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Abstract. We consider the problem of coloring a planar graph with
the minimum number of colors such that each color class avoids one or
more forbidden graphs as subgraphs. We perform a detailed study of the
computational complexity of this problem.
We present a complete picture for the case with a single forbidden con-
nected (induced or non-induced) subgraph. The 2-coloring problem is
NP-hard if the forbidden subgraph is a tree with at least two edges, and
it is polynomially solvable in all other cases. The 3-coloring problem is
NP-hard if the forbidden subgraph is a path, and it is polynomially solv-
able in all other cases. We also derive results for several forbidden sets
of cycles.

Keywords: graph coloring; graph partitioning; forbidden subgraph; pla-
nar graph; computational complexity.

1 Introduction

We denote by G = (V,E) a finite undirected and simple graph with |V | = n
vertices and |E| = m edges. For any non-empty subset W ⊆ V , the subgraph of
G induced byW is denoted by G[W ]. A clique of G is a non-empty subset C ⊆ V
such that all the vertices of C are mutually adjacent. A non-empty subset I ⊆ V
is independent if no two of its elements are adjacent. An r-coloring of the vertices
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of G is a partition V1, V2, . . . , Vr of V ; the r sets Vj are called the color classes
of the r-coloring. An r-coloring is proper if every color class is an independent
set. The chromatic number χ(G) is the minimum integer r for which a proper
r-coloring exists.

Evidently, an r-coloring is proper if and only if for every color class Vj ,
the induced subgraph G[Vj ] does not contain a subgraph isomorphic to P2. This
observation leads to a number of interesting generalizations of the classical graph
coloring concept. One such generalization was suggested by Harary [15]: Given
a graph property π, a positive integer r, and a graph G, a π r-coloring of G
is a (not necessarily proper) r-coloring in which every color class has property
π. This generalization has been studied for the cases where the graph property
π is being acyclic, or planar, or perfect, or a path of length at most k, or a
clique of size at most k. We refer the reader to the work of Brown & Corneil [5],
Chartrand et al [7,8], and Sachs [20] for more information on these variants.

In this paper, we will investigate graph colorings where the property π can
be defined via some (maybe infinite) list of forbidden induced subgraphs. This
naturally leads to the notion of F-free colorings. Let F = {F1, F2, . . . } be the
set of so-called forbidden graphs. Throughout the paper we will assume that
the set F is non-empty, and that all graphs in F are connected and contain at
least one edge. For a graph G, a (not necessarily proper) r-coloring with color
classes V1, V2, . . . , Vr is called weakly F–free, if for all 1 ≤ j ≤ r, the graph G[Vj ]
does not contain any graph from F as an induced subgraph. Similarly, we say
that an r-coloring is strongly F–free if G[Vj ] does not contain any graph from
F as an (induced or non-induced) subgraph. The smallest possible number of
colors in a weakly (respectively, strongly) F-free coloring of a graph G is called
the weakly (respectively, strongly) F-free chromatic number ; it is denoted by
χW (F , G) (respectively, by χS(F , G)).

In the cases where F = {F} consists of a single graph F , we will sometimes
simplify the notation and not write the curly brackets: We will write F -free short
for {F}-free, χW (F,G) short for χW ({F}, G), and χS(F,G) short for χS({F}, G).
With this notation χ(G) = χS(P2, G) = χW (P2, G) holds for every graph G. Note
that

χW (F , G) ≤ χS(F , G) ≤ χ(G).

It is easy to construct examples where both inequalities are strict. For instance,
for F = {P3} (the path on three vertices) and G = C3 (the cycle on three
vertices) we have χ(G) = 3, χS(P3, G) = 2, and χW (P3, G) = 1.

1.1 Previous Results

The literature contains quite a number of papers on weakly and strongly F-free
colorings of graphs. The most general result is due to Achlioptas [1]: For any
graph F with at least three vertices and for any r ≥ 2, the problem of deciding
whether a given input graph has a weakly F -free r-coloring is NP-hard.
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The special case of weakly P3-free colorings is known as the subcoloring prob-
lem in the literature. It has been studied by Broere & Mynhardt [4], by Albert-
son, Jamison, Hedetniemi & Locke [2], and by Fiala, Jansen, Le & Seidel [11].

Proposition 1. [Fiala, Jansen, Le & Seidel [11]]
Weakly P3-free 2-coloring is NP-hard for triangle-free planar graphs.

A (1, 2)-subcoloring of G is a partition of VG into two sets S1 and S2 such
that S1 induces an independent set and S2 induces a subgraph consisting of a
matching and some (possibly no) isolated vertices. Le and Le [17] proved that
recognizing (1, 2)-subcolorable cubic graphs is NP-hard, even on triangle-free
planar graphs.

The case of weakly P4-free colorings has been investigated by Gimbel &
Nešetřil [13] who study the problem of partitioning the vertex set of a graph into
induced cographs. Since cographs are exactly the graphs without an induced P4,
the graph parameter studied in [13] equals the weakly P4-free chromatic number
of a graph. In [13] it is proved that the problems of deciding χW (P4, G) ≤ 2,
χW (P4, G) = 3, χW (P4, G) ≤ 3 and χW (P4, G) = 4 all are NP-hard and/or
coNP-hard for planar graphs. The work of Hoàng & Le [16] on weakly P4-free 2-
colorings was motivated by the Strong Perfect Graph Conjecture. Among other
results, they show that weakly P4-free 2-coloring is NP-hard for comparability
graphs.

A notion that is closely related to strongly F -free r-coloring is the so-called
defective graph coloring. A defective (k, d)-coloring of a graph is a k-coloring
in which each color class induces a subgraph of maximum degree at most d.
Defective colorings have been studied for instance by Archdeacon [3], by Cowen,
Cowen & Woodall [10], and by Frick & Henning [12]. Cowen, Goddard & Jesurum
[9] have shown that the defective (3, 1)-coloring problem and the defective (2, d)-
coloring problem for any d ≥ 1 are NP-hard even for planar graphs. We observe
that defective (2, 1)-coloring is equivalent to strongly P3-free 2-coloring, and that
defective (3, 1)-coloring is equivalent to strongly P3-free 3-coloring.

Proposition 2. [Cowen, Goddard & Jesurum [9]]
(i) Strongly P3-free 2-coloring is NP-hard for planar graphs.
(ii) Strongly P3-free 3-coloring is NP-hard for planar graphs.

1.2 Our Results

We perform a complexity study of weakly and strongly F-free coloring problems
for planar graphs. By the Four Color Theorem (4CT), every planar graph G
satisfies χ(G) ≤ 4. Consequently, every planar graph also satisfies χW (F , G) ≤ 4
and χS(F , G) ≤ 4, and we may concentrate on 2-colorings and on 3-colorings.
For the case of a single forbidden subgraph, we obtain the following results for
2-colorings:

– If the forbidden (connected) subgraph F is not a tree, then every planar
graph is strongly and hence also weakly F -free 2-colorable. Hence, the cor-
responding decision problems are trivially solvable.
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– If the forbidden subgraph F = P2, then F -free 2-coloring is equivalent to
proper 2-coloring. It is well-known that this problem is polynomially solvable.

– If the forbidden subgraph is a tree T with at least two edges, then both
weakly and strongly T -free 2-coloring are NP-hard for planar input graphs.
Hence, these problems are intractable.

For 3-colorings with a single forbidden subgraph, we obtain the following results:

– If the forbidden (connected) subgraph F is not a path, then every planar
graph is strongly and hence also weakly F -free 3-colorable. Hence, the cor-
responding decision problems are trivially solvable.

– For every path P with at least one edge, both weakly and strongly P -free
3-coloring are NP-hard for planar input graphs. Hence, these problems are
intractable.

Moreover, we derive several results for 2-colorings with certain forbidden sets of
cycles.

– For the forbidden set F345 = {C3, C4, C5}, weakly and strongly F345-free 2-
coloring both are NP-hard for planar input graphs. Also for the forbidden
set Fcycle of all cycles, weakly and strongly Fcycle-free 2-coloring both are
NP-hard for planar input graphs.

– For the forbidden set Fodd of all cycles of odd lengths, every planar graph is
strongly and hence also weakly Fodd-free 2-colorable.

2 The Machinery for Establishing NP-Hardness

Throughout this section, let F denote some fixed set of forbidden planar sub-
graphs. We assume that all graphs in F are connected and contain at least two
edges. We will develop a generic NP-hardness proof for certain types of weakly
and strongly F-free 2-coloring problems. The crucial concept is the so-called
equalizer gadget.

Definition 1. (Equalizer)
An (a, b)-equalizer for F is a planar graph E with two special vertices a and b
that are called the contact points of the equalizer. The contact points are non-
adjacent, and they both lie on the outer face in some fixed planar embedding of
E. Moreover, the graph E has the following properties:

(i) In every weakly F-free 2-coloring of E, the contact points a and b receive
the same color.

(ii) There exists a strongly F-free 2-coloring of E such that a and b receive the
same color, whereas all of their neighbors receive the opposite color. Such a
coloring is called a good 2-coloring of E.

The following result is our (technical) main theorem. This theorem is going
to generate a number of NP-hardness statements in the subsequent sections of
the paper. We omit the proof of this theorem in this extended abstract.
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Theorem 1. (Technical main result of the paper)
Let F be a set of planar graphs that all are connected and that all contain at
least two edges. Assume that

– F contains a graph on at least four vertices with a cut vertex, or a 2-
connected graph with a planar embedding with at least five vertices on the
outer face;

– there exists an (a, b)-equalizer for F .

Then deciding weakly F-free 2-colorability and deciding strongly F-free 2-
colorability are NP-hard problems for planar input graphs.

3 Tree-Free 2-Colorings of Planar Graphs

The main result of this section will be an NP-hardness result for weakly and
strongly T -free 2-coloring of planar graphs for the case where T is a tree with at
least two edges (see Theorem 2). The proof of this result is based on an inductive
argument over the number of edges in T . The following two auxiliary Lemmas 1
and 2 will be used to start the induction.

Lemma 1. Let K1,k be the star with k ≥ 2 leaves. Then it is NP-hard to decide
whether a planar graph has a weakly (strongly) K1,k-free 2-coloring.

Proof. For k = 2, the statement for weakly K1,k-free 2-colorings follows from
Proposition 1, and the statement for strongly K1,k-free 2-colorings follows from
Proposition 2.(i). For k ≥ 3, we apply Theorem 1. The first condition in this
theorem is fulfilled, since for k ≥ 3 the star K1,k is a graph on at least four
vertices with a cut vertex. For the second condition, we construct an (a, b)-
equalizer.

The equalizer is the complete bipartite graph K2,2k−1 with bipartitions I,
|I| = 2k − 1, and {a, b}. This graph satisfies Definition 1.(i): In any 2-coloring,
at least k of the vertices in I receive the same color, say color 0. If a and b
are colored differently, then one of them is colored 0. This yields an induced
monochromatic K1,k. A good coloring as required in Definition 1.(ii) results
from coloring a and b by the same color, and all vertices in I by the opposite
color.

For 1 ≤ k ≤ m, a double-star Xk,m is the tree of the following form: Xk,m

has k+m+2 vertices. There are two adjacent central vertices y1 and y2. Vertex
y1 is adjacent to k leaves, and y2 is adjacent to m leaves. In other words, the
double-star Xk,m results from adding an edge between the two central vertices
of the stars K1,k and K1,m. Note that X1,1 is isomorphic to the path P4.

Lemma 2. Let Xk,m be a double star with 1 ≤ k ≤ m. Then it is NP-hard to
decide whether a planar graph has a weakly (strongly) Xk,m-free 2-coloring.
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Proof. We apply Theorem 1. The first condition in this theorem is fulfilled,
since Xk,m is a graph on at least four vertices with a cut vertex. For the second
condition, we will construct an (a, b)-equalizer.

The (a, b)-equalizer E = (V ′, E′) consists of 2m + k − 1 independent copies
(V i, Ei) of the double star Xk,m where 1 ≤ i ≤ 2m+ k− 1. Moreover, there are
five special vertices a, b, v1, v2, and v3. We define

V ′ = {v1, v2, v3, a, b} ∪
⋃

1≤i≤2m+k−1

V i and

E′ = {vivj : 1 ≤ i, j ≤ 3} ∪ av3 ∪ bv3 ∪
⋃

1≤i≤2m+k−1

Ei ∪
⋃

1≤i≤m

{v1v : v ∈ V i} ∪
⋃

m+1≤i≤2m

{v2v : v ∈ V i} ∪
⋃

2m+1≤i≤2m+k−1

{v3v : v ∈ V i} .

We claim that every 2-coloring of E with a and b colored in different colors
contains a monochromatic induced copy of Xk,m: Consider some weakly Xk,m-
free coloring of E . Then each copy (V i, Ei) of Xk,m must have at least one
vertex that is colored 0 and at least one vertex that is colored 1. If v1 and v2 had
the same color, then together with appropriate vertices in V i, 1 ≤ i ≤ 2m, they
would form a monochromatic copy of Xk,m. Hence, we may assume by symmetry
that v1 is colored 1, that v2 is colored 0, and that v3 is colored 0. Suppose for
the sake of contradiction that a and b are colored differently. Then one of them
would be colored 0, and there would be a monochromatic copy of Xk,m with
center vertices v3 and v2. Thus E satisfies property (i) in Definition 1.

To show that also property (ii) in Definition 1 is satisfied, we construct a
good 2-coloring: The vertices a, b, v1 are colored 0, and v2 and v3 are colored 1.
In every set V i with 1 ≤ i ≤ m, one vertex is colored 0 and all other vertices are
colored 1. In every set V i with m+ 1 ≤ i ≤ 2m+ k − 1, one vertex is colored 1
and all other vertices are colored 0.

Now we are ready to prove the main result of this section.

Theorem 2. Let T be a tree with at least two edges. Then it is NP-hard to
decide whether a planar input graph G has a weakly (strongly) T -free 2-coloring.

Proof. By induction on the number � of edges in T . If T has � = 2 edges, then
T = K1,2, and NP-hardness follows by Lemma 1. If T has � ≥ 3 edges, then
we consider the so-called shaved tree T ∗ of T that results from T by removing
all the leaves. If the shaved tree T ∗ is a single vertex, then T is a star, and
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NP-hardness follows by Lemma 1. If the shaved tree T ∗ is a single edge, then T
is a double star, and NP-hardness follows by Lemma 2.

Hence, it remains to settle the case where the shaved tree T ∗ contains at
least two edges. In this case we know from the induction hypothesis that weakly
(strongly) T ∗-free 2-coloring is NP-hard. Consider an arbitrary planar input
graph G∗ for weakly (strongly) T ∗-free 2-coloring. To complete the NP-hardness
proof, we will construct in polynomial time a planar graph G that has a weakly
(strongly) T -free 2-coloring if and only if G∗ has a weakly (strongly) T ∗-free
2-coloring: Let ∆ be the maximum vertex degree of T . For every vertex v in G∗,
we create ∆ independent copies T1(v), . . . , T∆(v) of T , and we connect v to all
vertices of all these copies.

Assume first that G∗ is weakly (strongly) T ∗-free 2-colorable. We extend this
coloring to a weakly (strongly) T -free coloring of G by taking a proper 2-coloring
of every subgraph Ti(v) in G. It can be verified that this extended coloring for
G does not contain any monochromatic copy of T .

Now assume that G is weakly (strongly) T -free 2-colorable, and let c be such
a 2-coloring. Every subgraph Ti(v) in G must meet both colors. This implies
that every vertex v in the subgraph G∗ of G has at least ∆ neighbors of color 0
and at least ∆ neighbors of color 1 in the subgraphs Ti(v). This implies that the
restriction of the coloring c to the subgraph G∗ is a weakly (strongly) T ∗-free
2-coloring. This concludes the proof of the theorem.

4 Cycle-Free 2-Colorings of Planar Graphs

In the previous sections we have shown that for every tree F with |E(F )| ≥ 2,
the problem of deciding whether a given planar graph has a weakly (strongly)
F -free 2-coloring is NP-hard. If the forbidden tree F is a P2, then F -free 2-
coloring is equivalent to proper 2-coloring, and hence the corresponding problem
is polynomially solvable.

We now turn to the case in which F is not a tree and hence contains a cycle
(we assume F is connected).

If F contains an odd cycle, then the Four Color Theorem (4CT) shows that
any planar graph G has a weakly (strongly) F -free 2-coloring: a proper 4-coloring
of G partitions VG into two sets S1 and S2 each inducing a bipartite graph.
Coloring all the vertices of Si by color i yields a weakly (strongly) F -free 2-
coloring of G. If we extend the set of forbidden cycles to all cycles of odd length,
denoted by Fodd, then the converse is also true: In any Fodd-free 2-coloring of G
both monochromatic subgraphs of G are bipartite, yielding a 4-coloring of G.
To summarize we obtain the following.

Lemma 3. The statement “χS(Fodd, G) ≤ 2 for every planar graph G” is equiv-
alent to the 4CT.

In case F is just the triangle C3, one can avoid using the heavy 4CT machin-
ery to prove that for every planar graph G χS(C3, G) ≤ 2 by applying a result
due to Burstein [6]. We omit the details.
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If F contains no triangles, a result of Thomassen [21] can be applied. He
proved that the vertex set of any planar graph can be partitioned into two sets
each of which induces a subgraph with no cycles of length exceeding 3. Hence
every planar graph is weakly (strongly) F≥4-free 2-colorable, where F≥4 denotes
the set of all cycles of length exceeding 3. The following theorem summarizes
the above observations.

Theorem 3. If the forbidden connected subgraph F is not a tree, then every
planar graph G is strongly and hence also weakly F -free 2-colorable.

The picture changes if one forbids several cycles.

Theorem 4. Let F345 = {C3, C4, C5} be the set of cycles of lengths three, four,
and five. Then the problem of deciding whether a given planar graph has a weakly
(strongly) F345-free 2-coloring is NP-hard.

We omit the proof of the theorem in the extended abstract.
Recently Kaiser & Škrekovski announce the proof of χW (F , G) ≤ 2 for F =

{C3, C4} and every planar graph G.

5 3-Colorings of Planar Graphs

A linear forest is a disjoint union of paths and isolated vertices. The following
result was proved independently in [14] and [19]:

Proposition 3. [Goddard [14] and Poh [19]]
Every planar graph G has a partition of its vertex set into three subsets such that
every subset induces a linear forest.

This result immediately implies that if a connected graph F is not a path, then
χW (F,G) ≤ 3 and χS(F,G) ≤ 3 hold for all planar graphs G. Hence, these
coloring problems are trivially solvable in polynomial time.

We now turn to the remaining cases of F -free 3-coloring for planar graphs
where the forbidden graph F is a path. We start with a technical lemma that
will yield a gadget for the NP-hardness argument.

Lemma 4. For every k ≥ 2, there exists an outer-planar graph Yk that satisfies
the following properties.

(i) Yk is not weakly Pk-free 2-colorable.
(ii) There exists a strongly Pk-free 3-coloring of Yk, in which one of the colors

is only used on an independent set of vertices.

We omit the proof of the lemma here.

Theorem 5. For any path Pk with k ≥ 2, it is NP-hard to decide whether a
planar input graph G has a weakly (strongly) Pk-free 3-coloring.
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Proof. We will use induction on k. The basic cases are k = 2 and k = 3. For
k = 2, weakly and strongly P2-free 3-coloring is equivalent to proper 3-coloring
which is well-known to be NP-hard for planar graphs.

Next, consider the case k = 3. Proposition 2.(ii) yields NP-hardness of
strongly P3-free 3-coloring for planar graphs. For weakly P3-free 3-coloring, we
sketch a reduction from proper 3-coloring of planar graphs. As a gadget, we use
the outer-planar graph Z depicted in Figure 1. The crucial property of Z is that
it does not allow a weakly P3-free 2-coloring, as is easily checked. Now consider
an arbitrary planar graph G. From G we construct the planar graph G′: For
every vertex v in G, create a copy Z(v) of Z, and add all possible edges between
v and Z(v). It can be verified that χ(G) ≤ 3 if and only if χW (P3, G′) ≤ 3.

Fig. 1. The graph Z in the proof of Theorem 5.

For k ≥ 4, we will give a reduction from weakly (strongly) Pk−2-free 3-
coloring to weakly (strongly) Pk-free 3-coloring. Consider an arbitrary planar
graph G, and construct the following planar graph G′: For every vertex v in G,
create a copy Yk(v) of the graph Yk from Lemma 4, and add all possible edges
between v and Yk(v). Since Yk is outer-planar, the new graph G′ is planar. If
G has a weakly (strongly) Pk−2-free 3-coloring, then this can be extended to
a weakly (strongly) Pk-free 3-coloring of G′ by coloring the subgraphs Yk(v)
according to Lemma 4.(ii). And if G′ has a weakly (strongly) Pk-free 3-coloring,
then by Lemma 4.(i) this induces a weakly (strongly) Pk−2-free 3-coloring for G.
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