flexibility
of fd virus. The critical shear rate, however, is in reasd@agreement with the predicted
critical shear raté”e? ~ 0.159 (the bare rotational diffusion coefficient of fd is known te b
10 — 20 s~ 1). So far, there is no theory dealing with the dynamics of séexible Brownian
particles on the same level as the Smoluchowski approadiforods outlined above.

0.11.2 The binodal

An experimental binodal of a fd-virus suspension is givefigri21l. Binodal points are de-
termined from time-dependent viscosity measurements aftbear-rate quench from a high
shear rate, where the one-phase state is stable, to a loaerrsite;y_ say. Whenevet_ is
within the paranematic-nematic two-phase region, dergiwiitl occur after the quench into a
paranematic and a nematic phase. Developing inhomogesagitie rise to a temporal change
of the viscosity, the amplitude of which increases with teptth of the quench. The ampli-
tude of the time dependent response of the viscosity vasishéhe binodal. A point on the
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Figure 21: The paranematic-nematic binodal of a fd-virus suspensiwhsre dextran is added to in-
duced attractions between the rods, leading to faster phegsaration. Herep,..., is the fraction of
coexisting nematic that is mixed with the correspondingragac bulk phase (at zero shear rate). The
lower figures depict (from left to right) the isotropic stapmlarization microscopy image of tactoids
that form during phase separation (courtesy of Kyongok Kamgl the nematic state. The vertical line
indicates a possible shear-rate quench.

binodal can thus be obtained by interpolation of the amgditas a function ofy_ to zero.
For more details see Lettinga and Dhont (2004). Contrarli¢ekperiments on the location
of the spinodal as described in the previous subsectioe, desttran is added to the fd-virus
suspension in order to enhance phase separation, whicereetigse experiments feasible.

0.11.3 Aremark on pattern formation and time-periodic states

There are two regions in the non-equilibrium phase diagrivetdistinguished that are re-
lated to pattern formation and time-periodic states. Ashlseen later, shear flow can induce
pattern formation within the two-phase region, that is,réggon bounded by the paranematic-
nematic binodal. Here “bands” are alternately stacked énvibrticity direction, where the
average orientational order within the bands differ. Thetof shear-induced pattern forma-
tion is referred to asgorticity banding In addition, coherent rotation of rods in the otherwise
nematic state leads to oscillations of the director undsicstary shear flow. Sudwmbling
and wagging statehave been analyzed in great detail by Marrucci and Maffet{d®90a),
Marrucci and Maffettone (1990b), Rienacker and Hess (L99&est and Wang (2003) and
Hess and Kroger (2004). As stated before, the closurdarliiat is employed for the fourth
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Figure 22: A sketch to explain the origin of “dynamic correlations”) (gepicts an initial configuration
of rods, which for simplicity is taken as a perfectly aligngdte. The orientational dynamics of the
shaded rod is considered in the main text. (b) After a snraktithe shaded rod has moved to a different
orientation due to Brownian motion. For clarity, the copasding movements of the other rods is not
depicted here. (c) the surrounding rods need a finite timéjtesato the new orientation of the shaded
rod.

order tensor in eq.(220) in terms 8fsensitively determines whether these periodic states are
correctly described. Our closure relation (227), althoagturate to within abouit0%, does

not give rise to tumbling and wagging at all, like many othleisares. Instead it is more ap-
propriate to analyze eq.(213) as such. A numerical anabfdhis equation of motion indeed
predicts tumbling and wagging regimes in the non-equiliiorphase diagram, although the
time-periodic states as predicted by eq.(213) are not yigtéxplored. In all of these equa-
tions of motion, however, dynamic correlations are neglecAs will be discussed in section
12, such correlations might play some role of importance.

0.12 How important are dynamic correlations?

Dynamic correlations find their origin in the finite time thiatakes for the surroundings of
a given particle to adjust to the changing position and d¢giggon of that particle. Consider

for example an assembly of rods as depicted in fig.22a. Foreroance, the orientations of
all rods in this figure are taken equal in the initial state.pjSse that one is interested in
the orientational dynamics of the rod in fig.22 that is deggichs a shaded cylinder. During
a small time interval, the shaded rod moves to a new oriematue to rotational Brownian

motion, as depicted in fig.22b. If one would then freeze thenation of the shaded rod, the
surrounding rods will change their average orientationdjpst to the field imposed by the
frozen shaded rod, as depicted in fig.22c. This adjustm&asta finite time. The shaded rod
thus experiences a surrounding configuration of other rodsis always “lagging behind”

the configuration that would have existed in case of “coexist” with the shaded rod. The
surrounding rods therefore act with a finite torque on thelstaod, even in an isotropic sus-
pension, due to such dynamic correlations. This is not whfaitind from eq.(206), when the
pdf P(i', t) of surrounding rods is taken equal to the its isotropic fayhr andg is approx-
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imated by the Boltzmann exponential (208). In order to dbeaelf rotational diffusiorof a
rod on the basis of eq.(206), dynamic correlations are ¢isten
The neglect of dynamic correlations in the derivation of Ere-Edwards equation (219)

becomes more clear on calculating the correlation functioi(t) - a(0) > for an isotropic
dispersion. Thus, consider a rod (the dashed rod in fig.2R)aspecified orientatio(0) at
timet¢ = 0. Noting that,

d . . . . . OP(,t)

7 < a(t) - a(0) > = u(O)-}l{duuT
multiplying both sides of the Smoluchowski equation (208w - 1(0) and integrating with
respect tai readily leads to,

% <a(t)-a(0) >= 2D (1) <a(t)-a(0) >, (232)
where the effective self-rotational diffusion coefficienequal to,
eff (1 — 1 5 <T(@@) - (a(t) x a(0)) >
D () = Dr{ 33 < a{) - a0) > : (233)

where the torqud((t)) is given by eq.(206) with an obvious change of notation. Tt p
P(1,t) in the expression (206) for the torque is that of the othes (tite non-dashed rods in
fig.22). When the pdP (1, t) of the other rods is taken equaltg4r and approximating the
pair-correlation function with the Boltzmann exponen(208), one finds thal'(a(¢)) = 0.
Hence,D¢/ (t) = D, which is obviously wrong, since rotational motion of the loes rod
is certainly hindered by the presence of other rods. A nan-mrque results from dynamic
correlations :P(1’, t) of rods in the neighbourhood of the dashed rod differs figir due
to the presence of the moving dashed rod, and the pair-atimelfunction is not equal to the
equilibrium Boltzmann exponential for the same reason.

The linear concentration dependence of the effective sliffu coefficient (230), which is
a collective diffusion coefficients entirely due to the neglect of dynamic correlations. MD
computer simulations, where the tail of the orientatiomatelation function is fitted to obtain
the effective diffusion coefficient, show a strong non-ineoncentration dependence Tao
etal. (2004), as is shown in fig.23. This indicates that dyinawrrelations are of importance.
As yet, no attempt has been made to incorporate dynamiclatores in the analysis of the
Smoluchowski equation (206). As will be seen later, compsitaulations do predict a linear
concentration dependence of the shear viscosity. It thermsehat dynamic correlations. are
of minor importance for the viscoelastic response of susip@s of rods, contrary to diffusive
behaviour.

0.13 The Stress Tensor for Rod Suspensions

In addition to the orientational order of rods in shear flome viscous behaviour of these
systems is of interest. In this section we shall derive a osicopic expression for the stress
tensor and express it in terms of the orientational ordearpater tensor (see also Dhont
and Briels (2002) and Dhont and Briels (2003)). Viscoetatsponse functions can then be
calculated once the equation of motion (219)$¢t) is solved.
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Figure 23: The effective diffusion coefficient as defined in the pregisaction from the theory eq.(230)
where dynamic correlations are neglected and from sinmuatby Tao et al. (2004) (the solid line
through simulation data points are a guide to the eye.)

0.13.1 The basic idea

Let U(r,t) andp,,(r,t) denote the suspension velocity and mass density, resplyctithe
velocity satisfies the Navier-Stokes equation (13), weeediiergence of the stress tensor is
averaged over the phase space coordirfatefsthe colloidal rods,

pm(r, 1) w +U(r,t) - VU(r,t)| =<V -o(r|L()) > . (234)
Here, o is the stress tensor of the solvent in which the rods are eddskdr of the core
material of the rods, depending on whetlés within the solvent or inside the core of a rod.
Clearly,o depends on the phase space coordinBtekall the rods.

The fundamental quantity in hydrodynamics is the momentensiy p v, with p andv
the microscopic density and velocity, respectively. Thane the appropriate definition of the
macroscopic velocityJ is,

pm(r, ) U =< pv > . (235)
It can be shown (see Dhont and Briels (2002)) that if the massity between the fluid and

the core material of which the rods consist and/or the voltragion of colloidal material is
very small, the definition in eq.(235) reduces simply to,

U(r,t) =<v(r|T(t)) >, (236)
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whereu is equal to the fluid velocity or the velocity of a piece of cidlal material, depending
on whether is within the solvent or inside the core of a colloidal rod.

Let P(T,t¢) denote the probability density function &f, which is the solution of the
Smoluchowski equation (173). By definition we then have,

U(r,t) = /dl"P(l",t)v(r|I‘). (237)

In the derivation of the general expression for the divecgenf the stress tensor, we shall
encounter the ensemble average,

< V2v(r) >= /dI‘ P(T,t) V2v(r|T) .

Since the Laplace operator can be taken in front of the phpaee integral, and the suspension
flow velocity is given by eq.(236), it trivially follows that

< V%v(r) > = V?U(r,t) . (238)

This result will be of importance later in this section.

In order to obtain an explicit Navier-Stokes equation, theeenble average of the body
forceV - o(r | T') should be expressed in terms of suspension properties.iSertd, con-
sider a rectangular volume elemeiit located atr, with linear dimensions,, é, andd, in
the x—, y— and z—direction, respectively. In the formal limit that the sizEtbe volume
element vanishes, the ensemble averaged total force peralmine of the surrounding ma-
terial on the volume element is nothing but the divergendbefstress tensor that should be
used in the Navier-Stokes equation (234). This force ctseigthree parts : forces that arise
from interactions between colloidal particles outside loose within the rectangular volume
element, from interactions between solvent molecules afididal particles, and from inter-
actions between solvent molecules on either side of thedemyrof the volume element. The
corresponding stress tensors will be referred to as theiteiparticle stress tensof:??, the
“particle-solvent stress tensoEP?, and the “solvent-solvent stress tensBr*™, respectively.
The divergence of the suspension stress teBsisrthe sum of these three body forces,

V.S =<Vio@|T{t)>= V- SP4+V.5P 4 V.55 (239)

These three contributions will be calculated explicithtlire next subsections. First of all, a
general expression for the ensemble averaged body ¥orcE will be derived, after which
this expression will be expressed in terms of a probabilggsity density function. Finally,
this expression will be simplified by means of the same Girgstuandau expansion used to
derive the Doi-Edwards equation (219), which leads to arresgion for the stress tensor
involving the concentration and the orientational ordeapzeter tensads.

The particle-particle stress tensorXr?

The force that colloidal particles outside the volume elehesert on those within the volume
elementis equal to,

> Fj,
J
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whereF; is the force that all colloidal particles exert on colloighalrticlej, and thex on the
summation is used to indicate that the summation rangesawaythose colloidal particles
that are inside the volume element, that is, for whighe 61. Note that mutual interactions
between colloidal particles within the volume element can give rise to a net force on
that volume element. The force per unit volume, for formakyishing size of the volume
element, is thus equal to,

V.S =

N
li DF; 240
6%6;%1_)0 515y522<Xr(rJ) J >7 ( )

=

whereN is the total number of colloidal particles in the system uratmsiderationy; is the
position coordinate of a colloidal particle ang is the characteristic function of the rectan-
gular volume element that was introduced in the previous@ecThe characteristic function
is defined as,

X,(R) = 1 whenR eV,
= 0 otherwise. (241)

The subscript#” on the characteristic function is used to indicate thatwblime element
0V is located at positiom. The characteristic function effectively limits the suntioa to
colloidal particles that are insidg/, that is, for whichr; € 6V. Furthermore, as discussed
before, the total forc®; on the;j*" colloidal particle due to interactions with all other cadal
particles is equal to,

F; = —V;® — kgTV,In{P}, (242)

whereV is the total potential energy of the assembly\ofods in the suspension, atitlis the
probability density function of the phase space coordmateall the colloidal rods —V ;&
is the force due to potential interactions, anflizT'V; In{ P} is the Brownian force, where
V; is the gradient operator with respectiip Since (withd(r — r;) the 3-dimensional delta
distribution),

Xe(rj)/02 0y 0. = 6(r —r;), (243)

lim
82,04,02—0

as is easily verified by integration of both sides with respee;, this immediately leads to,

N
VS =y < dr—1)F; > . (244)
j=1
Together with eq.(242) for the forces, this is the microsceppression for the contribution
to the divergence of the stress tensor which is due to irgkoidal particle forces.

The particle-solvent stress tenso??

The particle-solvent stress arises from forces on the velalement due to interactions be-
tween colloidal particles and solvent molecules. Thesee®iare mediated to the volume
element by colloidal particles that intersect with the agefenclosing the rectangular volume
element. Consider first the force that is mediated to theestlwithin the volume element by
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Figure 24: The rectangular volume elemedit” at positionr intersects with the core of colloidal rod
with its position coordinate; outside the volume elemerV °“*) is that part of the surface aréa’;

of the rod that is outside the volume element, &’wg“”) is the part inside.

a colloidal particle with its position coordinate outsithe tvolume element (see fig.24). The
instantaneous force that the colloidal particle exertshensblvent inside the volume element
is equal to,

—/ ) ds'-o(r').
8‘/}(1”)("‘?711]‘)

Here, the surface are%i/}(’”) is that part of the surface area of the colloidal particle tha
inside the volume element (see fig.24). This range of integralepends both on the position
r; of colloidal particlej and its orientatiori;. FurthermoredS’ is the normal surface element
on the surface area of the colloidal particle, anid the stress tensor of the solvent. The minus
sign in eq.(245) arises from the fact thi®' - o (r') is equal tad S’ £ (x'), with £ (') the force
per unit area that the fluid exerts on the surface elem®htwhich is minus the force that this
surface element exerts on the fluid. In terms of this hydradyic force, eq.(245) is more

conveniently written as,

—/ ) s’ £ (x') .
avvj(l"-) (rj 7ﬁj)
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The ensemble averaged foEe*! of all colloidal particles outside the volume element on the
solvent inside the element, is thus equal to,

Fowt — _ <Z Xr rj fgv( ) )dS/f}l( )Xr( ) , (245)

where, as beforey . is the characteristic function of the volume element. Therabteristic
functionl — x,.(r;) for the volume outside the volume element assures that isLtirenation
over all colloidal particles, only those are counted whigh@utside the volume element. Fur-
thermore, the characteristic functigy.(r’) assures that only poinis on the surface of the
colloidal particle inside the volume element are taken axtoount. Including the character-
istic function in the integrand in eq.(245) allows for thdension of the integration range to
the entire surface aréd; (r;, @) of the j** colloidal particle.

Similarly, in case a colloidal particle is located inside #olume element, that is, when
r; € ¢V, the instantaneous force that the colloidal particle exentthe solvent outside the
volume element is equal to,

7/ ds’ fh(r/) ’
oV (x;.5)

with 8\/].(0“” the part of the surface area of the colloidal particle lodatetside the volume
element (see fig.24. This is minus the force that is exertethercolloidal particle by the
solvent outside the volume element. Hence, similarly asrfeethe ensemble averaged force
F on the volume element due to interactions between solvel¢aui@s outside and col-
loidal particles inside the volume element is found to beatt

N
Fn — < ZXr(rj) % ds’ fh(rl) [1 _ Xr(rl)] > (246)
j=1 oVj(rj,ay)

where it is used again that— x,(r’) is the characteristic function for the volume outside the
volume element. From the representation (243) of the d@talsltion it is thus found that,

3P = li Fou 4 F" /6, 247
T R 247
= <Z§rfrj Fh>7<2j{ ds’ s(r — ') fh(r') >,
OVj(r;,0;)
where
fof, e o
AV;(r;,0;)

is the total force that the solvent exerts on jiecolloidal particle.

The solvent-solvent stress tensoEss

The force per unit volume that the solvent outside the volalement V' exerts on the solvent
inside, for formally vanishing size of the volume elemestqual to,

V.-X% = < / s’ -o(r') >, (249)
As

lim
82,04,0:—0 0z Oy 0
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Figure 25: The part of the surface aréaV’ of the volume element that is occupied by solvent is denoted
asA;. This is96V minus the aread; of intersection oDV with the core of colloidal rog. The part
of A, on the uppet-side of the volume is denoted a$° ", and on the lower side a$>~.

where A, is the part of the surface area of the volume element thatdepied by solvent,
which is the surface area of the volume element minus thettpatrts cut by cores of colloidal
particles (see fig.25). HerdS’ points outward obV. The subscript$” on the integration
A, refers to “solvent”. For an incompressible solvent we have,

o) = mo [ VVE) + (V)" | —p) T, (250)

with 7 the solvent shear viscosity andthe solvent flow velocity. Furthermorg,is the
mechanical pressure in the solvent, drid the identity tensor. The superscriff * stands
for the transpose of a tensor. Note that sik€e(r) = 0 within the incompressible solvent,
is entirely determined by the boundary conditions for tHeesat flow imposed by surfaces of
the colloidal particles and the container walls. Hende’) depends implicitly on the position
and orientations of all rods. Substitution of eq.(250) ietp(249) leads to,

v.-2s = MO £ M®? , (251)
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where,

MO = o - / ds’ - [v’v(r')ﬂv'v(r')ﬂ >, (252)
As

lim
82,0y,0-—0 Oy 0y 0

and,

M® = < / ds’' p(r') >, (253)
As

— lim
82,0y,0-—0 Oz Oy 0

Consider first the contributioNI (). We can rewrite the integral as,

N
vy (e T _ _ vy (v T
</AdS [V'v() (Vv ('))T] > <?€MVZ/Ade [TV @) ]>,

s j=1
(254)
where A; is the area of intersection of the surface apé® of the volume element and the

core of colloidal particlej (see fig.25). For a rigid colloidal particle, the velocityide the
core is given by,

v(r') = v; +Q; x (r' —r;) , 1’ € core of particlej , (255)

wherev; is the translational velocity an®; the rotational velocity of colloidal particlg.
Hence (withe the Levi-Cevita tensor, ard; , thep'® component of2;),
Vi Un = Vi [Q) x (' — rj)], = Vi €npg Ui p r; = €npm Ljp

m

where summation over repeated indices is assumed. Frommthsyanmetry of the Levi-
Cevita tensor, it is thus found that,

/ ds’ - {V’v(r’) + (V'v(r’))T} =0. (256)
Aj

Using Gauss's integral theorem, we thus find from eqs.(Z88),2or incompressible solvents,

<
As

Hence, eq.(252) reduces to,

ds’ - {V'v(r')—i—(V'V(r'))T} > =< /5\/ dr' V'2v(r') >,

1 _ . "o I 2 (ot _ 2
M 6m761y171§12_>0 5,3, 0 </6Vdr V() > = ny < Viv(r) > .
From eq.(238), it is thus finally found that,
MY = o V2U(r,¢) . (257)

The contributioM(?) can be expressed in terms of suspension properties as $ollaw
AZ* denote the top-side afl, and similarly A%~ the lower-side, as indicated in fig.25.
Furthermore, leé, denote the unit vector along the positiv@xis. Since the unit normal on
A% is &, while the unit normal om4?~ is —e,, the contributiorM > from the top- and
lower-side ofA, to M) is equal to,

1
M® = —&. i / 7/ ds’ p(r’ )
# ¢ 5176;%/12—0 (5; (Sy 62 < AzHr z= S p(r ) >
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For small sizes of the volume element, the scalar,
1

ds’ p(r' 258

ol RS (259)

defines the contribution to the suspension pressure duergedolvent interactions at the po-
sition of the top-side of the volume element. A similar exgsien can be written down for
P# at the lower-side. It thus follows that,

P**(r+10.6.,t) =

1 s . s R . OP%(r,t
MP) = —é. Jim = [P*(r+ 10.6.,0) = P(r - 30, &.,1)] = —&. % .
z z z

In the same way the contribution M (?) from the left- and right-sides, and front- and back-
sides of the volume element are obtained. Adding theseibatitns leads to,

M® = —V P*(rt) . (259)

We thus find from eqs.(251,257,259) the following expres$ar the divergence of the
stress tensor that arises from solvent-solvent intenagtio

V-3 = 5o V2U(r,t) — V P*(r,1) . (260)

Note thatP?®® is not just determined by boundary conditions when the suspa is inhomo-
geneous.

0.13.2 The total stress tensor

On the Smoluchowski time scale, as discussed before, teeatiion forceF'; in eq.(242)
balances with the hydrodynamic force in eq.(248), that is,
F,+F} = 0. (261)

The first term in eq.(247) for the particle-solvent stresssticancels against the particle-
particle stress in eq.(244). Adding egs.(244,247,260kfoee leads to the following ex-
pression for the divergence of the total stress tensor,

N
V-2 = V2U(r,t) — VP*(r,t) — Z < ?{ ds's(r — ) fh(r') > . (262)
= OVj(rj,a)

This seemingly simple expression is valid for homogeneogpeansions as well as systems
with large gradients in shear rate, concentration and taiemal order parameter. Suspension
properties should not vary significantly over distancesa¢tpthe thickness of the rods, but
may vary significantly over distances equal to the lengtlinefrbds.

0.13.3 The stress tensor for homogeneous suspensions

Sincer’ € dVj; in the integrand in eq.(262), the magnituder6f- r; is never larger than
the linear dimension of the rigid colloidal particles. Hendor not too large gradients of
suspension properties, the delta distributign— r’') can be Taylor expanded arourid= r;,

Sr—r') = 5(r7rj)+z%(rjfr’)”G)Vné(rfrj),

n=1
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where(r; — r’)” andV™ are polyadic products, and is then-fold contraction of these two
products. Substitution of this expansion into eq.(262¢gjv

N
VS = nVPU(r,t) = VP*(r,t) = Y <é(r—r;) F} > (263)
j=1

e} 1 N
—Z—'V” Z <é(r—r;) © 7{ ds’ (v; — )" £ (x') > .
s j=1 oOVj(r;,0;)
Consider a flow in the-direction with its gradient in the-direction (see fig.1a). Since all
suspension properties, including the suspension flow itglao not vary onzz-planes, the
stress tensor is a function gfonly. Hence,

. dX(y)
VE(I‘) = EQ'W.
whereé, is the unit vector in they-direction. Since in a homogeneous system the force
<é(r —r;) Ff > onrodj atr is independent of, it follows that the contributiod\ X to the
stress tensor corresponding to the last term in the firsitireg.(263) is equal to,
N N
& AX(y) = —y > <or-1)F)>= —&-> <dr—r;)r;F}> .
j=1 j=1
Here, the integration constant is set equal tgsince it does not contribute to the force on a
given volume element, and is therefore irrelevant. Hence,

N
AY = =Y <d(r—r))r; Fl> . (264)
j=1
In the last term in eq.(263), only the leading order gradi@mttribution is non-zero for homo-
geneous suspensions, so that,

o] N

1

— V" <4(r—r; @j{ ds’ (r; — " f'(x') > =
;:1: - ;:1 (r —r)) i~ (rj — )" £2(r)

r;,0;)

N
VY <o) dSW )t > . (269
j=1 AVj(rj,0a;)

From egs.(263,264,265), the stress tensor is found to bed &mu

N
S = [VU—{— (VU)T} ~P#1-Y <6 1)1, Fl >
j=1
N
+> < —r)) 7{ ds’ (v —r;) fh (') > . (266)
j=1 oV (r;, ;)

On volume averaging, one recovers the expression for tagsstensor as derived by Batchelor
(1970) and later by Strating (1995) in different ways. Ndi&t ta divergence-less contribution
to the stress tensor is of no significance, since the suspefisw velocity is determined
solely by the body force that is equal to the divergence ofthess tensor.
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0.13.4 Explicit evaluation of the stress tensor
for very Long and thin rods

Within the bead model for the rods (see fig.3), the surfacgnat that appears in eq.(262) for
the stress tensor can be written as a sum over beads as)(Witthe surface area of bead,

?{ ds’ s(r—r') £ (x/ Zér r;—aDi;)F)
o

Vi(r;,05)
whereF;{a is the force that the fluid exerts on thé&h bead of rodj. Hence,

N
V-2 = VU(r,t) - VP¥(r,t) = Y > < —r;—aDw)F, > . (267)

j=1 «

In order to evaluate the summation over beads, an explipitession forF’l must be found.
Consider the flow velocity, . of the fluid that would have existed in the absence of head
This velocity is equal to, according to eq.(18),

o = Uy =Y dS' T(re —v') - £ ('), (268)
Bra ) OVs

where thex is used to indicate the absence of beadHere,U* is the fluid flow velocity at the
position of bead that is due to the presence of the remaining rods and thenaleimposed
flow field, in the absence of bead The forcefg’*(r’) is the force per unit area that the fluid
exerts on the surface elementrabn the surfacéV; of beadg, again in the absence of bead
«. For very long and thin rods, the majority of beaglexperience a flow and force that is
only a little different from those in the absence of beadWe shall therefore ség"* equal
to the actual forcé[; in the presence of bead Within the bead model for the rod, eq.(268)
then reads,

o = UL =Y T(ra—r1p)-Fj, (269)
B#a

where, as befordi‘g is the total force that the fluid exerts on bead When gradients in
the fluid flow velocityU},, stemming from other rods and an externally imposed field, ar
negligible on the length scale equal to the thickn&ssf the rod, the force on bead is
simply equal toF? = —v[v, — up. |, Wherey = 37, D is the Stokes friction coefficient
of a single bead ang,, is the translational velocity of bead Hence, from eq.(269) and
eg.(23) for the Oseen tensor,

Flo = =7 [Vie = Uja] = ¢ [T+a1,] - > T (270)
ﬁ;ﬁa

Now consider summations of the form,

> G(a)F, . (271)
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Multiplying both sides of eq.(270) witt¥(«) and summing oves leads to,

> G@F!, =Y Gla)[vja-Uj,]-2 {iJrﬁjﬁj} DD D |a—ﬁ|
[eY [eY a f[#a
(272)

In appendix D it is shown that for specific functio6$«) it follows from the above relation
that,

za:G(a)Fjﬁa - %m [i-tayu]- ZG [Vie —Ula]. (273)

For the sum in eq.(267), the functi@f(«) is identified in appendix D, and the validity of
eq.(272) for that particula®(«) is proven. Using this result in eq.(267) immediately leads t

V-2 = nV?U(r,t) — VP*(r,t) (274)
N
+%1n{L/D} < Z [I - %ﬁjﬁj} ) 25(1' —r; —aDiy) [VJ}a - U;,a] >
j=1 a

For eachy, the ensemble average that involves the solvent vel&&itycan be written as,

<{i—§ ﬁ} Zér—r]—aDuj)U > =

/drjj{duj (rj,0;,t) [i ia ﬁj} -Zé(r—rj—aDﬁj) <Uj, >

where< --- >(°) denotes ensemble averaging with respect to the conditjmafaP(®) of

{r1, - ,rj_1,rj41, -+ ,ry, U2, - ,Uj_1,Q 41, - - , Uy} for prescribed; anda;, which
is equal to,
P(C)(rla"' s i1, 541, arN7ﬁ17"' aﬁj—laﬁj+17"' aﬁN|rJ7ﬁjat) =
P(rla"' 7rN;ﬁ17"' 7ﬁN;t)/P(r1;ﬁ17t> .

We can thus rewrite the eq.(267) for the divergence of thesstrensor as,
1 N
V-2 = nQVQU(I',ﬁ) —vpss(rat)—i_ %mNZ/er%dﬁj p(rjaﬁj7t)
j=1
{i — %ﬁJﬁJ:| : Z (S(I‘ —r; — OéDﬁj) {Vj@— < U;,a >(C):| , (275)
(03

wherep(r, 0, t) is the density of rods with orientatianat positionr,
p(r,a,t) = NP(r,a,t). (276)

The conditional ensemble averageU; , >(°) is the contribution to the solvent flow velocity
at the position of bead of rod 7, in the absence of that bead, that originates from the peesen
of other rods and the externally imposed flow, averaged tneepbsitions and orientations of
all other rods with a prescribed position and orientatiomoaf j. This average is to a good
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approximation equal to the suspension flow velodity,, at the position of bead of rod j,
that is,

<U;, > =1U;,. (277)
Using that the bead velocity is given by,
Via = V;+aDQ; x 1y, (278)

together with eqs.(170,166) for the translational andtiatal velocity of a rod, eq.(275) for
the divergence of the stress tensor thus leads to (matheahdétails are given in appendix
E),

V-2(r,t) = noV*U(r,t)—VP*(r,t)

L/2
da {12 ax [Rp(r xlg,0,t)| —LVp(r—za,ua, t)}
L/2 to=u
L/2 L/2 L/2
+%’?£7{dﬁ7§d / / dl’ p(r—z, 1, t)
L2 L/2 J-Lj2
{12%ﬁ>< [R [ | plr—witg—ta—10, @, 6)] ~|axi| va(r_(x+z)ﬁ_zfﬁ',ﬁ',t)}
up=u
L2 L/2
+z ln{L/D} }l{du/ L/Qdm/ L/Qda: p(r—z0,0,t) (279)

/

L2

[ilﬁﬁ}-{U(H(x’z)ﬁ,t)U( 122 [uxU(rJr(:c’x)ﬁ,t)]}.

Here, summations over bead indiceand/s are replaced by integrals with respecttandz’,
respectively (see eqs.(321,324) in appendix E). The mt%’li( )} is used to indicate

that the differentiation with respect o should be performed first, after whidaly should be
taken equal tau.

The first two contributions to the stress tensor are solventributions. The third term
stems from Brownian forces, the fourth term from direct iatgions, while the last term
accounts for the suspension flow.

Contrary to commonly used expressions for the stress tdosorhomogeneous suspen-
sions, eq.(279) contains convolution-type integrals. Apression that is similar to commonly
used expressions for the stress tensor is obtained by gtadipanding the convolution-type
integrals and truncating this expansion after the fourtteoin V-contributions. Such a trun-
cation is expected to work only when gradients are not vagelaOur expression (279) for
the divergence of the stress tensor, however, is valid evérei presence of large gradients.

0.13.5 The stress tensor for a homogeneous system expressed
terms of the order parameter

For a homogeneous system, where the concentration, th&taiienal order parameter and
the shear rate are independent of position, the probab#itsity functiorp in the integrals in
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eg.(279) can be gradient expanded up to leading order inegresdhat survives the convolu-
tion type of integrals. For example,

p(r—zu,a,t) = p(r,a,t)—za-Vp(r,a,t)+ 3 220t : VV p(r,a,t) +70(V3) .
(280)

Using the same Ginzburg-Landau expansion (217) as befdemgthy but straightforward
calculation leads to the following expression for the stresnsor (where the fourth order
tensorS™ is defined in eq.(220)),

Y = —Pi+3p, (281)
with 3 p the deviatoric part of the stress tensor,

¥p = 2m9E +

3pkpT | S — §i+%<p{s<4> : sfs.s} + %Per{S(“) E-1is: EH . (282)

where eq.(169) foD, has been used. Herg,= N/V is the number density of the homo-
geneous systeny = ZD?Lp is the volume fraction of rods, anfle, = +/D,. is the same

bare rotational Peclet numbehat we encountered before. The tenBbis, as before, equal
to E/4. Furthermore,
P:P‘Ss+ﬁijT[1+%%<p{1—§S:S}—%Pe,.S:}AE . (283)

5

is the pressure.
The first termS — %i stems from the Brownian contribution in eq.(279), the seldmnm
£ from the direct interaction terms, and the texmPe,. from the suspension flow terms.
Note that from eq.(219), using the expression (169)Y¥pythe deviatoric stress tensor can
be rewritten more elegantly as,

YXp=2n7

- (L/D)2 r T ) . § 2 - 1dS
Et+ 2 _,lp. T -sW .k 1is:E- 2|
MET 0 S S 318 5 dt

(284)

This form makes the proportionality of the stress tensoh wite shear-rate more explicit.

A similar expression for the stress tensor has been deriyédbband Edwards (1978a),
Doi and Edwards (1978b), Doi (1981), Kuzuu and Doi (1983) Etadrucci and Maffettone
(1989). For non-interacting rods, that is, fgp = 0, Hinch and Leal (1976) found a con-
stitutive relation similar to eq.(284) by interpolatingtiween known expressions for low and
high shear-rates.

0.14 Viscoelastic Response Functions

In the present section we shall analyze the viscous behaofaod suspensions on the basis
of the equation of motion (219) fd8(¢) and the Navier-Stokes equation with eq.(284) for
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the stress tensor (together with the closure relation (22¥he equations (219) and (284)
are quite similar to those derived on the basis of phenonogital arguments by Doi and
Edwards (1978a), Doi and Edwards (1978b), Doi (1981), KuenaliDoi (1983) and Doi and
Edwards (1986). We shall refer to this latter theory as thi&Beory, where DEK stands for
“Doi, Edwards, Kuzuu”. Our predictions will be compared bose of the DEK-theory.

The DEK theory appears in literature in various forms. Samet an effective rotational
diffusion coefficient is used in the Smoluchowski equatiod ¢he equation of motion (219)
instead of the bare diffusion coefficie.. This effective diffusion coefficient is calculated
independently as a function of the order parameter and obraton. The present approach
shows that this is not correct : the bare diffusion coefficerould be used in the equation
of motion (219) and expressions (282,284) for the stressoteninteractions between rods
are explicitly accounted for in these expressions. Sonetithe interaction contributions
are omitted, and the above mentioned effective diffusioeffadent is used. The effective
diffusion coefficient is then assumed to account for intéoas between rods. Either the
interaction contributions are kept as they stand and the thiffiusion coefficient is used, or
the interaction contributions are omitted and an effedifeision coefficient should be used.

Viscoelastic response functions will be discussed bothofershear rates, where analytic
expressions can be derived, and high shear rates, whereinahmesults will be given. For
higher shear rates, shear thinning curves and non-lingdfadsry response functions will
be discussed. These results will be compared to other #wadomputer simulations and
experiments. A remarkable feature is that the shear viscisspredicted to vary linear with
concentration up to the isotropic-nematic phase tramsitichich is confirmed by computer
simulations. Comparing theory with experimental data onifds suspensions, it turns out
that a slight degree of flexibility has a large effect on videgtic response functions.

0.14.1 Shear viscosity and normal stresses for low shearies

In order to obtain analytic results for the leading orderashate dependence of the zero-
frequency shear viscosity and normal stress differenbegtientational order parameter ten-
sor is expanded up to third power in the shear rate,

S = L1 4+4AS, +42ASy +4° ASz +--- . (285)

Substitution of this expansion into the stationary formtw £quation of motion (219) and
noting thatl : AS; = 0, a straightforward but somewhat lengthy calculation letadthe
following expressions for thAS;’s,

. 1 5 .
YAS; = EWE7
. 1 5 2 3 0 0 1 D, L 1 0 O
2
AS; = — 0 -2 0 ol o1 o0
! ’ 450 (fof> (0 0o -1 Jr10Def DSD 0 0 -2 ’
N
: 1 o' 7 3 D, L 1 D,
PPASs = 1oz —t = 286
7 3 1125 \ pe/f 3+ 10 peff D(p—i— DI D (286)

The concentration dependent, effective rotational diffasoefficientDs// is given in eq.(230).
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As can be seen from the above expressions, the actual egpaasiameter ithe dressed
rotational Peclet number

Petll = 4/DeF (287)

The expansion (285) is therefore valid only whghD¢// is small. For concentrations close
to the spinodal line, wher®¢/f is much smaller than the free rotational diffusion coeffitie

D,., the shear-rate should be equally smaller in order for thgaesion (285) to be valid.

Substitution of eqs.(286) into eq.(284) for the deviatpact of the stress tensor leads to,

o 142 9 0 0
YXp =29 4E —_— —11 288
D Ny E4no 120 peft ap 8 . —08 ) (288)
where the coefficient is equal to,
8 (L/D)?
_ ° 289
T B Wm{L/D}’ (289)

and the suspension shear viscosity/ is found to be equal to,

1/ 5\ 1 4D L
eff — 1 1—- — N e iy 290
K o +{ 50<D$ff) }a¢+1500(Deff)daDcp - (299
e

up to second order in the shear-rate. Expanding the dressget Rumber with respect to the
concentration yields, up to second order in concentration,

1/ 4\ 11/ 4\° L ,
H{l 50 (D,,A> }O“p 1500 (D,,A) O‘DSD]' (291)
Note that the Huggins coefficient vanishes at zero sheas.rdthere is a non-zero Huggins
coefficient at zero shear-rates when hydrodynamic interastwvould have been taken into
account. As discussed before, hydrodynamic interactiomsat so important for the very
long and thin rods under consideration here.

For zero shear-rate, eq.(291) for the effective viscositthe rigid-rod analogue of Ein-
stein’s equatiom®/f = n[1 + 3] for the viscosity of very dilute suspensions of spheres.
Note, however, that eq.(291) is valid also for larger comadions. That is, higher order
concentration contributions to the zero shear viscosityadrsent. This linear concentration
dependence of the zero shear suspension viscosity is thie oéshe use of the form (208)
for the pair-correlation function and the neglect of hydnoamic interactions. As will be
seen later in this section, such a linear concentration rigrece is also seen in computer
simulations for very long and thin rods.

Normal stress differences due to a weak shear flow follow idiately from eq.(288) as,

neff =1

Ni = %11 -3 = Ly
1 = 11 22 To 1 fof oap,
.2
Ny = Yoo —333 = —no © - (292)

10 peIt @
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Note thato ¢ can be large for very long and thin rods, even at low volumetibas, so that
normal stress differences are predicted to be quite signific

Expressions for linear response functions to oscillatdryas flow can be obtained by
substitution of,

S(t) = % I+, AS. cos{wt} + AS, sin{wt} ] , (293)

into the equation of motion (219). Linearization with resp® the in- and out-of-phase
response functionAS,. and AS;, respectively, keeping only linear terms-g, and using
eq.(6) for the shear ratg one readily finds in dimensionless form,

1. 24 5
S(t) = g1+% To p(qet! /6) [cos{wt} + 20 sin{wt} ] E, (294)
w
where,
Flz) = H—Lﬂ , and , Q = /D (295)

The dimensionless frequen€)// is a dressed, concentration dependetational Deborah
number Substitution of eqs.(294,295) into eq.(284) for the sttesisor, gives,

Sp = 24,E[ 7 cos{wt} + 7" sin{wt}] , (296)

where the dissipative and storage shear viscosity arectragly equal to,

= [ (B4 2RQ9Y )

3
|

4 2 Qeff
3
W= FOH /6 ag. (297)

To leading order in shear-rate, we thus find a Maxwellian bieha of the viscoelastic re-

sponse function, with a concentration dependent relaxdiioe that is set by the effective

rotational diffusion coefficient. Note that,
-3 '

= — = li .
o 4 *P 6 Qgréo Qelff

(298)

wheren®f = no[1 + a ] shear viscosity (291) at zero shear rate, afid = »'(Q°/f —
o0) is the high frequency, zero shear-rate viscosity. Thesaeationships that could be
tested experimentally. As before, the predicted linearceatration dependence in eq.(297)
should hold over the entire concentration regime (up togb&dpic-nematic phase transition
concentration), and could serve as an experimental teshéovalidity of the approximation
(208) for the pair-correlation function.

0.14.2 Viscoelastic response at high shear-rates

For larger shear-rates no analytical results can be olatameiew of the complexity of the
equation of motion (219). Instead, eqg.(219) must be tintegirated numerically, either with
a stationary or an oscillating shear-rate, until transiéxave relaxed. The resulting solution is
substituted into eq.(284) for the stress tensor, from whiisboelastic response functions can
be deduced.
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Figure 26: (a) The suspension viscosityf# for the otherwise isotropic state, normalized with the
solvent shear viscosity, as a function of the squared Peclet number for several otrat®ns, as
indicated in the figure. The dashed lines correspond to theskear-rate expansion (290). Here, and
in the other figures[./D = 50. (b) The same as (a) for the nematic state. (c) The shearsifg@s a
function of the concentration for various shear-ratesndiated in the figure. The isotropic-to-nematic
and nematic-to-isotropic spinodal concentrations are ialdicated.

The dimensionless numbers on which stress response foactiwler stationary shear flow
conditions depends arg, £ ¢, and the bare rotational Peclet number (189) for dilutessyst
or the dressed Peclet number (287) for strongly interactyrsiems. As will turn out, under
oscillatory shear flow, the same Peclet numbers are of stteegcept that the shear-rate is
replaced by the shear-amplituéigin eq.(6). The frequency dependence is expressed in terms
the dressed Deborah number in eq.(295) or the bare Deboraberu

Q = w/D, . (299)

Numerical results are shown here for= 50 as functions of the other dimensionless numbers
. essential features of viscoelastic response functionsodl@epend on the aspect ratio for
aspect ratios larger than abdux

In figs.26a,b, the suspension viscosity is plotted as a imatf the squared rotational
Peclet number for various concentrations, both in the atiserisotropic phase (in fig.26a) and
for the nematic state (in fig.26b). The dashed lines in fig@Gaespond to the small Peclet
number expansion (290). The range of validity of this expanis seen to decrease for larger
concentrations. The reason for this is that eq.(290) isadigtan expansion with respect to
the dressed rotational Peclet number (287), while the &ffeootational diffusion coefficient
(230) becomes smaller on approach of the isotropic-to-tierspinodal point. Note that
for a nematic there seems to be no regime at small shearwditer® the viscosity varies
linearly with+2, contrary to a paranematic. Furthermore, the suspenssensity of a nematic
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decreases with increasing concentration : the rise inssttesadding rods is smaller than its
decrease due to the increase of degree of orientational dndeg.26c¢, the dependence of the
viscosity on concentration is shown for various shearstater shear-rates close to the critical
shear-raté’e,. = 0.159 - - -, the viscosity sharply decreases with increasing conatoirdue

to the sharp increase of the degree of alignment as the pomdsg branch in the bifurcation
diagram fig.19a is traced. For shear-rates below the driloear-rate, the curves in fig.26¢
develop discontinuous jumps. Such jumps are probably ofxpermental relevance, since
phase separation will occur during an experiment. In thé frzero shear-rate, the viscosity
depends linearly on concentration (see eq.(290) %vith 0).

The normal stress differenc&§ and N, (normalized withn ), are plotted as functions
of the shear-rate for various concentrations in figs.27aanekspectively, for the paranematic
state and in figs.27¢ and d for the nematic state. The dagteslifi figs.27a,b correspond to
the low shear-rate expansions (292). Note the strong sheadependencies in the otherwise
isotropic state. As for the suspension viscosity, absolatees of normal stress differences
for the nematic decrease on increasing the concentratioiigd.27e and f, the normal stress
differences are given as functions of the concentrationsdoous shear-rates. The dashed
lines correspond, as before, to the low shear-rate expas$&92). For the same reason as
with the suspension viscosity discussed above, there ig/atreng concentration dependence
for shear-rates close to the critical shear-rate.

0.14.3 Non-linear viscoelastic response

Dynamic response functions can be obtained from a Fourgdysis of the time dependence
of eq.(284) for the stress tensor after substitution of temhs of eq.(219) under oscillatory
shear flow, when transients have relaxed. The frequencyndepee ofy’ andn” for the
otherwise isotropic state are given in figs.28a,b, respalgtifor various values of the Peclet
number,

Peno = ".}/()/Dr s (300)

where? is the shear-amplitude as defined in eq.(6). Response funscdire plotted as func-
tions of the dimensionless bare Deborah number (299). Tkhedbcurves correspond to
the leading Peclet number expansions (297). As sooRag > 1 (or rather,Pejif:{ =
40/DEM > 1), there are deviations from the leading order expansio®g)(2Higher order,
non-linear response functions now come into play as wellttk@se higher shear-amplitudes,
the time dependent stress tensor can be Fourier expanded as,

p = 2% E Z [ n, cos{nwt} + n)l sin{nwt} | . (301)
n=0
wheren(, andn are henceforth simply denoted asandn’, respectively. The non-linear
dissipative- and elasticity response functigfjgndn.! are plotted for. = 3 and5 in figs.28c-
f, for the paranematic state. The response functions fan evare zero. The non-linear re-
sponse functions exhibit oscillatory behaviour as fumiof the frequency. Note the very
different frequency dependence of third and fifth order fioms. Except for the maximum
in n4, the third order response functions behave qualitativietyiar to those for near-critical



0.14 Viscoelastic Response Functions 93

3 LD ¢ 6

Figure 27: (a) The normal stress differend for the otherwise isotropic state, normalizedripyy as a
function of shear-rate for various concentrations, ascatgid in the figure. The dashed lines correspond
to the low shear-rate expansion (292). Here, and in the ditnares,L /D = 50. (b) The same as in (a)
for the normal stress differenéé,. The dashed lines correspond to the expansion (292). (c3die as

in (a) for the nematic state. (d) The same as in (b) for the tierstate. () The normal stress difference
N; as a function of concentration for various shear-ratesnaisated in the figure. The dashed lines
correspond to the low shear-rate expansion (292). (f) Theesas in (e) for the normal stress difference
N>. The dashed lines correspond to the low shear-rate expa(29@).
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systems of spherical colloids (see Dhont and Nagele (3998)e corresponding response
functions for the nematic state are given in figs.29a-f. €le¥e pronounced differences be-
tween the viscoelastic response of the paranematic andtieestee. First of all, the response
functions for the nematic state are only non-zero in a mucallemfrequency range. The
response functions for the nematic state are strongly ngrftinctions of frequency in this
small frequency range. Furthermore, the frequency depmedef, for example)”’, changes
with Pe, ( in a quite different fashion as compared to the paranemiatie.dn a paranematic,
7" decreases on increasitity, o without changing the location of its maximum too much,
contrary to the nematic state, where the predominant efféocreasingPe,. o is to shift the
location of the maximum value of’, while the maximum value itself does not change that
drastically.

The present approach allows for the straightforward (nicaBrcalculation of response
functions for superimposed oscillatory shear flow as wekb. aNall not discuss such response
functions here.

0.14.4 Comparison with other theories, simulations and exgriments

An expression for the effective viscosit}gl’?;pS at zero shear rate for non-interacting ellip-
soidally shaped rods is due to Kuhn and Kuhn (1945) and Sirh®4(Q) (see Larson (1999)
for an extensive overview). They found,

il = w1+ {345 (s * mEg ) 9] - @

wherep. = L./D. is the total length L.) over total thicknessI{.) ratio of the ellipsoidal
rod. Expanding to leading order jn gives,

2
g 1 § i P2 303
nellzps Tlo |: + 2 45 ln{pe} 7 ( )

In order to compare this result with eq.(291) for= 0, note that for cylindrical rods (with
p = N/V the number density of rods),

L\? IN\*~r B T o
(5) e = (5) §7r00 = T2

while for ellipsoidal rods,

L. 2 L. r 9, T 3 _
(De) @ (De) 6 e epP 6 ep

When we choose the lengths of the cylindrical and ellipdoiaids to be equal, that is,
L =1L, (304)

it follows, for equal volume fractions, that our result (294 identical to eq.(303) (note that
In{p.} = In{L/D} + O(1)). This identification also applies to the rotational andh¢ra

lational diffusion coefficients of free, non-interactinglinders and ellipsoids : the leading
order expressions for these diffusion coefficients aretidalhfor very long and thin cylinders
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Figure 28: Non-linear response functions for the otherwisgropic state (a) The dissipative response
functionn’ as a function of the Deborah number (299) for various valdi¢seoPeclet number (300), as
indicated in the figure. The dashed line corresponds to tiing order expansion (297). Here, and in
the other figuresl.,/ D = 50. (b) The same for the elasticity response functjnwhere the dashed line
corresponds to the eq.(297). (c) The same for the leadirgy m@h-linear dissipative response function
n5. (d) The leading order non-linear elasticity responsetiona;s. (e), (f) The same as figures (c) and
(d) for the response functiong andn?, respectively.
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Figure 30: (a) Brownian dynamics simulation data from Claeys et al.9@)Jor the suspension shear
viscosity (at zero shear-rate and infinite frequency) dpsdlidal rods as a function of their volume
fraction for various aspect ratigs, as indicated in the figure. (b) Linear concentration depand of
the shear viscosity as found in simulations by Yamane efl@b4).

and ellipsoids, when their lengths are taken equal. In tlewelwve have chosen equal vol-
ume fraction and number density of the cylindrical and sbiidal rods. This implies equal
volumes of the rods, from which a relation between the théslsrof the rods follows as,

D./D = \/3/2. (305)

Other choices for mapping results for ellipsoidal rods ahtwse for cylindrical rods can be
used. The above mapping is simple, and correctly compatesihoviscosity coefficients but
also diffusion coefficients.

The leading shear thinning behaviour of the zero frequehepisviscosity as found in
€g.(291) may be compared to the result obtained by Berry arsdd® (1987), which reads in

our notation,
1[4\ 2 4 \?
1 1— — | — 231-0.0342 [ — 2.2 . 306
+{ 50<D,.> }a<p+5{ 0.03 <D7-> }a ga] (306)

up to second order in concentration and shear-rate. Thidtiessalid in the dilute regime,
where(%)*p < 1. To first order in volume fraction this agrees with our re¢p@1). There
are serious differences, however, for thé-contribution. First of all, as discussed in the
previous section, we predict a linear volume fraction dejegice of the shear viscosity at zero
shear-rate. From egs.(290), and from eq.(297) at infinégLfency, we obtain,

778ff = To

T =mo[1+ap] , nf =mll+iap], (307)

where, as beforey// is the zero frequency angt!/ the high frequency viscosity. The above
result (306) for zero frequency of Berry and Russel prediatthe other hand, at zero-shear-
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rates and up to second order in concentration,

= |14+ ap+ %aQ ©? . (308)
On the basis of this latter prediction, a pronoungéedependence for long and thin rods is
expected, sincep ~ £/In{£} — oo as& — oo, for a given value ofs ¢. For zero shear-
rates, we may compare the above predictions with compurtterations by Claeys and Brady
(1993) on ellipsoidal rods. In fig.30a, simulation data frétaeys and Brady (1993) for the
effective zero shear-rate viscosities at infinite freqienare plotted for three aspect raties
of the ellipsoidal rods p. = 50, 20 and10. There is a remarkable linear concentration de-
pendence over a large concentration range, especiallhédonger rods. In fact, Claeys and
Brady (1993) remark that “Somewhat surprisingly, the disj® containingl % rods of as-
pect ratio50 still responds hydrodynamically as if it were dilute, evhmlghn¢§7ra3 = 25"
(in their notationn is the number density of rods and= L/2). Such a linear concentration
dependence is also found in computer simulations on nom4idien rods by et al. (1994) (see
fig.30b). They state that “- the excess viscosity is proportional to the number demsityen
in the regiom L3 = 40, - - - . The magnitude of the second order in volume fraction dbatr
tion in the Berry-Russel equation (306), relative to the firsler contribution i cp ~ 50%
for the highest concentration shown in fig.30 for bpth= 20 and50. The large second order
in concentration contributions predicted by Berry and Russe thus in disagreement with
the linear relationship found in fig.30. A decrease of the ¢lng coefficient with increasing
aspect ratio is confirmed in experiments on spindle-typbidal hematite rods by Solomon
and Boger (1998) (see fig.2 and table Il in this reference).

The slope of the simulation results for the high frequensgesityn2// versus the volume
fraction in fig.30, taken from Claeys and Brady (1993), maycbmpared to the slope/4
as predicted in eg.(307). Noting that the volume fractiorlépsoids in fig.30a is equal to
z DL?* p while for the cylindrical particles under consideratiorréiéhe volume fraction is
equal toF DL? p, a slope 0f36 is found from the simulation data fdr/D = 50, whereas
from eq.(289) we find a slope of 29. Fér/D = 20 one finds a slope of from fig.30,
while «/4 = 6, and forL/D = 10 one finds3.8 anda/4 = 1.9. The slope found from
simulations thus seems to converge to the asymptotic riesedt.(307) when the aspect ratio
is large enough.

The linear concentration dependence of the zero-sheawsiigds not found within the
DEK-theory (Doi and Edwards (1986)), where the concerdrediependence originates from
the assumed state dependence of the rotational tracesidiffaoefficient.

The experiments by Graf et al. (1993) and Schmidt et al. (20@dd-virus suspensions
do not show a linear concentration dependence of the zexarsimd zero-frequency viscosity
(except maybe for the salt free case in fig.3 of Graf et al. 8)9®hich result should not be
taken as proof of the present theory in view of the not wellarstbod behaviour of fd-virus
at very low ionic strength). The higher order concentratlependence as found for fd-virus,
however, is much weaker than for hard-spheres, indicatiag th accordance with our find-
ings, elongated objects tend to diminish non-linear cotvaéinn dependence. Similarly, a
considerable second order concentration dependence sh#da viscosity is found experi-
mentally for Xanthan gum by Chauveteau (1982). It is knowvat fd-virus is relatively stiff
(contour length i880 nm, intrinsic persistence length2200 nm), but nevertheless behaves
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quite non-Onsager like, in the sense that the relativedpatrnematic bi-phasic gapwidth
in the absence of shear flow is much narrower than the widthdoy long and thin, truely
rigid rods (see Tang and Fraden (1995)). Hence, even fdivelastiff rod like particles, the

approximation (208) for the pair-correlation function istivery good. Xanthan and “stiff”
polymers like PBLG (Yang (1987) and Mead and Larson (1920¥ even more flexible than
fd-virus. The non-zero Huggins coefficient at zero shete-faund experimentally for fd-
virus by Graf et al. (1993), Xanthan gum by Chauveteau (1882)PBLG by Yang (1987)
and Mead and Larson (1990) is probably due to flexibility. leww of this sensitivity on

flexibility, it would be very interesting to include flexiliy (even up to leading order in the
inverse persistence length) in stress calculations. Th&itsaty on slight flexibility obscures

the comparison of theories for truly stiff rods with expegints.

The difference between the experimental rods mentionedeabnd the model rods in
computer simulations, is their degree of stiffness. Theaathge of computer simulations is
that the persistence length of rods can be made infinite elndmputer simulations mentioned
above, hydrodynamics are taken into account. The differententration dependence of the
zero shear viscosity (at least for long and thin rods) founéXperiments as compared to
simulations, as far as the Huggins coefficient is conceritetherefore most likely due to
flexibility.

Despite the sensitivity of viscoelastic response fundtion flexibility, we shall neverthe-
less compare experimental data with our theoretical ptiedis. This comparison should be
taken seriously only on a qualitative level. Fig.31 showsezimental data for the shear-rate
dependence of the shear viscosity of Xanthan (Chauvet@d2)1with two different molar
weights, PBLG (Yang (1987)) and a salt free fd-virus susjpen&raf et al. (1993)). Plotted
is the intrinsic viscosityn] = n/ny — 1, with 7, the solvent shear viscosity, relative to its
value|n)], at zero shear-rate. For Xanthan we tdok = 133 s~ and103 s~ for the low and
high molecular weight, respectively, as reported by Beng Russel (1987), for PBLG we
took D, = 167 s~ 1, as reported by Larson (1999), and for salt free fd we thpk= 115!
(see Grafetal. (1993)). The solid lines refer to the pregeury withL /D = 50 (the precise
form of these curves is insensitive to the aspect ratio). Xéwethan and PBLG suspensions
are dilute, and are seen to be in reasonable agreement withythThe concentration of the
salt free fd-virus suspension is equaltte*, wherec* is the overlap concentration. There is
some deviation from the fd-data in comparison to theorycivimay be either due to flexibility
or aggregation at low ionic strength.

The linear concentration dependence in eq.(307) holds tipetisotropic-nematic phase
transition. Within the nematic state this result is no langadid, since in deriving eq.(307)
we linearized around the isotropic state (see eq.(285)).caéksbe seen from fig.26b, the
viscosity decreases with increasing concentration forraatie. As was mentioned before,
this is the result of an increase in alignment on increadiegcbncentration. Such a decrease
of the shear viscosity with increasing concentration igedlobserved experimentally (see for
example fig.10.5 in Doi and Edwards (1986) and fig.1 in KissRader (1978)). Furthermore,
the type of concentration dependence of the shear viscasshtigher shear-rates as found in
fig.26c¢ is also seen in experiments (see for example fig. h@M®i and Edwards (1986)).

To leading order in concentration, the low shear limitingpessions (292) for normal
stress differences are also found by Hinch and Leal (19%2§# that instead of the prefactor
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Figure 31: The intrinsic viscosity[n] = n/no — 1, relative to its valudn]o at zero shear-rate, as
a function of the bare rotational Peclet number. The sotid kre theoretical predictions for various
values Of%go, as indicated in the figure, fdi /D = 50 (the theoretical curves are insensitive to the
precise value of the aspect ratio). The symbols relate teraxgntal data for Xanthan by Chauveteau
(1982) (O-small molecular weighty-large molecular weight), for PBLG by Yang (1987)y) and for
salt-free fd by Graf et al. (1993})).

—1/40they find—1/28. Within the DEK-theory, it is found that, to leading ordesinear-rate,

1 42
N, = — pkpT —
1 7}030/73 D%’
Ny = 1 ok TﬁQ
2 = 770105PB D37

wherep is the number concentration of rods ahx is their state dependent rotational tracer
diffusion coefficient. Using thab,. = 3kpT In{L/D}/mnoL? in the expression (289) far,
we find from egs.(292) that,

Ny = L okpT ;YQ
1 = 7}0%0 B m,
1 32
Ny = *n()—ﬁkBT,y;
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where the effective rotational, collective diffusion digient D¢/f is given in eq.(230). The
prefactor for/N, is almost a factor o8 smaller than in the DEK-theory, and in both expres-
sions we find the combinatiol, D¢/f instead ofD2. Experimental results for normal stress
differences on fibers are reported by Zirnsak et al. (1994reHBrownian motion is very
weak as compared to shear forces, so that one should comjplatbehigh shear-rate results
as plotted in fig.27. One should be careful in comparing esinertial effects in fiber suspen-
sions may play a role. As can be seen from figs.27a,b, bothal@tness differences become
linear functions of the shear-rate for high shear-rates&sV,; /4 and N, /4 tend to constant,
shear-rate independent values). This remarkable linesargiate dependence is indeed typ-
ically found in experiments on fibers (see, for example, figriZirnsak et al. (1994)). In
addition, in figs.16,17 of the same reference, it is found tiw first normal stress difference
varies linearly with concentration. This is also found irr éig.27e for high shear-rates, for
concentrations wherg ¢ is less than abow The concentrations in the experiments on fibers
is indeed well within this range.

Normal stress differences that change from being positveegative on increasing the
shear-rate, and for larger shear-rates from negative tiiygpagain, were reported by lizuka
(1978), Kiss and Porter (1978), Kiss (1996) and Larson (1996PBLG solutions in m-
cresol, and later for the same polymer by Magda et al. (19843rrucci and Maffettone
(1989) predict, on the basis of a two-dimensional DEK-likgm@ach for a homogeneous
nematic, that the normal stress differerégis negative at low shear-rates and becomes pos-
itive at higher shear-rates (see their fig.10). This behanviifound for shear-rates which are
large enough to assure that stationary solutions of equatib motion exist, that is, where
tumbling or wagging are absent. Larson (1990) analyzeduth&{dimensional DEK-theory
(using closures as obtained by Hinch and Leal (1976)), agdests that the experimentally
observed sign changes of normal stress differences areodihe existence of tumbling or
wagging nematic domains. By time-averaging of stressegergéed by tumbling domains
over a number of oscillations, he indeed finds the kind of siggnges for normal stress dif-
ferences that are observed experimentally. This kind ofbielir is essentially also found
within the two-dimensional DEK-like approach by MarruccdaMaffettone (1990a), Mar-
rucci and Maffettone (1990b). Magda et al. (1991) suggettadpolydomain nematics may
exhibit apparent steady flow behaviour, even though eacdkiéhal domain exhibits tum-
bling or wagging, since in a rheometer averages over mamgpieident tumbling domains are
probed. Tumbling and wagging can be observed in an expetinisnflow reversal, which
renders the various domains coherently tumbling/waggingdme time. As mentioned be-
fore, whether a theory predicts tumbling and wagging is wemysitive to the closure relation
that is used. Our closure relation (227) is not suited torles¢umbling and wagging. Other
closure relations can be used to study these time-peritatiess(see Marrucci and Maffettone
(1989), Larson (1990), Marrucci and Maffettone (1990a)rMeci and Maffettone (1990b)
and Forest and Wang (2003)). Due to the sensitivity for tieeliotion of time-periodic states
on the closure relation, the most sensible thing to do seemsiploy the original equation of
motion (213), before introducing a Ginzburg-Landau expams



102

Figure 32: A photograph from the side of an optical couette cell betw@ancrossed polarizers. The
couette cell contains an fd-virus suspensions in a voytlzitnded state. The width of the shear cell is
about5 cm, while the height of the bands is abadutnm.

0.15 Current Research Topics

Some of the current research interests related to what kasssied in the present chapter will
be briefly described in this last section. Current researtghrésts include,

(i) shear-banding transitions,
(i) the non-equilibrium phase behaviour under shear flow,
and,

(iif) phase separation kinetics under flow conditions.

0.15.1 Shear-banding transitions

There are essentially two types of banding transitionsmvleskexperimentally in various types
of systems containing mesoscopic entities : vorticity agdnd gradient banding. Here,
“bands” refer to coexisting regions under stationary flowickhhave different microstruc-
tural order and can sustain different shear rates and&sssts. In case of vorticity banding,
regularly stacked bands in the vorticity direction are obsd, which differ in their average
orientational order. For gradient banding, two regionigis, extending along the gradient
direction, each with a different shear rate.
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Figure 33: Experimental phase diagram of fd virus (with added dextirgeiyding the vorticity banding
region.

Vorticity banding  Within part of the two-phase region (the region enclosedieyhinodal),
fd-virus suspensions exhibit vorticity banding, whereulagy stacked bands are formed
along the vorticity direction. The height of these bands lbarup tomm’s. A photograph
of such a banded state in an optical couette cell between tessed polarizers is given in
fig.32. The difference in contrast of the two types of bandsvben crossed polarizers is
due to the different orientational order in the bands. Theador has different orientations in
the two bands. The concentration difference in the two bdwadsbeen shown to be zero to
within experimental error. The region in the phase diagramne vorticity banding is found
is indicated in fig.33. At lower concentrations, the boundafrthe region where vorticity
banding occurs coincides exactly with the binodal. It theisnss that inhomogeneities that
are formed right after a shear-rate quench into the two-@hegion (the region bounded by
the paranematic-nematic binodal) are necessary to remdarah stresses such that they in-
duce an instability along the vorticity direction leadimgtanding. If this is indeed the case,
equations of motion need to be analyzed which account fgelgradients in concentration,
orientational order parameter and/or shear rate. Forcsiifibidal rods, such equations of mo-
tions have been derived by Dhont and Briels (2002), DhontEnnels (2003). The particular
normal stress behaviour that leads to vorticity bandingthadole of inhomogeneities leading
to that behaviour is not yet understood (see, however Otivastd Lu (1999), where vorticity
banding is assumed to occur whenever the velocity-gradiezdgs versus the shear rate rela-
tion is multi-valued). At higher concentrations, there ergications that banding ceases to
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Figure 34: The dimensionless flow-gradient component = 3.2/n0 D, of the stress tensor as a
function of the shear-rate for concentrations close to titeal concentration%go = 4.281--- ; see
fig.19b. The smaller figure on the right side is a blow-up ofithe der Waals loop.

occur when tumbling/wagging sets in.

Gradient banding On the basis of the stationary forms of the equation of mgd9) and
the expression (284) for the deviatoric stress tensor (@beris the bare, state-independent
rotational diffusion coefficient), a non-monotonic betawiof the shear-stress as a function of
shear-rate is found. Such a “van der Waals loop-like” bedaviis only found for concentra-
tions very close to the critical concentratigqy = 4.281 - - -, as can be seen in fig.34, where
the dimensionless flow-gradient component = X12/7 D, of the stress tensor is plotted
as a function of shear-rate. Such a decrease of the stresgitain shear-rate interval implies
that the usual linear flow profile as depicted in fig.1a is Unlstarhe stable flow profile is now
a banded flow, where two regions with different shear ratesracoexistence. Within these
two regions (the “bands”), the shear rate is constant, iadéent of position. The shear rates
within the two bands can be found from a modified equal areatooction on the van der
Waals loop in fig.34 (see Olmsted and Lu (1999), Olmsted (1,99Bnsted et al. (2000), Lu
et al. (2000), Fielding and Olmsted (2003) and Dhont (19983)can be seen, the difference
between these shear rates is very small. Since the contientiange where gradient banding
is expected to occur and the difference in shear rates aaisedtin the two bands is very
small, gradient banding in suspensions of stiff rods willdificult to detect experimentally.
In addition, passing the critical point at a fixed concemdraby increasing the shear rate, the
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two-phase region is also probed (see figs.19b and 21), asilh oésvhich phase separation
will occur during a rheological experiment. It is possitilewever, that gradient banding also
occurs within the two-phase region (the region bounded éyp#tranematic-nematic binodal),
which has not been studied experimentally yet. The sitndtioworm-like micellar systems

is different. Here strong gradient banding has been obdesutside the two-phase region.
The reason for such pronounced gradient banding is prollaéiyhear flow enhances align-
ment, which enhances head-to-tail collisions leading t@ér worms, leading in turn to a
higher degree of alignment. This mechanism probably rendermlike micellar systems

much more strongly shear thinning as compared to, for exanfghlvirus suspensions, giving
rise to a more pronounced van der Waals loop like behaviotiteo$tress versus shear rate.

Although gradient banding of suspensions of stiff rods ipezimentally possibly less
relevant, these systems do allow to gain in understandingemicroscopic origin of the van
der Waals loop-like behaviour of the stress tensor. Theoreés the strong shear-thinning
behaviour on passing the critical point is that rotationailtion is very slow at the critical
point (since therd¢// = 0, as discussed in subsection 11.1), so that shear-aligoingd are
not counterbalanced any more by rotational diffusion. Alsmarease in shear-rate near the
critical point therefore results in an appreciable inceaaithe degree of alignment, leading to
strong shear thinning, giving rise to the van der Waals ldaobehaviour of the stress tensor.
It may be a general feature for the origin of gradient bandingt the dynamics of a variable,
that strongly couples to the stress, becomes very slow gaasig the shear rate.

0.15.2 The non-equilibrium phase diagram under shear flow

A sketch of a possible complete phase diagram of rods swoi¢ot simple shear flow, for
concentrations below the nematic-to-smectic transit®given in fig.35. As discussed before,
the location of the binodal and the region within the two-gshaegion (as enclosed by the
binodal) where vorticity banding occurs has been obtaingzbémentally for an fd-virus
suspension with added dextran that induced slight attnastbetween the rods. At lower
concentrations, the region where vorticity banding cetsescur coincides with the binodal.
There are indications that the vorticity-banding ceasestair at higher concentrations where
non-stationary, time-periodic states become stable. i@natanding is expected to occur in
a very small concentration interval close to the criticahpg@as discussed above), but has so
far not been observed experimentally.

Characteristic features of vorticity bands have not begastigated yet. It is not known
how the band height varies with shear rate and concentrdtierinternal orientational order
within the bands has not been investigated, and it is not kneWether or not there is a
dependence on the gap width of the shear cell.

The various types of non-stationary states as describedtail dy Rienacker and Hess
(1999) and Hess and Kroger (2004). These various typesneftieriodic states are difficult
to distinguish experimentally. So far, only tumbling andygang states have been seen in fd-
virus suspensions by Lettinga and Dhont (2004). The phasgalin in fig.35 may, however,
be more complicated as far as these time-periodic stateaoerned.
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Figure 35: A sketch of the possible non-equilibrium phase diagramitifrsts.

0.15.3 Phase separation kinetics under flow conditions

No experimental results for demixing kinetics of colloidgktems consisting of either spheri-
cal or rod-like colloids under shear flow have been publisttefdr. An analysis of a simplified
Smoluchowski equation in the initial stage of spinodal déng of suspensions of rods in the
absence of flonas been discussed by Winters et al. (2000). Initial spihdeleomposition
of suspensions of spheres in the presence of sheathievbeen analyzed by Dhont (1996),
which analysis reproduces features that are seen expdéiltyefor fluid mixtures by Baum-
berger et al. (1991). There are as yet no theories on spimegamposition of suspensions
of rod-like colloidsunder shear flowalthough much work has been done on polymer blend
demixing under flow conditions.

There are regions in the phase diagram where decompositaegds through spinodal
demixing or by nucleation and growth, depending on the degfeorientational order of
the initial state. These regions are most convenientlytified by means of the bifurcation
diagrams as discussed in section 11.

The kinetics of vorticity-band formation has not been stddio far. Experiments indicate
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that these bands are formed from an unstable state, that imelns of a spinodal type of
demixing, with a time constant that varies with shear raid @gncentration. The same ex-
periments show a remarkably strong dependence of the hefighe bands and the rate with
which bands are formed on the gapwidth of the shear cell (Kaad) (2004)).

Appendix A

This appendix deals with the mathematical details of howdhiedex summations can be
calculated by means of integration.
Consider the function appearing in eq.(35),

in n 1
F(L/D) = Z Z |i—7 | ’
]_7§n L—fE’IL, i#£ ]

Let us first evaluate the sum,

1
271

3 B

i

This sum equals the surface area of all the rectangles in6figlBcan be replaced by an
integral, when the summation rangesn, £n) is large,

i 1 i3 L(n+1) 1
Z o / Jr/ di — . (309)
mz—%n,i;ﬁj'z_j' —3(n+1) Jit+3 |Z_.7|

The difference between the sum and the integral is the suhreadashed surface areas in
fig.36 (with their proper sign). For increasidg D-ratios, this difference tends to a constant,
while the sum itself goes to infinity. The relative error timtmade by replacing the sum by

| | | | | | |
3 2 1§l jR2 3

Figure 36: The sum in eq.(309) equals the surface area of all rectagragieisthe integral is the surface
area under the solid curve.
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an integral thus tends to zero BgD tends to infinity. The leading terms in the above integral
are,

In{j+ 3(n+ 1)} +Inf5n+1) 5}

This expression is substituted into eq.(309), where the suen j is again replaced by an
integral. Using the standard integral,

) In{z} 1
dz 2™ 1 — ,m+l _
/ 2 ngzp = 2 m+1 (m+1)2]"°

one ends up, to leading order /L, with the result given in eq.(36). The two values of
j = £n/2 do not contribute to leading order, so that in the evaluatiossummations; may
always be assumed in the interior of the summation range.

Appendix B : Useful mathematical identities

Useful mathematical identities which are frequently usethe present chapter are,

R(-) = —2a-Vu(---)—aa:V,Vy(---)+ Vi),
7%2(3-11)2 = 2[a®-3(a-0)?],
Ri@-M-a) = —6(a-M-a)+27r{M},
R (aa) = —6aa + 2f,
ax M) R() = (Vo)) (M) = (@ [V () (M),
R-[ax (M-a) = -3(a-M-a)+Tr{M},
Re(()@-M-w) = [Tr{M}—3(@-M-a)] () + (M-a)- |[I-aa| V().
R-(axa) = —2(a-a),
R@-M-a) = ax[M-a+M” 4],
a-Ra = axu.

Here,M anda denotetu-independent tensor and vector, respectively, @nd) denotes an
arbitrary, but differentiable, scalar or vector field. ThHmee identities are easily verified by
explicit differentiation.

Appendix C : On the accuracy of the closure relation (227)

In order to asses the accuracy of the closure relation (22 Jyumerically solve the Smolu-
chowski equation (213) for a single rod in shear flow, thawighout the interaction term.

From the stationary numerical solutid(d, t — oo), bothS andS(*) can be obtained by

numerical integration. This allows to compare the appr@tion (227) with the exact form of

S, Note that the stationary solution of eq.(213) is a functiéthe shear rate through the
dimensionless rotational Peclet numb&r,. = 4/ D,.



0.15 Current Research Topics 109

0.50 . 0.08 .

11

0.25 . 0.04

38

12 R e
O'000 5'0 100 0'000 5'0 10(
Pe. Pe,

Figure 37: A test of the accuracy of the closure relation (227) for¥&)= S and (b)M = E. Solid
lines are obtained from numerical solution of the Smoluctlavequation (213), and dotted lines are
obtained fromS using the closure relation (227). The numbers indicate ¢hsdr elements. Tensor
elements that are not shown @re

A comparison between the exact values (solid lines) andcegabbtained from the closure
relation (227) (dotted lines) for the non-zero componefta@tensors® : S andS™ : E
are given in figs.37a,b, respectively. As can be seen, thergshte dependence of the various
components is well reproduced by the closure relation. g the accuracy of the closure
relation (227) is seen to be accurate to withf for M = S, and abou10% in caseM = E.
Computer simulations indicate the same accuracy for layxgecentrations.

Appendix D : Evaluation of sums over bead index numbers

Consider the evaluation of eq.(272) to obtain an explicgrezsion for the sum in eq.(271).
As a first step the double summation in eq.(272) is rewr'mlsan

G(B)
h _ h h
ﬁ*ZZm_mFlﬁJ“ZZ |a—ﬁ| Fj:ﬁ' (310)
a B#a a f#a a BEa

The last term in this equation can be rewritten, by first ich@nging the summation indices
andg, and subsequently interchanging the order of summatians, a

G - Gla
D e TR DD B e S D DL DR e

o fra o fra

(311)
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After a similar interchange of the order of summation in tstfierm on the right hand-side
of eq.(310), substitution of egs.(310,311) into eq.(2722sg

> G F) = 7Y Gl0) [vja — Upal=2 [T+ 58] | 3 Gla) Fl, Y Iai6|+A ’

«@ B#a
(312)
where,
G(B) = Gla)

A = F" —_— 313
2@) Jg o] (313)

Consider the first contribution between the square bradketg.(312),

1

G(a) F! . 314
Zo; (@) ; P (314)

The sumS(a) = 35,1/ — 3| can be approximated by an integral. To leading order one

finds,
1 a—j% 3 (5-D 1
-y - dr —— .
s0) = 3 U_ g_1>+/a+; ] s

The integrals are easily evaluated to yield,
S() = 2In{2}+In{3(£ - 1) +at+In{3(£—-1)—a} .
Except fora’s close to the ends of the rod, this gives to leading order,
S(a) = 2In{%} . (315)

In fig.38a,5(a)/2 In{L/D} is plotted as a function of/m, with 2m + 1 the number of
beads (so that/m ranges from-1 to +1). As can be seen, the approximation (315) is good
to within about10 %, except at the very ends of the rod. In fact, the width of thggae at
the tips of the rod where eq.(315) is hot a good approximatgymptotically vanishes in the
limit where L/ D — oo. Hence, except whe@(«a) Fé{a in eq.(314) peaks at the ends of rod
7, €0.(315) can be used as a good approximation. For our pairfiae is no reason for the
function G(«) F;{a to peak at the very ends of the rod. A quantitative estimatéti® error
made in using eq.(315), is the differences between the 3ums§(«) and)_, 2In{L/D} =
2(L/D — 1) In{L/D}. These sums are plotted as functiond.gfD in fig.38b. The relative
error does not excee’l% (for L/D < 5), and very slowly converges @ with increasing
aspect ratio. Hence, to within abalit % error, we can approximate the expression in eq.(314)
by,

> G FL > ﬁ = 2Wn{L/D} Y G(a)F!, . (316)
«a BF#a «a

The term on the left hand-side in eq.(312) can be neglectaihstghis contribution, which is
logarithmically larger.
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Figure 38: (a) S(«)/2In{L/D} as a function ofx/m with 2m + 1 the total number of beads (where
S(e) =3 5401/ | @ — B ). The lower curve is fol./D = 20, the upper curve fof./D = 201. (b)
the sumsy  S(a) and}_  2in{L/D} = 2(L/D — 1)In{L/D} as a function of../D. The relative
error between the two sums never exce®ids and very slowly converges tbwith increasingL/D.

For the divergence of the stress tensor in eq.(267) we nemdtoate the sum,
S = Z <dr—r faDﬁl)F}fﬂ > .
(e}

wherej is taken equal td for convenience. Writing the ensemble average in terms of an
integral with respect to the probability density functigualf) P, of all phase space coordinates
of the colloidal rods, the integration with respectrtocan be done immediately due to the
delta distribution, leading to,

S = }{dﬁl/drz P(ry =t —aDiy, i, T,t)F} (r1 =r — a Dy, 0, T),
(03

whereT stands for the phase space coordinates- - ,ry, G2, -- , . The integrand is of
the form of the left hand-side of eq.(272), except thd‘{m the positionr; is taken equal to
r — a D15, which does not affect the present analysis leading to @8)(Zhe functiorG(«)
is now equal to,

G(a) = P(ry =r —aDu;,u,,T,t).
Since the pdf is a continuous differentiable functionrof there is a scalar betweenx and
5, such that,

G(B) —Gla)  dG(z) dP(r1 =r — zDuy, 0,1, t)

B -« dz dz '
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The latter derivative is just the change Bfon changing the position of rod numbgrby
Dy, that is, its center is shifted over a distani@an the direction of its orientation. Since
for the very large aspect ratios under consideration, sisipe properties are essentially
constant over distances of the order so that this is a very small number. The number
R = (L/D)dIn{G(z)}/dz measures the change of “the entropy{ P} over distances of
the order of the length of the rods. In terms of this number aeeththe order of magnitude
estimate,

A~ RY G)F}, .

Hence, according to eq.(316), as long as relative changesgspiension properties over the
contour of the rods are much smaller tHafi/ D}, A can be neglected against the first term
between the square brackets in eq.(312). This justified¢ipefiom egs.(267) to eq.(273,274).
Appendix E : Derivation of eq.(279)

After substitution of eqs.(278,170,166,172,277) intd21ph) it is immediately found that,

V-2 = nV2U(r,t) = VP*(r,t) + I, + I, + I, , (317)
where,
I = —22Ps <ZZa5r—r] a D) [BR; ¥ + R, In{P}| x &; >, (318)
Jj=1 «
- N
I = ey <)) 0 —1; —a D) [BV;¥ + V;In{P}] >, (319)
=1 «
and,
N
I, daor < 2 [T Syiy] - Yok — vy — a Diy)

J=1 «

DN Ujp—Uja—120(2)% 4, x {ii; x > BU; 5} (320)

B B

First consider the relatively simple contribution,

N
I = <ZZO¢5(r—rj—aDﬁj)ﬁj><7A€jln{P}>

=1 «

N
= ZZa/drl---/drNj{dﬁl---?{dﬁNcS(r—rj—aDﬁj)ﬁj X R; P.

j=1 «
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that appears in eq.(318) féy. In the second line it is used th&R; In{ P} = R, P, where,
P = P(rq,--- ,un,t) is the N-particle pdf. For eaclj, the integrations with respect ig,
andu,, with m # j can be done immediately. Assuming identical rods gives,

= NZa/drly{dﬁl5(r7r17aDﬁ1)ﬁ1 X Ry P(ry,y,t).

Itis to be noted that the differentiation with respectitomust be performed, after whiah
can be replaced biy— o«D; upon integration with respect i1q. Hence,

= NZa%dﬁlﬁl X [ﬁlP(r—aDﬁo,ﬁl,t)]

u0=£11
The corresponding contribution to the divergence of thessttensor in eq.(279) follows by
replacing the summation over the bead index nunabley an integral as,

L/2

Zf . —a D) —D/ de f(---—zay) . (321)

L2

Next consider the somewhat more complicated contribution,

N
I = ﬁ<ZZa5(r—rj—aDﬁj)ﬁj X R;U >

j=1 «

622 /dr1 /drNj{dul y{duNcSr rj— aDu])Puij\Il

j=1 «

which appears in eq.(318) fdr.. Using pair-wise additivity (see eq.(203)), substitutmn
eq.(207) together with eq.(209), and assuming identias rit is readily found that,

Oé/dI'l %dﬁl %dﬁg 5(r—r1—osz11)p(r1,ﬁ1,t)

u; Xﬁl /drg p(rg,ﬁg,ﬁ) X(I’l—l‘g,ﬁl,flg). (322)

The integration with respect 6 can be performed after transforming to the integration-vari
ableR =r; — o,

/dI‘g p(rg,ﬁg,ﬁ) X(I’l—rg,fll,ﬁg) = /dRp(I’l—R, ﬁg,t) X(R, ﬁl,flg)

L/2 L/2

= 2D |U1XUQ|/ dl dl/ rlflﬁlfl/ﬁg,flg,t).
L2 J-rj2

In the second equation, the integration with resped®tcs transformed to integration with

respect to{l,!’,1"”}, which are defined as, ,

R = [+l 41 2

|u1 X Uz |

—iL<l,I'<iL , -D<I"<D. (323)



114

The Jacobian of this transformation is equal o x G2 |. Since the suspension properties
do not significantly change over distances of the order ofthieknessD of the rods, the
integration with respect tfi’ gives rise to a prefact@D. Hence,

L/2 L/2
= ZDZ /dr1 j{dul j{duQ/ dl/ dl' §(r—r1—a Dty) p(ry, iy, t)
L/2 L/2
ﬁl XRl |u1 Xﬁg | p(rl—lﬁl—l' ﬁg, flg, t) .
As before it should be noted that upon integration with resper,, the delta distribution

rendersr; = r — aDu; after the differentiation with respect @, has been performed.
Hence,

L/2 L/2
— ZDZ j{dulj{dug/ dl dl' p(r — a Dy, 1y, t)

L2 J-rs2

i ¥ [Rl [y x 82| p(r — o Ditg—1 ity — ' s, ﬁg,t)} o

up=u
The bead index summation is replaced by an integral simiteglin eq.(321), leading to (with
u=10; andﬁ' = flg),

L/2 L/2 1/2
?{duj{dﬁ’/ d:c/ dl/ —xz,0,t)
L/2 L/2 L/2
1% [R laxd| plr—zig—la—rd )|
up=u
This expression can be found in eq.(279).
The contributiorl; to the stress tensor in eq.(319) is evaluated similarly.

The g-summations in the contributidh, in eq.(320) are replaced by integrals, similar to
eq.(321), as,

Z BU;z = D*Q/d:c’x’U(errx’ﬁj). (324)
The prefactors in eqgs.(318,319,320) are found from eg8, 1) to be equal to,
1D ppur. and, & 22De — 1902 T

ln{L/D} L ’ » 3 In{L/D}
This concludes the mathematical details leading to eq)(279
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