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Abstract. In this paper we prove the NP-hardness of various recog-
nition problems for subgraphs of De Bruijn graphs. In particular, the
recognition of DNA graphs is shown to be NP-hard; DNA graphs are
the vertex induced subgraphs of De Bruijn graphs over a four letter al-
phabet. As a consequence, two open questions from a recent paper by
B)lażewicz, Hertz, Kobler & de Werra [Discrete Applied Mathematics 98,
1999] are answered in the negative.
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1 Introduction

B�lażewicz, Hertz, Kobler & de Werra [3] introduced the concept of DNA graphs
to model the computing and reconstruction phase of DNA chain sequencing by
hybridization. For more information on the biological background, we refer the
reader to B�lażewicz, Hertz, Kobler & de Werra [3] or to Bains & Smith [1].
The graph theoretical background is fairly easy to describe: Let G = (V,A) be
a directed and simple graph that may contain loops. An (α, k)-labeling of G
assigns a label L(v) = [	1(v), 	2(v), . . . , 	k(v)] to every vertex v ∈ V such that

(L1) All entries 	i(v) in the labels of all vertices v ∈ V are from an alphabet of
size α (e.g., from the set {1, . . . , α}).

(L2) For u, v ∈ V with u �= v, L(u) �= L(v). Thus, different vertices get different
labels.

(L3) For u, v ∈ V , [	2(u), . . . , 	k(u)] = [	1(v), . . . , 	k−1(v)] holds if and only if
there is an arc (u, v) ∈ A. In other words, an arc is encoded by the fact
that the last k − 1 entries of the label of the tail-vertex are equal to the
first k − 1 entries of the label of the head-vertex.

For integers α ≥ 2 and k ≥ 1, we denote by Lα
k the class of all directed simple

graphs that possess an (α, k)-labeling. The set
⋃∞

k=1 Lα
k is denoted by Lα

∞, and
the set

⋃∞
α=2 Lα

k is denoted by L∞
k . B�lażewicz, Hertz, Kobler & de Werra [3]

call a graph G a DNA graph if and only if G ∈ L4
∞. The four letters in the

underlying alphabet correspond to the four nucleotide bases adenine (A), guanine
(G), cytosine (C), and thymine (T).
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Fifty years ago and working in a somewhat different line of research, De
Bruijn [4] studied the subwords of certain circular sequences. To this end he
investigated the combinatorial structure of directed graphs whose vertex set
consists of the αk possible words of length k over an alphabet of size α. Two
vertices are connected by an arc if and only if the last k − 1 letters of tail-word
are equal to the first k − 1 letters of the head-word. Such a graph is nowadays
called a De Bruijn graph, and it is denoted by B(α, k). De Bruijn graphs are used
in communication networks and in VLSI design; cf. e.g. Samathan & Pradhan
[8]. It is straightforward to see that a graph is a member of the above defined
class Lα

k if and only if it is the vertex induced subgraph of the De Bruijn graph
B(α, k) with word length k and alphabet size α. Moreover, a graph is a DNA
graph if and only if it is the vertex induced subgraph of B(4, k) for some k.
In this paper we will study the computational complexity of the membership

problems for the classes Lα
k , Lα

∞, and L∞
k for various values of α ≥ 2 and k ≥ 1.

Let us start our discussion with the classes Lα
k .

– For k = 1, the membership problem for Lα
1 is trivial: A directed simple graph

G = (V,A) is in Lα
1 if and only if A = V × V and |V | ≤ α.

– For k = 2, B�lażewicz, Hertz, Kobler & de Werra [3] design a polynomial time
algorithm that decides for any input graph G and any input parameter α,
whether G is a member of Lα

2 .
– For any fixed number k ≥ 3, we will prove in this paper (cf. Theorem 5)
that it is NP-hard to decide for an input graph G and an input parameter
α whether G ∈ Lα

k .
– For α = 2, the complexity of the membership problem for L2

k is unknown.
We conjecture that it is polynomially solvable.

– For any fixed number α ≥ 3, we will prove in this paper (cf. Theorem 8)
that it is NP-hard to decide for an input graph G and an input parameter k
whether G ∈ Lα

k .

Note that if α and k both are not part of the input, then the membership problem
for Lα

k is easy. In this case the size of class Lα
k is a fixed constant that does not

depend on the input, and we simply may search through all of it. Next, we turn
to the membership problems for the classes Lα

∞ and L∞
k . Some of these problems

are fairly close to the membership problems for the classes Lα
k .

– B�lażewicz, Hertz, Kobler & de Werra [3] give a polynomial time algorithm
that takes a graph G and a parameter k as input, and correctly decides
whether G is in L∞

k .
– For α = 2, the complexity of the membership problem for L2

∞ is unknown.
– For any fixed number α ≥ 3, we will prove in this paper (cf. Theorem 9)
that it is NP-hard to decide for an input graph G whether G ∈ Lα

∞.

At the end of [3], the authors pose five open questions on the computational
complexity of recognizing graphs in various classes Lα

k . Question 1 considers a
graph G with a given (α, k)-labeling, and it asks to find the largest possible label
length q such that G is in Lβ

q for some appropriate value of β. This question has
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been answered by B�lażewicz, Formanowicz, Kasprzak & Kobler [2] who design
a polynomial time algorithm for it. Question 2 concerns the complexity of the
membership problem in L2

k. This question remains open. Question 3 asks for
a polynomial time algorithm for the following problem: Given an integer k and
a graph G, find the smallest integer α such that G is in Lα

k . Our Theorem 8
answers this question in the negative; the problem is NP-hard. Question 4 asks
for a polynomial time algorithm for the membership problem for Lα

k . Theorems 5
and 8 answer this question in the negative, and they show that the problem is
NP-hard. Question 5 asks for a polynomial time algorithm for the following
problem: Given a graph G with a given (α, k)-labeling, determine all integers q
such that G is in Lα

q . This question remains open.

Organization of the paper. In Section 2 we state some notation, we recall
the definition of the graph coloring problem, and we derive some facts on De
Bruijn graphs. Section 3 deals with the problem variants for fixed label lengths,
and Section 4 deals with the problem variants for fixed sizes of the alphabet.

2 Preliminaries

Throughout the paper, labels will sometimes be considered as words over an
appropriate alphabet, and then the entries of the labels will be considered as the
letters of these words. For words w1 and w2, we define in the usual way their
concatenation w1 · w2 that results from appending word w2 at the right end of
word w1.
All our NP-hardness proofs will be done by reductions from the graph color-

ing problem (cf. Garey & Johnson [5]). This coloring problem remains NP-hard
even if the color bound γ ≥ 3 is not part of the input.

GRAPH COLORING
Input: An undirected graph H = (X,E) with |X| = n vertices, and a color
bound 3 ≤ γ ≤ n.
Question: Does H have a feasible γ-coloring, i.e., does there exist a function
f : X → {1, . . . , γ} such that f(x) �= f(y) for all edges (x, y) ∈ E?

In the rest of this section, we investigate when a De Bruijn graph B(α, k) is a
subgraph of another De Bruijn graph B(β, h). This will lead to a gadget for our
NP-hardness proof in Theorem 9.

Lemma 1 Let α, β ≥ 2 and k, h ≥ 2 be integers such that 2α > β. If the De
Bruijn graph B(α, k) is a subgraph of B(β, h), then B(α, k − 1) is a subgraph of
B(β, h − 1).
Proof. To simplify presentation, we will sometimes identify vertices with their
labels. Assume that B(α, k) is a subgraph of B(β, h), and let f : {1, . . . , α}k →
{1, . . . , β}h denote the corresponding injection between the two label sets. Con-
sider an arbitrary label v of length k − 1 over {1, . . . , α}. There are α distinct



De Bruijn Graphs and DNA Graphs 299

vertices in B(α, k) whose labels end with the k − 1 entries in v; we denote this
vertex set by Sv. Moreover, there are α distinct vertices in B(α, k) whose labels
start with the k − 1 entries in v; we denote this vertex set by Tv. Note that
the sets Sv and Tv are not necessarily disjoint. However, for u �= v we have
Sv ∩ Su = ∅ and Tv ∩ Tu = ∅.
In the graph B(α, k) there is an arc from every vertex in Sv to every vertex

in Tv. Now consider the vertices in f(Sv) = {f(s)|s ∈ Sv} and in f(Tv) =
{f(t)|t ∈ Tv}. Since B(α, k) is a subgraph of B(β, h), all labels of vertices in
f(Sv) must end with the same h − 1 entries [	2, . . . , 	h]

.= w, and all labels of
vertices in f(Tv) must start with the same h − 1 entries w. Summarizing, these
observations define for every label v in {1, . . . , α}k−1 a unique corresponding
label w .= g(v) in {1, . . . , β}h−1. We claim

(i) that the function g : {1, . . . , α}k−1 → {1, . . . , β}h−1 is an injection, and
(ii) that g certifies that B(α, k − 1) is a subgraph of B(β, h − 1).
To see (i), suppose that for u, v ∈ {1, . . . , α}k−1 with u �= v and for w ∈
{1, . . . , β}h−1, we have g(u) = g(v) = w. As f is an injection, f(Su ∪ Sv) is
a set of 2α labels, all with last h − 1 entries equal to w, thus with 2α distinct
first entries. This contradicts the assumption that 2α > β.
To see (ii), consider an arc from vertex u to vertex v in the graph B(α, k−1).

Then the label of u starts with an entry x followed by a sequence y of k − 2
entries, and the label of v starts with the sequence y followed by an entry z.
Consider the vertex w in B(α, k) with label x · y · z, and let the label of f(w) be
x′ · y′ · z′ where x′ and z′ are single entries and where y′ is a sequence of h − 2
entries. With this notation we have f(w) = f(x · y · z) = x′ · y′ · z′, and hence
g(u) = g(x · y) = x′ · y′ and g(v) = g(y · z) = y′ · z′. Consequently, there is also
an arc in the graph B(β, h − 1) going from vertex g(u) to vertex g(v). ��
Theorem 2 Let α, β ≥ 2 and k, h ≥ 1 be integers such that 2α > β. If the De
Bruijn graph B(α, k) is a subgraph of the De Bruijn graph B(β, h), then h = k.

Proof. Omitted in this extended abstract. ��
We note that since B(2, 2) is a subgraph of the complete directed graph on

4 vertices B(4, 1), the requirement that 2α > β in the statement of Theorem 2
is necessary.

3 The Problem Variant with a Fixed Label Length

Let H = (X,E) and γ be an arbitrary instance of GRAPH COLORING. Let
x1, . . . , xn be an enumeration of all vertices in X and let e1, . . . , em be an enu-
meration of all edges in E. Without loss of generality we assume that H does
not contain any isolated vertices. We will now construct in polynomial time a
directed graph G = (V,A) and an alphabet size α, such that G is in Lα

3 if and
only if H is γ-colorable.

– For every vertex xi ∈ X with 1 ≤ i ≤ n, the graph G contains two cor-
responding vertices v(xi) and v′(xi). There is a loop at every vertex v(xi).
From every vertex v(xi) with 1 ≤ i ≤ n there is an outgoing arc to v′(xi).
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– For all 1 ≤ i �= j ≤ n, there is a directed path with three arcs from v(xi) to
v(xj) through the two intermediate vertices v1(xi, xj) and v2(xi, xj). From
every vertex v2(xi, xj) there is an outgoing arc to v′(xj), and an outgoing
arc to every vertex v1(xj , xk) with 1 ≤ k ≤ n and k �= j.

– For every edge es ∈ E with 1 ≤ s ≤ m, the graph G contains a corresponding
vertex v(es). There is a loop at every v(es).

– For all 1 ≤ s �= t ≤ m, there is a directed path with three arcs from v(es)
to v(et) through the two intermediate vertices v1(es, et) and v2(es, et). From
every vertex v2(es, et) there is an outgoing arc to every vertex v1(et, eu) with
1 ≤ u ≤ m and u �= t.

– If vertex xi is incident to edge es in H, then G contains a directed path
from v′(xi) to v(es) via vertices v1(xi, es) and v2(xi, es). From every vertex
v2(xi, es) there is an outgoing arc to every v1(es, et) with 1 ≤ t ≤ m and
t �= s.

This completes the construction of graph G = (V,A). Finally, we define the
alphabet size α = n+m+ γ. To simplify the presentation of the following argu-
ments, we assume that the α letters in the alphabet are the vertices x1, . . . , xn

and the edges e1, . . . , em in H, together with γ colors c1, . . . , cγ .

Lemma 3 If G = (V,A) has an (α, 3)-labeling, then the graph H is γ-colorable.

Proof. Consider an (α, 3)-labeling of G. It is easy to see that the label of a vertex
with a loop must consist of three identical letters. Without loss of generality we
assume that every vertex v(xi) is labeled by [xi, xi, xi] and that every vertex
v(es) is labeled by [es, es, es]. From this we derive that vertex v1(xi, xj) has
label [xi, xi, xj ], and that vertex v2(et, es) has label [et, es, es].
Now consider vertex v′(xi). Since it is a successor of v(xi), its label must

be of the form [xi, xi, σ] where σ is some letter from the alphabet. The letter σ
can not be equal to xi, since then v′(xi) and v(xi) would have the same label
in contradiction to property (L2). The letter σ can also not be equal to xj with
i �= j, since then vertices v′(xi) and v1(xi, xj) would have the same label. Since
xi is not an isolated vertex in H, there is a path from v′(xi) to some vertex
v(es) through the intermediate vertices v1(xi, es) and v2(xi, es). Then the label
of vertex v1(xi, es) equals [xi, σ, es], and the label of vertex v2(xi, es) equals
[σ, es, es]. We conclude that σ can neither be equal to es (since then v2(xi, es)
and v(es) had the same label) nor can it be equal to some et with t �= s (since
then v2(xi, es) and v2(et, es) had the same label). The only remaining possibility
for σ is that it is one of the colors c1, . . . , cγ .
We now define f(xi) = σi for 1 ≤ i ≤ n, where [xi, xi, σi] is the label of vertex

v′(xi). By the above discussion, every σi is one of the colors c1, . . . , cγ . We claim
that this yields a feasible coloring. Indeed, suppose that f(xi) = f(xj) = σ
where xi and xj are connected to each other by an edge es in H. Then the
label of v2(xi, es) equals [σ, es, es], and the label v2(xj , es) also equals [σ, es, es],
a contradiction to property (L2). ��
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Lemma 4 If the graph H is γ-colorable, then G = (V,A) has an (α, 3)-labeling.

Proof. Consider a feasible γ-coloring of H that assigns to every vertex xi ∈ X a
color σi from the colors c1, . . . , cγ . We define the following labeling:

– For 1 ≤ i ≤ n, the label of v(xi) is [xi, xi, xi] and the label of v′(xi) is
[xi, xi, σi].

– For all 1 ≤ i �= j ≤ n, the label of v1(xi, xj) is [xi, xi, xj ] and the label of
v2(xi, xj) is [xi, xj , xj ].

– For 1 ≤ s ≤ m, the label of v(es) is [es, es, es].
– For all 1 ≤ s �= t ≤ m, the label of v1(es, et) is [es, es, et] and the label of

v2(es, et) is [es, et, et].
– If vertex xi is incident to edge es, then the label of v1(xi, es) is [xi, σi, es],
and the label of v2(xi, es) is [σi, es, es].

Clearly, this labeling assigns distinct labels to distinct vertices. To verify that the
labeling also fulfills property (L3), we divide the vertices of G into five classes:
The first class V1 contains all vertices v(xi), v1(xi, xj), and v2(xi, xj); the entries
in the labels of all these vertices are from x1, . . . , xn. The second class V2 contains
all vertices v′(xi); the first two entries in the labels of these vertices are from
x1, . . . , xn, and the last entry is from c1, . . . , cγ . The third class V3 contains all
vertices v1(xi, es); their labels consist of some vertex xi, followed by a color,
followed by an edge. The fourth class V4 contains all vertices v2(xi, es); their
labels consist of some color, followed by two edges. The fifth class V5 contains
all vertices v(es), v1(es, et), and v2(es, et); their labels are triples of edges.
By the definition of the labeling, there can only be arcs within V1, arcs from

V1 to V2, arcs from V2 to V3, arcs from V3 to V4, arcs from V4 to V5, and arcs
within V5. It is now straightforward but somewhat tedious to verify that all
arcs within V1 and within V5, from V1 to V2, and from V4 to V5 are correctly
encoded. Moreover, every vertex xi has a unique color σi, and therefore every
label [xi, σi, es] of a vertex in V3 only allows a unique predecessor and a unique
successor. ��

Combining the statements of Lemma 3 and 4 now yields the statement of The-
orem 5 below for k = 3. The construction is easily extended to the cases with a
fixed k ≥ 4. The main idea is to replace in our construction all the connecting
paths with three arcs by new connecting paths with k arcs. The details are left
to the reader.

Theorem 5 For any fixed k ≥ 3 the following problem is NP-hard: Decide for
an input graph G and an input parameter α whether G ∈ Lα

k .

4 The Problem Variant with a Fixed Alphabet Size

Let H = (X,E) and γ be an arbitrary instance of GRAPH COLORING. By
adding at most |E| − 1 independent edges to H, we can make |E| a perfect
power of two without increasing the chromatic number of H. Then by adding
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some isolated vertices (again without increasing the chromatic number of H),
we can make |X| = |E|. Summarizing this yields that we may assume without
loss of generality that n = |X| = |E| = 2z holds for some integer z ≥ 4.
Let x1, . . . , xn be an enumeration of all vertices in X and let e1, . . . , en be

an enumeration of all edges in E. We will now construct in polynomial time a
directed graph G = (V,A) and a label length k, such that G is in Lγ

k if and only
if H is γ-colorable.

– For every vertex xi ∈ X with 1 ≤ i ≤ n, the graph G contains a correspond-
ing complete binary out-tree T (xi) of height z. The root of this tree is the
vertex v(xi). Every interior vertex in T (xi) has a left and a right out-going
arc that connect it to its two children. All 2z leaves in T (xi) are at the same
distance z from the root. Enumerating the leaves in T (xi) from left to right,
they are called v(xi, e1), v(xi, e2), . . . , v(xi, en).

– For every edge es ∈ E with 1 ≤ s ≤ n, the graph G contains a corresponding
vertex v(es).

– If vertex xi is incident to edge es in H, then G contains a directed path
P (xi, es) from v(xi, es) to v(es). The path P (xi, es) consists of z + 2 arcs
and of z+1 new vertices. The interior vertices on this path are not connected
to any other parts of graph G.

This completes the construction of graph G = (V,A). We define the label length
k = 2z + 3.
To simplify the presentation of the following arguments, we assume that the

alphabet Σ consists of the letters 0, 1, . . . , γ − 1. Some of the labels will be
concatenated from the binary representations of certain integers. For an integer
i in the range 1 ≤ i ≤ 2z, we define bin(i) to be the z-digit binary representation
of i − 1. This representation always contains an appropriate number of leading
zeroes so that its length exactly equals z. For non-negative integers i and for
letters σ ∈ Σ, we will use σi to represent the word consisting of exactly i letters
σ.

Lemma 6 If G = (V,A) has a (γ, k)-labeling, then the graph H is γ-colorable.

Proof. Consider a (γ, k)-labeling of G. For any vertex xi ∈ X, we define its color
f(xi) to be the (2z+2)th digit of the label of the root v(xi). Since the alphabet
size is γ, this coloring uses only γ colors. We claim that this yields a feasible
coloring.
Indeed, suppose that f(xi) = f(xj) = σ where xi and xj are connected to

each other by an edge es in H. We consider the predecessors of v(es) on the
paths P (xi, es) and P (xj , es), and call these vertices w(xi, es) and w(xj , es),
respectively. There is a directed path of 2z + 1 arcs from v(xi) to w(xi, es). As
a consequence of property (L3), the (2z + 2)th digit of the label of v(xi) must
be equal to the first digit of the label of w(xi, es). Hence, this first digit equals
σ. By analogous reasoning we get that the first digit of the label of w(xj , es)
also equals σ. Since w(xi, es) and w(xj , es) both are predecessors of v(es), the
last k − 1 digits of their labels must agree with the first k − 1 digits of the label
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of v(es). But now the labels of w(xi, es) and w(xj , es) agree in the first digit
and also in the last k − 1 digits, and hence they are equal to each other. This
contradicts property (L2). ��

Lemma 7 If the graph H is γ-colorable, then G = (V,A) has a (γ, k)-labeling.

Proof. Consider a feasible γ-coloring of H that assigns to every vertex xi ∈ X a
color σi from Σ. We define the following partial labeling:

– For 1 ≤ i ≤ n, the label of v(xi) is 2z−1 · 0 · bin(i) · 2 · σi · 1.
– For 1 ≤ s ≤ n, the label of v(es) is 1 · bin(s) · 2z+2.

All other vertices are on some path with 2z + 2 arcs from some root v(xi) to
some v(es). If a vertex v is j arcs away from v(xi) and 2z+2− j arcs away from
v(es), then its first 2z+3− j letters are the last 2z+3− j letters of the label of
v(xi), and its last j+1 letters are the first j+1 letters of the label of v(es). This
completely determines the label of v. Summarizing, the label of every vertex on
path P (xi, es) is an appropriate subword of length 2z + 3 of the word

2z−1 · 0 · bin(i) · 2 · σi · 1 · bin(s) · 2z+2.

For an illustration, the reader may want to verify that the label of the leaf vertex
v(xi, es) in T (xi) equals bin(i) · 2 · σi · 1 · bin(s). Now we state some simple but
important observations on these labels.
First: By considering a label L(v), one can easily determine whether the

corresponding vertex v is in one of the trees T (xi), or lies on one of the paths
P (xi, es), or is one of the vertices v(es). Indeed, if a label L(v) has a 0 or a 1
as last digit, then the vertex v is contained in some tree T (xi). And if the label
L(v) ends with a 2, then the vertex v lies on one of the paths P (xi, es), or it is
one of the vertices v(es); and v is one of the vertices v(es) if and only if its label
L(v) ends with a block of 2’s of length z + 2.
Second: If a vertex v is contained in some tree T (xi), then its label L(v)

starts with a block of 2’s that is followed by a 0 that in turn is followed by z
binary digits that uniquely identify the index i. For a non-leaf vertex v, the only
possible labels of successors of v result by removing the first digit from L(v) and
by appending a 0 or a 1 at its right end; this correctly encodes the tree structure
of T (xi). For the leaves v(xi, es), there is at most one possible successor label
that results by removing the first digit (0 or 1) and by appending a 2. Such a
successor vertex exists if and only if xi is incident to es. Hence, also the initial
arcs of the paths P (xi, es) are correctly encoded by the labeling.
Finally: Let us consider a vertex v that lies on one of the paths P (xi, es). Its

label L(v) ends with a non-empty block of 2’s that is preceded by z binary digits
that uniquely identify the index s. These z binary digits are preceded by a digit
1, which in turn is preceded by the digit σi. Since the edge es is incident to two
vertices xi and xj with different colors in the γ-coloring, we have σi �= σj . Hence,
the index s together with the letter σi uniquely identifies the path on which the
vertex v lies. The only possible label for a successor results by removing the first
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digit, and by appending a 2. Hence, all the arcs on all the paths P (xi, es) are
correctly encoded. ��

Combining the statements of Lemma 6 and 7 now yields that there exists a γ-
coloring for H if and only if there exists a (γ, k)-labeling for G. Since γ-coloring
remains NP-hard for every fixed γ ≥ 3, we get the following theorem.
Theorem 8 For any fixed α ≥ 3 the following problem is NP-hard: Decide for
an input graph G and an input parameter k whether G ∈ Lα

k .

In fact our reduction also proves that it is hard to find labelings whose alphabet
size is close to optimal, since all the inapproximability results from graph coloring
(cf. eg. H̊astad [6] and Khanna, Linial & Safra [7]) immediately carry over to the
labeling problem. E.g. since it is NP-hard to find a 4-coloring for a 3-colorable
graph [7], it is NP-hard to find a (4, k)-labeling for a graph G in L3

k. Since (unless
P=NP) there is no constant factor approximation algorithm for graph coloring
[6], there also is no constant factor approximation algorithm for minimizing the
alphabet size α under a given label length k.

Theorem 9 For any fixed α ≥ 3 the following problem is NP-hard: Decide for
an input graph G whether G ∈ Lα

∞.

Proof. Let H = (X,E) be an arbitrary instance of GRAPH γ-COLORING;
throughout the proof we assume that γ ≥ 3 is a fixed constant. We repeat the
polynomial time construction of above: We make n = |X| = |E| = 2z for some
integer z, and we construct a directed graph G = (V,A), such that G is in Lγ

2z+3
if and only if the undirected graph H is γ-colorable. Finally, we define the graph
G′ = (V ′, A′) to be the disjoint union of this graph G and of the De Bruijn graph
B(γ − 1, 2z + 3). The De Bruijn graph B(γ − 1, 2z + 3) has

(γ − 1)2z+3 ≤ γ2 log n+3 = γ3n2 log γ

vertices. Hence, the size of G′ is polynomial in the size of H = (X,E), and the
whole construction can be done in polynomial time.
We claim that G′ is in Lγ

∞ if and only if G is in Lγ
2z+3. First, assume that

G′ is in Lγ
∞. Then G′ is a vertex induced subgraph of B(γ, k) for some k. Since

on the other hand B(γ − 1, 2z + 3) is a subgraph of G′, Theorem 2 now yields
that k = 2z + 3 must hold. Therefore, the vertex induced subgraph G of G′

indeed is in Lγ
2z+3. Next, assume that G is in Lγ

2z+3. Then we can reuse the
(γ, 2z + 3)-labeling that we defined in Lemma 7 for G. Moreover, the De Bruijn
graph B(γ − 1, 2z + 3) can be (γ, 2z + 3)-labeled in the natural way by all
words of length 2z+3 over the alphabet {0, 1, . . . , γ − 1} \ {2}. In the labels for
vertices in G, every substring of length z + 3 contains at least once the digit 2.
In the labels for vertices in B(γ − 1, 2z + 3), the digit 2 does not show up at
all. Consequently, these labelings do not generate any cross-edges between the
graphs G and B(γ − 1, 2z+3), and they together yield a (γ, 2z+3)-labeling for
G′.
If we combine these statements with the statements in Lemma 6 and 7, we

get that G′ is in Lγ
∞ if and only if the graph H is γ-colorable. ��
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Corollary 10 It is NP-hard to decide whether an input graph G is a DNA
graph. ��
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