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ABSTRACT 
We propose a semi-automatic endocardial border detection method for LV volume estimation in 3D time series of 
cardiac ultrasound data. It is based on pattern matching and dynamic programming techniques and operates on 2D slices 
of the 4D data requiring minimal user-interaction. 
We evaluated on data acquired with the Fast Rotating Ultrasound (FRU) transducer: a linear phased array transducer 
rotated at high speed around its image axis, generating high quality 2D images of the heart. We automatically select a 
subset of 2D images at typically 10 rotation angles and 16 cardiac phases. From four manually drawn contours a 4D 
shape model and a 4D edge pattern model is derived. For the selected images, contour shape and edge patterns are 
estimated using the models. Pattern matching and dynamic programming is applied to detect the contours automatically. 
The method allows easy corrections in the detected 2D contours, to iteratively achieve more accurate models and 
improved detections. 
An evaluation of this method on FRU data against MRI was done for full cycle LV volumes on 10 patients. Good 
correlations were found against MRI volumes (r=0.94, y=0.72x + 30.3, difference of 9.6 +/- 17.4 ml (Av +/- SD) ) and a 
low interobserver variability for US (r=0.94, y=1.11x - 16.8, difference of 1.4 +/- 14.2 ml). On average only 2.8 
corrections per patient were needed (in a total of 160 images). Although the method shows good correlations with MRI 
without corrections, applying these corrections can make significant improvements. 
 
Keywords: 3D ultrasound, cardiovascular, segmentation, LV volume, dynamic programming 
 

1. INTRODUCTION 
 
For diagnosis of cardiovascular diseases, the volume and ejection fraction of the left heart chamber are important 
clinical parameters. 3D ultrasound (3DUS) offers good opportunities to visualize the whole left ventricle (LV) over the 
complete cardiac cycle. 3D ultrasound is non-invasive, relatively cheap, flexible in use and capable of accurate volume 
measurements1,2. New, fast 3D ultrasound imaging devices are entering the market and have the potential of allowing 
such measurements rapidly, reliably and in a user-friendly way - provided that a suitable automated analysis is available. 
Manual segmentation of the large data sets is very cumbersome and suffers from inconsistencies and high variability. 
On the other hand, the human expert's interpretation and intervention in the detection is often essential for good results. 
Therefore a semi-automatic segmentation approach seems most suitable.  

1.1. Other approaches 
Some methods for segmentation of 4D echocardiographic images have been published. Angelini et al.3 have reported on 
a wavelet-based approach for 4D echocardiographic image enhancement followed by an LV segmentation using snakes. 
Corsi et al.4 presented a level-set based semi-automatic method. Montagnat et al.5 used a 2-simplex mesh and a feature 
detection based on a simple cylindrical gradient filter. Sanchez-Ortiz, Noble et al.6 used multi-scale fuzzy clustering for 
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Fig. 1. Fast Rotating Ultrasound Transducer  Fig. 2. A sequence of seven consecutive FRU images with 
curved image planes 

a rough segmentation in 2D longitudinal slices. B-splines are used for 3D surface fitting in each time frame. These 
methods have not been validated successfully on a reasonable data set. The most practical approach is described by 
Schreckenberg et al.7. It uses active surfaces that are controlled by difference-of-boxes operators applied to averages and 
variances of the luminance. This technique is implemented in a commercially available workstation (4D LV Analysis, 
TomTec, Unterschleissheim, Germany). The general experience is that this technique requires much initialization and 
corrections and a consistent segmentation is still hard to reach. Another commercial development has been presented 
recently: QLAB (Philips Medical Systems, Best, the Netherlands). This package provides on- and offline 3D 
quantification tools. However, technical details or clinical evaluations of these methods have not been reported yet.  
We present a semi-automatic endocardial border detection method for left ventricular volume estimation in time series 
of 3D cardiac ultrasound data. Our method is based on pattern matching and dynamic programming techniques and 
combines continuity, robustness and accuracy in 2D cross sections with the spatial and temporal continuity of the 4D 
data. It aims at optimally using a limited amount of user interaction (capturing essential information on shape and edge 
patterns according to the user's interpretation of the ultrasound data) to attain a fast, consistent and precise segmentation 
of the left ventricle.  
Despite the fact that this method is optimized for data of the FRU-transducer, the algorithm can be easily adapted to data 
of other image acquisition systems, for example 4D voxel sets. The detection will then be performed in 2D slices 
through the LV long axis. 

1.2. Fast rotating ultrasound transducer 
We performed this study on a special type of image data acquired with a new device: the Fast Rotating Ultrasound 
(FRU-) transducer (Fig. 1). The transducer has been developed by the Department of Experimental Echocardiography of 
the Erasmus MC, the Netherlands8,9. It contains a linear phased array transducer that is continuously rotated around its 
image-axis at very high speed, up to 480 rotations per minute (rpm), while acquiring 2D images. A typical data set is 
generated during 10 seconds at 360 rpm and 100 frames per second (fps). The images of the left ventricle are acquired 
with the transducer placed in apical position, with the transducer’s rotation axis more or less aligned with the LV long 
axis. The analysis assumes that the rotation axis lies within the LV lumen and inside the mitral ring.  
An important advantage of this transducer is that it can be used with any ultrasound machine, since a conventional 
phased array transducer is used. It also acquires relatively 
high quality 2D images, compared to matrix array 
transducers used for real-time 3D echocardiography. 
Further, no ECG triggering is applied, just an ECG-
registration for offline analysis, which allows quick 
acquisitions. 
As a consequence of the very high continuous rotation 
speed, the images have a curved image plane (Fig. 2). 
During the acquisition, the probe rotates about 22º per 
image with the typical settings given above. The 
combination of these curved image planes, and the fact 
that the acquisition is not triggered by or synchronized to 
the ECG signal, results in an irregular distribution over  
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the 3D+T space. A single cardiac cycle in general is not sufficient for adequate coverage of the whole 3D+T space; 
therefore, multiple consecutive heart cycles are merged. The cardiac phase for each image is computed offline using 
detected R-peaks in the ECG10. From the total set of ±1000 2D images, a subset of images with a regular coverage of the 
3D+T space is selected automatically. We perform analysis on the images in this subset. The data is also suitable for the 
generation of a time series of 3D voxel sets.  

2. METHODS 

2.1. Frame selection 
To achieve adequate coverage of the whole 3D+T space, multiple consecutive cardiac cycles are merged and an optimal 
subset S of the total set of frames T is selected (Fig. 3). This subset is an optimal fit of the frames on a chosen A*P 
matrix of A equidistant rotation angles and P cardiac phases, minimizing the total deviation in rotation angle and cardiac 
phase. Moreover, the variation in acquisition time over the subset is minimized to limit possible motion artifacts. The 
constraints are translated into the following cost functions that will be minimized over the total subset S, 
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     cangle(α,i) = k1|αtarget(i) - α |, (2) 

     cphase(p,j) = k2| ptarget(j) - p |, (3) 

     ctime(t) = k3| tS - t |. (4) 

 
Ci,j is the set of candidate images for angle #i and phase #j. cangle and cphase describe the costs of selecting an image b 
with angle αb and phase pb for a chosen αtarget and ptarget. k1, k2 and k3 are weighting coefficients (typically equal). Since 
the cost ctime is dependent on tS (the average acquisition time of the subset itself), the minimization of the costs of set S is 
achieved in an iterative manner.  

2.2. Border detection approach 
We base our method on the knowledge that the edge patterns of the endocardial border can be complex, very different 
from patient to patient and even between regions within an image set. The border position need not correspond to a 
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Fig. 3. Selected subset of 2D FRU images in 16 cardiac phases and 10 rotation angles. Contours are manually drawn in the 
highlighted images 
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strong edge and may be only definable from 'circumstantial evidence' as identified by an expert observer. Rather than 
applying artificial, idealized edge models or templates derived from a large training set, we propose a tracking approach 
based on edge templates extracted from the user-defined initial borders in the patient's own images.  
The method is based on the following continuity assumptions (in order of strength):  
1. border continuity within separate 2D slices of the left ventricle; 
2. spatial continuity of shape and gray value edge patterns over the LV surface in 3D; 
3. temporal and cyclic motion continuity of the endocardium.  
For the FRU transducer, within the original 2D images, both spatial and temporal distances between neighboring 
samples are smaller than towards adjacent images in angle and phase; therefore, border continuity is supposed to be 
strongest here.  
The method is initialized from four manually drawn contours, taken from two roughly perpendicular views (more or less 
corresponding to two- and four-chamber cross sections) in two phases: end-diastole (ED) and end-systole (ES). These 
are used to initialize a model for the edge patterns near the 3D LV surface over time and a 3D shape model of the LV 
endocardial surface over the entire heart cycle. Both models are inherently 4-dimensional and can be polled at any 
spatial position and cardiac phase. 
The actual border detection takes place in individual 2D images from the selected subset and is an extension of an 
approach for 2D+T sequences earlier developed by Bosch et al.11. For each image b∈ S (of cardiac phase pb and rotation 
angle αb), an estimation of the border shape is derived by intersecting the 3D shape model at phase pb by the (curved) 
image plane for angle αb. The edge templates are also interpolated for the desired pb and αb. In the 2D image, a 
neighborhood of the estimated shape is resampled along lines perpendicular to the shape estimate. Using a template 
matching with the local edge templates, the similarity of each candidate edge point to the template is calculated. 
Dynamic programming is applied to find an optimal continuous border within the restrictions posed by the 3D model. In 
this way, the 4D surface and edge pattern models guard the (looser) spatial and temporal consistency of the detection, 
while the dynamic programming approach supplies a continuous and optimal detection locally. The set of detected 
contours describes the 3D endocardial surface over the whole cardiac cycle from which LV volumes, ejection fraction 
and other valuable parameters can be computed. 

2.3. 3D surface models 

2.3.1. Definition 
As said, for two cardiac phases (ED and ES) a 3D surface model of the LV endocardium is constructed from two almost 
perpendicular contours. During the acquisition the rotation axis is more or less aligned with the long axis (LAX) of the 
left ventricle, but in practice there may be a considerable mismatch (Fig. 4b). This implies that the two image planes do 
not contain the true apex of the heart, and estimating the position and shape of the true apex (and the LV long axis) is a 
non-trivial issue. The local long axes in the 2D manually drawn contours are defined as the lines through the midpoint 
of the mitral valve (MV) and center of gravity of the upper 10% of the contour area. We estimate the 3D LV long axis 
from the local long axes by computing the intersection of the planes perpendicular to these images through the local 
long axis in the image.  
The endocardial surface is estimated by expressing the two contours in a cylindrical coordinate system with respect to 
the estimated LV long axis. Intersection points of these contours are found with a stack of planes perpendicular to the 
long axis (short-axis planes). Within each short-axis plane, a closed contour is found by interpolating between the 
intersection points; for this, the radial coordinate component r is interpolated over the angle between the intersection 
points (see Sec. 2.3.2 for details). This gives a natural approximation of the ellipsoidal shape of the left ventricle. Since 
the two image planes generally do not intersect the real apex, the apical cap of the LV surface cannot be estimated 
simply from the two manually drawn contours, as shown in Fig. 4b. Therefore, near the 3D apex we use a spherical 
coordinate system oriented around the LV long axis, centered at 3/4th of its length. The surface is estimated by 
interpolating the radial component over the elevation angle for multiple rotation angles, using the interpolation method 
described in Sec. 2.3.2.  
A contour estimate for any 2D image at a given rotation angle and cardiac phase can be made by intersecting its curved 
image plane with the 3D contour models in ED and ES and then linearly interpolating between the two resulting '2D' 
contours over cardiac phase to get the contour estimate at the desired cardiac phase. 
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2.3.2. Surface interpolation/fitting 
Fitting a smooth contour through all available intersection points in a short-axis plane is not always possible. 
Inconsistencies can occur in the set of input contours used for the interpolation of the endocardial surface interpolation. 

Fig. 4. (a) The interpolation of the endocardial surface in a cylindrical coordinate system oriented around the LV long axis (LAX). (b) 
3D surface model. The LAX estimate (dotted) and the rotation axis (dashed) are shown, together with the reconstruction of the apex 
by spline interpolation (light grey) from two manually drawn contours (solid black). (c) The extraction of a stylized edge pattern from 
an image with a manually drawn contour 

Fig. 5. (a) Cost matrix (b) Resulting fit through the input points 

A B 
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They can be caused by inconsistent manual tracing or by inconsistent image data. The latter can be caused by substantial 
differences in cardiac phase between the images or by inter-beat variation. For the generation of a smooth endocardial 
surface, we developed a fitting algorithm that can handle these inconsistencies. 
The algorithm is dynamic programming based. Dynamic programming12 (DP) is a well-known graph search technique 
that finds the optimal path through a rectangular array of nodes (the path with the lowest sum of costs) out of all 
possible connective paths in an effective manner by calculating lowest cumulative costs for consecutive layers (lines) 
while keeping track of the partial optimal paths. Backtracking from the node with lowest cumulative cost in the last 
layer delivers the overall optimal path. A connective path contains exactly one node per line and the positions on 
consecutive lines cannot differ more than a predefined side step size. 
Using this technique, the method fits an optimal curve through a set of possibly inconsistent intersection points. It 
allows the assignment of reliabilities to each point. Also, the curvature and smoothness can be controlled through 
parameters in the dynamic programming algorithm and the probability distribution computation, which is explained 
below. 
 
The curve is found through the set of intersection points i∈ I with corresponding reliabilities pi. The nodes in the 
dynamic programming array of size A × R, represent points in (α,r)-space. Finding the path with the minimum costs 
solves the fitting problem. The costs of each node are represented by the cost function C,  
 

))(*log()( nPnC −= , (5) 
 
where P*(n) is the normalized probability that node n represents a point on the endocardial border. The normalization is 
performed within each layer of the dynamic programming graph, such that the probabilities within each layer sum up to 
one. The probability P(n) of node n being part of the endocardial border is inversely related to the angular and radial 
distance to the intersection points, δα and δr, and is defined as, 
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The probability distribution is Gaussian (G) in the radial direction (within the DP layers), as defined in (6). The width of 
the Gaussian increases with the angular distance from the input point δα (7), which makes the distribution more flat with 
increasing angular distance. c1, c2 and c3 are parameters that influence the curvature and smoothness of the resulting 
curve, where c1 > 0, c2 > 0 and c3 > 1. An example cost matrix and the resulting curve are shown in Fig. 5.  

2.4. Edge pattern model 
The desired edges are tracked over space and time by applying a pattern matching approach with edge templates. These 
edge patterns are derived from the manually drawn contours and interpolated over the (phase, angle) space. The image 
is resampled clockwise along the manually drawn contour, on line segments perpendicular to this contour from the 
inside out. The grey values on these line segments are smoothed and subsampled to form a stylized edge pattern for this 
contour (Fig. 4c). A typical edge pattern for a single 2D frame is represented by 32 positions along the contour and 5 
samples around each edge position. 
The interpolation over cardiac phase is performed linearly between the edge patterns in ED and ES. The interpolation 
over rotation angle is less straightforward. Since the character of the edge pattern is strongly related to the angle 
between the endocardial border and the ultrasound beam and the distance from the transducer, the pattern changes 
considerably over the rotation angle, especially when the angle between the rotation axis and LV long axis is 
substantial. For images with rotation angles opposite (± 180º) to those with the manually drawn contours, the image 
appears nearly mirrored and the mirrored (anticlockwise) edge pattern is used. For angles in between, the edge patterns 
are linearly interpolated.  

2.5. Contour detection 

With an edge pattern and initial contour for each image b∈ S (of phase pb and angle αb), we can now detect the 
individual endocardial borders (Fig. 6). In a neighborhood of the initial contour, the image is resampled into an N*M 
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rectangular array by sampling N points along M scan lines perpendicular to the shape. From the stylized edge pattern for 
(pb, αb) an edge template for each scan line is extracted. For all nodes in the array, the sum of absolute differences with 
its respective edge template defines the cost of the node. We now use a dynamic programming approach12 to find the 
optimal connective path through the array. Smoothness constraints are enforced by applying additive costs for 
sidestepping during cumulative cost calculation. To limit the influence of lines with relatively poor image information, 
this additive penalty is calculated per line from the statistics of node costs per line with respect to overall cost statistics, 
such that relatively unreliable lines get higher penalties for sidestepping.  
For each phase pj, the detected contours of all angles αi together constitute a 3D mesh that describes the endocardial 
surface. We observe the volume of the left ventricle over the whole cardiac cycle, by calculating the volumes inside the 
surface meshes of all selected cardiac phases.  

Fig. 6. Contour detection. (a) Resampling of the image around the 2D shape estimate. (b) Edge pattern matching and dynamic 
programming to detect the optimal contour. (c) The detected contour 

Fig. 7. Detection examples: frames at different (phase#, angle#) with contours. Left: 4 frames with manual contours, resp. 1: ED 
2c (1,1), 2: ES 2c (6,1), 3: ED 4c (1,3), 4: ES 4c (6,3). Right: 4 frames with detected contours, resp. 5: frame (8,2), 6: (14,5), 7: 
(4,8), 8: (14,9) 
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2.6. Correct and redetect 
In the initial detection the shape and edge pattern models are estimated from only four manually drawn contours. In 
some cases, this does not provide enough information for the models to detect the endocardial border well in all the 
images in the subset. Also, the border may be poorly defined in some of the images, which complicates the detection. 
Therefore the method allows additional corrections in the detected contours in the 2D images. A corrected contour will 
be treated as an additional manual contour and both the edge pattern and shape models will be updated accordingly, 
achieving a more specific approximation of the actual shape and appearance. This results in a new set of shape and edge 
pattern estimates, and all remaining images are redetected. Through these easy, iterative refinements, corrections will 
cumulatively lead to a superior global solution. 

3. RESULTS 
 
We performed a preliminary validation study for this method on a group of 10 subjects with different diagnoses of 
cardiovascular disease. Full cycle MRI LV volumes on these patients were determined in parallel with the 3DUS study, 
using semi-automatic segmentation tools (MRI-MASS, Medis medical imaging systems, Leiden, the Netherlands) by an 
independent observer unaware of the US analyses. For the US study, for all patients, subsets of images were created 
with P=16 phases and A=10 angles. After establishing equivalent tracing conventions, two observers individually 
analyzed all subsets. We evaluated the semi-automatic segmentation method using only the initial four manually drawn 
contours, and after applying corrections iteratively. 
Reading and converting the data and the automated selection of the subset took 7 minutes per patient on average. After 

Volume (ml) Correlation Regression  

Average SD   
MRI 148 48 
US 134 36 

0.919 0.675x + 32.9 

Obs.1 136 34 
Without 

Corrections 
Obs.2 131 39 

0.941 1.08x – 16.0 

MRI 148 48 
US 138 38 

0.936 0.728x + 30.3 

Obs.1 139 35 
With 

Corrections 
Obs.2 138 41 

0.943 1.11x – 16.8 

Table 1.  Full cycle volumes and correlations of 3DUS vs. MRI and Observer 1 vs. Observer 2 (N = 160) 

Fig. 8. Reconstruction of the endocardial border over the full cardiac cycle. The top row shows phases 1 to 
8, the bottom row phases 9 to 16 (of a total of 16 phases) 
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the drawing of the four contours, the fully automated detection of the other 156 contours took approximately 60 seconds 
per patient (Pentium IV 2.6GHz, 2GB RAM). Some examples of manual and detected contours are shown in Fig. 7. 
Corresponding endocardial surfaces for all phases are shown in Fig. 8. From the analyses of both observers, 
interobserver variabilities of full cycle volumes and ejection fractions (EF) were determined, as well as averages that 
were correlated to MRI full cycle volumes, both for the situation with and without applying corrections. 
 
Results of 3DUS (average of the two observers) vs. MRI are shown in Table 1 and Fig. 9a-d. Fig. 9a shows the full-
cycle volumes without corrections. A good correlation of r=0.92 was found between MRI and US volumes without 
corrections. Regression was y=0.675x + 32.9. In general, ED volumes were underestimated by 3DUS, while ES 
volumes were slightly overestimated. Overall the MRI volumes were slightly higher (14.1 +/- 19.6 ml (average +/- 
SD)). Similar differences between US and MRI volumes have been reported in many studies and can be attributed to 
differences in tracing conventions between MRI and US. EF results showed a reasonable overall difference of 6.2 +/- 
8.9%, but the regression was similarly affected (y=0.36x + 25.8%, r=0.63).  
For the US interobserver variability, results are presented in Table 1 and Fig. 9e. The differences were 5.0 +/- 13.6 ml 
with a regression of y=1.08x - 16.0 (r=0.94).  
After applying corrections, the full-cycle results slightly improved in comparison to MRI volumes: r=0.94, y=0.73x + 
30.3, with a difference of 9.6 +/- 17.4 ml (Table1, Fig. 9b,d). This is equally reflected in EF results: r=0.64, y=0.36x + 
25.8 with differences of 6.0 +/- 8.8%. On average 2.8 corrections were applied per patient (on a total of 160 images). 
Interobserver variability (Fig. 9f) increased slightly due to the additional corrections, with a correlation of r=0.94 and 
y=1.11x - 16.8 (difference of 1.4 +/- 14.2 ml).  

4. DISCUSSION 
 
The findings in this study suggest that the semi-automated detection method is a useful tool for quick, semi-automatic 
detection of LV endocardial borders. However, apparent difficulties in interpreting the 3DUS images somewhat obscure 
the conclusions. Although the different observers can easily reach a satisfactory analysis of the 3DUS datasets, the 
volumetric results show considerable interobserver differences. On inspection, these differences were primarily due to 
different image interpretation and corresponding manual contours, not to differences in detected contours; these 
consistently followed the observer's interpretation. Clearly, criteria for tracing were not established well enough in this 
case. This was partly due to the somewhat unconventional cross sections for tracing, partly to the attempt to trace 
'similar to MRI criteria' which was not completely successful and meant we had to deviate from standard ultrasound 
contour drawing conventions. In some cases, image quality was a factor as well. 
Absolute differences in volumes may seem high, but this is partially due to the dilated hearts in the set and the 
consequent high average volumes (average MRI ED = 187 ml). 
It would be useful to extend the study with tracings following normal ultrasound conventions. This could lead to lower 
observer variabilities, although the comparison to MRI volumes could be more complicated. 
Comparison between 3DUS and MRI volumes was hampered by the different tracing conventions; this resulted in 
considerable systematic differences, which were also clearly dependent on cardiac phase. Still, overall regression 
coefficients were high, especially considering the large interobserver variations for ultrasound. This suggests that with 
proper tracing conventions and/or correction formulae, a high correspondence between MRI and 3DUS volumes should 
be realizable. 
Currently, EF measurements by the 3DUS method suffer considerably from the systematic differences and variabilities 
described above. EF measurements should also benefit greatly from improved tracing conventions. 
 
Looking at the distribution of volume errors over the full cardiac cycle, a shortcoming of this method becomes clear: the 
lack of a real mitral valve tracking algorithm. Currently, the method simply assumes the movement of the mitral valve 
to be linear in systole and diastole, which is a substantial simplification. It is well known that the valve plane motion is 
directly related to LV volume change, and we clearly observe the effect: volume curves which are a bit too 'linear' in 
diastole and systole. Despite the possibility to adjust this movement using corrections, still high differences can be 
observed in early systole and diastole in comparison to MRI volume curves. Extending this method with a mitral valve 
tracking algorithm is expected to further improve the results. Several approaches for mitral valve tracking have already 
been presented in literature. 
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N = 160 r = 0.919 
y = 0.675 x + 32.9 

N = 160 r = 0.936 
y = 0.728 x + 30.3 

N = 160 r = 0.943 
y = 1.11 x – 16.8 

N = 160 r = 0.941 
y = 1.08 x – 16.0 

Without corrections With corrections 

Fig. 9. All volumes in ml. (a) MRI vs. US (average of two observers) volumes, without corrections. (b) MRI vs. 
US (average of two observers) volumes, with corrections. (c) Bland-Altman13 analysis for MRI vs. US, without 
corrections. (d) Bland-Altman13 analysis for MRI vs. US, with corrections. (e) Interobserver variability (for US), 
without corrections. (f) Interobserver variability (for US), with corrections 
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5. CONCLUSIONS & FUTURE WORK 
 
We presented a new semi-automatic endocardial border detection method for 4D ultrasound data. This method offers 
fast and reasonably precise automated border detection with minimal user interaction. The method shows good full 
cycle results against MRI in the initial detections with only four manually drawn contours. After applying corrections, 
the results do improve for the individual patients, but in the overall comparison against MRI these improvements do not 
make a significant difference. This can be addressed to the different interpretation of the US data by the observers in 
comparison to the MRI data. A satisfying detection in US does not always result in equivalent volumes.  
The method can still be improved by including a mitral valve tracking algorithm. Furthermore, better tracing 
conventions for this type of 3DUS data would be helpful for consistent analysis. 
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