
Exact (Exponential) Algorithms
for the Dominating Set Problem

Fedor V. Fomin1,�, Dieter Kratsch2, and Gerhard J. Woeginger3

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
fomin@ii.uib.no

2 LITA, Université de Metz, 57045 Metz Cedex 01, France
kratsch@sciences.univ-metz.fr

3 Department of Mathematics and Computer Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

g.j.woeginger@tue.nl

Abstract. We design fast exact algorithms for the problem of comput-
ing a minimum dominating set in undirected graphs. Since this problem
is NP-hard, it comes with no big surprise that all our time complex-
ities are exponential in the number n of vertices. The contribution of
this paper are ‘nice’ exponential time complexities that are bounded by
functions of the form cn with reasonably small constants c < 2: For ar-
bitrary graphs we get a time complexity of 1.93782n . And for the special
cases of split graphs, bipartite graphs, and graphs of maximum degree
three, we reach time complexities of 1.41422n , 1.73206n , and 1.51433n ,
respectively.

1 Introduction

Nowadays, it is common believe that NP-hard problems can not be solved in
polynomial time. For a number of NP-hard problems, we even have strong ev-
idence that they cannot be solved in sub-exponential time. For these problems
the only remaining hope is to design exact algorithms with good exponential
running times. How good can these exponential running times be? Can we reach
2n2

for instances of size n? Can we reach 10n? Or even 2n? Or can we reach cn

for some constant c that is very close to 1? The last years have seen an emerg-
ing interest in attacking these questions for concrete combinatorial problems:
There is an O∗(1.2108n) time algorithm for independent set (Robson [13]); an
O∗(2.4150n) time algorithm for graph coloring (Eppstein [4]); an O∗(1.4802n)
time algorithm for 3-Satisfiability (Dantsin & al. [2]). We refer to the survey
paper [14] by Woeginger for an up-to-date overview of this field. In this paper,
we study the dominating set problem from this exact (exponential) algorithms
point of view.
Basic Definitions. Let G = (V, E) be an undirected, simple graph without
loops. We denote by n the number of vertices of G. The open neighborhood
of a vertex v is denoted by N(v) = {u ∈ V : {u, v} ∈ E}, and the closed
� F. Fomin is supported by Norges forskningsr̊ad project 160778/V30.

J. Hromkovič, M. Nagl, and B. Westfechtel (Eds.): WG 2004, LNCS 3353, pp. 245–256, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

246 Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger

neighborhood of v is denoted by N [v] = N(V) ∪ {v}. The degree of a vertex v
is |N(v)|. For a vertex set S ⊆ V , we define N [S] =

⋃
v∈S N [v] and N(S) =

N [S] − S. The subgraph of G induced by S is denoted by G[S]. We will write
G − S short for G[V − S]. A set S ⊆ V of vertices is a clique, if any two of its
elements are adjacent; S is independent, if no two of its elements are adjacent;
S is a vertex cover, if V − S is an independent set.

Throughout this paper we use the so-called big-Oh-star notation, a mod-
ification of the big-Oh notation that suppresses polynomially bounded terms:
We will write f = O∗(g) for two functions f and g, if f(n) = O(g(n)poly(n))
holds with some polynomial poly(n). We say that a problem is solvable in sub-
exponential time in n, if there is an effectively computable monotone increasing
function g(n) with limn→∞ g(n) = ∞ such that the problem is solvable in time
O(2n/g(n)).
The Dominating Set Problem. Let G = (V, E) be a graph. A set D ⊆ V
with N [D] = V is called a dominating set for G; in other words, every vertex
in G must either be contained in D or adjacent to some vertex in D. A set
A ⊆ V dominates a set B ⊆ V if B ⊆ N [A]. The domination number γ(G) of
a graph G is the cardinality of a smallest dominating set of G. The dominating
set problem asks to determine γ(G) and to find a dominating set of minimum
cardinality. The dominating set problem is one of the fundamental and well-
studied classical NP-hard graph problems (Garey & Johnson [6]). For a large
and comprehensive survey on domination theory, we refer the reader to the
books [8, 9] by Haynes, Hedetniemi & Slater. The dominating set problem is
also one of the basic problems in parameterized complexity (Downey & Fellows
[3]); it is contained in the parameterized complexity class W[2]. Further recent
investigations of the dominating set problem can be found in Albers & al. [1]
and in Fomin & Thilikos [5].
Results and Organization of This Paper. What are the best time complex-
ities for dominating set in n-vertex graphs that we can possibly hope for? Well,
of course there is the trivial O∗(2n) algorithm that simply searches through all
the 2n subsets of V . But can we hope for a sub-exponential time algorithm,
maybe with a time complexity of O∗(2

√
n)? Section 2 provides the answer to

this question: No, probably not, unless some very unexpected things happen in
computational complexity theory . . . Hence, we should only hope for time com-
plexities of the form O∗(cn), with some small value c < 2. And indeed, Section 3
presents such an algorithm with a time complexity of O∗(1.93782n). This algo-
rithm combines a recursive approach with a deep result from extremal graph
theory. The deep result is due to Reed [12], and it provides an upper bound on
the domination number of graphs of minimum degree three.

Furthermore, we study exact exponential algorithms for the dominating set
problem on some special graph classes: In Section 4, we design an O∗(1.41422n)
time algorithm for split graphs, and an O∗(1.73206n) time algorithm for bipartite
graphs. In Section 5, we derive an O∗(1.51433n) time algorithm for graphs of
maximum degree three. Note that for these three graph classes, the dominating
set problem remains NP-hard (Garey & Johnson [6], Haynes, Hedetniemi &
Slater [9]).

Exact (Exponential) Algorithms for the Dominating Set Problem 247

2 A Negative Observation

We will show that the existence of a sub-exponential time algorithm for the
dominating set problem would be highly unlikely. Our (straightforward) argu-
ment exploits the structural similarities between the dominating set problem
and the vertex cover problem: “Given a graph, find a vertex cover of minimum
cardinality”.

Proposition 1. Let G = (V, E) be a graph. Let G+ be the graph that results
from G by adding for every edge e = {u, v} ∈ E a new vertex x(e) together with
the two new edges {x(e), u} and {x(e), v}.

Then the graph G has a vertex cover of size at most k, if and only if the
graph G+ has a dominating set of size at most k.

Proposition 2. (Johnson & Szegedy [11])
If the vertex cover problem on graphs of maximum degree three can be solved in
sub-exponential time, then also the vertex cover problem on arbitrary graphs can
be solved in sub-exponential time.

Proposition 3. (Impagliazzo, Paturi & Zane [10])
If the vertex cover problem (on arbitrary graphs) can be solved in sub-exponential
time, then the complexity classes SNP and SUBEXP satisfy SNP ⊆ SUBEXP
(and this is considered a highly unlikely event in computational complexity the-
ory).

Now suppose that the dominating set problem is solvable in sub-exponential
time. Take an instance G = (V, E) of the vertex cover problem with maximum
degree at most three, and construct the corresponding graph G+. Note that G+

has at most |V |+ |E| ≤ 5|V |/2 vertices; hence, its size is linear in the size of G.
Solve the dominating set problem for G+ in sub-exponential time. Proposition 1
yields a sub-exponential time algorithm for vertex cover in graphs with maximum
degree at most three. Propositions 2 and 3 yield that SNP ⊆ SUBEXP.

3 An Exact Algorithm for Arbitrary Graphs

In this section we present the main result of our paper. It is the first exact
algorithm for the dominating set problem breaking the natural Ω(2n) barrier
for the running time: We present an O∗(1.93782n) time algorithm to compute
a minimum dominating set on any graph. Our algorithm heavily relies on the
following result of Reed to restrict the search space.

Proposition 4. (Reed [12])
Every graph on n vertices with minimum degree at least three has a dominating
set of size at most 3n/8.

In fact, we will tackle the following generalization of the dominating set
problem: An input for this generalization consists of a graph G = (V, E) and a
subset X ⊆ V . We say that a set D ⊆ V dominates X , if X ⊆ N [D]. The goal

248 Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger

is to find a dominating set D for X of minimum cardinality. (Obviously, setting
X := V yields the classical dominating set problem). We will derive an exact
O∗(1.93782n) time algorithm for this generalization.

The algorithm is based on the so-called pruning the search tree technique.
The idea is to branch into subcases and to remove all vertices of degree one
and two, until we terminate with a graph with all vertices of degree zero or at
least three. Denote by V ′ the set of all vertices of degree at least three in this
final graph. Let t = |V ′| and let G′ = G[V ′]. Then Proposition 4 yields that
there exists some vertex set in G′ with at most 3t/8 vertices that dominates
all vertices of G′; consequently, there exists also a dominating set for X ′ =
X ∩ V ′ of size at most 3t/8 in G′. We simply test all possible subsets with up
to 3t/8 vertices to find a minimum dominating set D′ for X ′ in G′. By using
Stirling’s approximation x! ≈ xxe−x

√
2πx for factorials, and by suppressing

some polynomial factors, we see that the number of tested subsets is at most
(

t

3t/8

)

=
(t)!

(3t/8)! (5t/8)!
= O∗(8t · 3−3t/8 · 5−5t/8) = O∗(1.93782t),

where 8/(33/8 · 55/8) is approximately 1.9378192. This test can be done in time
O∗(

∑3t/8
i=1

(
t
i

)
) = O∗(1.93782t). Finally, we add all degree zero vertices of X to

the set D′ to obtain a minimum dominating set of G.
Now let us discuss the branching into subcases. While there is a vertex of degree
one or two, we pick such a vertex, say v, and we recurse distinguishing four cases
depending on the degree of v and whether v ∈ X or not.
Case A: The Vertex v Is of Degree One and v ∈ V − X. In this case
there is no need to dominate the vertex v and there always exists a minimum
dominating set for X that does not contain v. Then a minimum dominating set
for X − {v} in G − {v} is also a minimum dominating set for X in G, and thus
we recurse on G − {v} and X − {v}.
Case B: The Vertex v Is of Degree One and v ∈ X. Let w be the unique
neighbor of v. Then there always exists a minimum dominating set for X that
contains w, but does not contain v. If D′ is a minimum dominating set for
X − N [w] in G − {v, w} then D′ ∪ {w} is a minimum dominating set for X in
G, and thus we recurse on G − {v, w} and X − N [w].
We need the following auxiliary result.

Lemma 1. Let v be a vertex of degree 2 in G, and let u1 and u2 be its two
neighbors. Then for any subset X ⊆ V there is a minimum dominating set D
for X such that one of the following holds.

(i) u1 ∈ D and v 	∈ D;
(ii) v ∈ D and u1, u2 	∈ D;
(iii) u1 /∈ D and v 	∈ D.

Proof. If there exists a minimum dominating set D for X that contains u1 then
there exists a minimum dominating set D′ for X that contains u1 but not v.
In fact, if v ∈ D, then D′ = (D − {v}) ∪ {u2} is a dominating set for X and

Exact (Exponential) Algorithms for the Dominating Set Problem 249

|D′| ≤ |D|. Similarly, if there exists a minimum dominating set for X that
contains u2 then there exists a minimum dominating set for X that contains u2

but not v.
Thus we are left with five possibilities how v, u1, u2 might show up in a

minimum dominating set D for X : (a) u1, u2, v 	∈ D; (b) v ∈ D and u1, u2 	∈ D;
(c) u1 ∈ D and v, u2 	∈ D; (d) u2 ∈ D and v, u1 	∈ D; (e) u1, u2 ∈ D and v 	∈ D.
Now (i) is equivalent to (c) or (e), (ii) is equivalent to (b), and (iii) is equivalent
to (a) or (d). This concludes the proof.
�

Now consider a vertex v of degree two. Depending on whether v ∈ X or
not we branch in different ways. Additionally, the search is restricted to those
minimum dominating sets D satisfying the conditions of Lemma 1.
Case C: The Vertex v of Degree 2 and v ∈ V − X. Let u1 and u2 be the
two neighbors of v in G. By Lemma 1, we can branch into three subcases for a
minimum dominating set D:
(C.1): u1 ∈ D and v �∈ D. In this case if D′ is a minimum dominating set for
X −N [u1] in G−{u1, v} then D′ ∪ {u1} is a minimum dominating set for X in
G, and thus we recurse on G − {u1, v} and X − N [u1].
(C.2): v ∈ D and u1, u2 �∈ D. In this case if D′ is a minimum dominating
set for X − {u1, u2} in G − {u1, v, u2} then D′ ∪ {v} is a minimum dominating
set for X in G, and thus we recurse on G − {u1, v, u2} and X − {u1, u2}.
(C.3): u1 �∈ D and v �∈ D. In this case a minimum dominating set for X in
G − {v} is also a minimum dominating set for X in G, and thus we recurse on
G − {v} and X .
Case D: The Vertex v Is of Degree 2 and v ∈ X. Let u1 and u2 denote
the two neighbors of v in G. Again according to Lemma 1, we branch into three
subcases for a minimum dominating set D:
(D.1): u1 ∈ D and v �∈ D. In this case if D′ is a minimum dominating set
for X − N [u1] in G − {u1, v} then D′ ∪ {u1} is a minimum dominating set for
X in G. Thus we recurse on G − {u1, v} and X − N [u1].
(D.2): v ∈ D and u1, u2 �∈ D. In this case if D′ is a minimum dominating
set for X −{u1, v, u2} in G−{u1, v, u2} then D′∪{v} is a minimum dominating
set for X in G. Thus we recurse on G − {u1, v, u2} and X − {u1, v, u2}.
(D.3): u1 �∈ D and v �∈ D. Then v ∈ X implies u2 ∈ D. Now we use that if
D′ is a minimum dominating set for X − N [u2] in G − {v, u2} then D′ ∪ {u2}
is a minimum dominating set for X in G. Thus we recurse on G − {v, u2} and
X − N [u2].
To analyse the running time of our algorithm we denote by T (n) the worst case
number of recursive calls performed by the algorithm for a graph on n vertices.
Each recursive call can easily be implemented in time polynomial in the size of
the graph passed to the recursive call. In cases A and B we have T (n) ≤ T (n−1),
in case C we have T (n) ≤ T (n − 1) + T (n − 2) + T (n − 3) and in case D we
have T (n) ≤ 2 · T (n− 2) + T (n− 3). Standard calculations yield that the worst
behavior of T (n) is within a constant factor of αn, where α is the largest root

250 Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger

of α3 = α2 + α + 1, which is approximately 1.8393. Thus T (n) = O∗(1.8393n).
Therefore, the most time consuming part of the algorithm is the procedure of
checking all subsets of size at most 3t/8 where t ≤ n. As already discussed, this
can be performed in O∗(1.93782n) steps by a brute force algorithm.
Summarizing, we have proved the following theorem.

Theorem 1. A minimum dominating set of a graph on n vertices can be com-
puted in time O∗(1.93782n) time. (The base of the exponential function in the
running time is 8/(33/8 · 55/8) ≈ 1.9378192.)

4 Split Graphs and Bipartite Graphs

In this section we present an exponential algorithm for the minimum set cover
problem obtained by dynamic programming. This algorithm will then be used
as a subroutine in exponential algorithms for the NP-hard minimum dominating
set problems on split graphs and on bipartite graphs.
Let X be a ground set of cardinality m, and let T = {T1, T2, . . . , Tk} be a
collection of subsets of X . We say that a subset T ′ ⊆ T covers a subset S ⊆ X ,
if every element in S belongs to at least one member of T ′. A minimum set cover
of (X, T) is a subset T ′ of T that covers the whole set X . The minimum set
cover problem asks to find a minimum set cover for given (X, T). Note that a
minimum set cover of X can trivially be found in time O∗(2k) by checking all
possible subsets of T .

Lemma 2. There is an O(mk 2m) time algorithm to compute a minimum set
cover for an instance (X, T) with |X | = m and |T | = k.

Proof. Let (X, T) with T = {T1, T2, . . . , Tk} be an instance of the minimum set
cover problem over a ground set X with |X | = m. We present an exponential
algorithm solving the problem by dynamic programming.

For every nonempty subset S ⊆ X , and for every j = 1, 2, . . . , k we define
F [S; j] as the minimum cardinality of a subset of {T1, . . . , Tj} that covers S. If
{T1, . . . , Tj} does not cover S then we set F [S; j] := ∞.

Now all values F [S; j] can be computed as follows. In the first step, for every
subset S ⊆ X , we set F [S; 1] = 1 if S ⊆ T1, and F [S; 1] = ∞ otherwise. Then
in step j + 1, j = 1, 2, . . . , k − 1, F [S; j + 1] is computed for all S ⊆ X in O(m)
time as follows:

F [S; j + 1] = min{F [S; j], F [S − Tj+1; j] + 1}.
This yields an algorithm to compute F [S; j] for all S ⊆ X and all j = 1, 2, . . . , k
of overall running time O(mk 2m). In the end, F [X ; k] is the cardinality of a
minimum set cover for (X, T).
�
Now we shall use Lemma 2 to establish an exact exponential algorithm to solve
the NP-hard minimum dominating set problem for split graphs. Let us recall
that a graph G = (V, E) is a split graph if its vertex set can be partitioned into
a clique C and an independent set I.

Exact (Exponential) Algorithms for the Dominating Set Problem 251

Theorem 2. There is an O(n2 2n/2) = O∗(1.41422n) time algorithm to compute
a minimum dominating set for split graphs.

Proof. If G is a complete graph or an empty graph, then the dominating set
problem on G is trivial. If G = (V, E) is not connected, then all of its components
are isolated vertices except possibly one, say G′ = (V ′, E). If D′ is a minimum
dominating set of the connected split graph G′ then D′∪ (V −V ′) is a minimum
dominating set of G.

Thus we may assume that the input graph G = (V, E) is a connected split
graph with a partition of its vertex set into a clique C and an independent set
I where |I| ≥ 1 and |C| ≥ 1. Such a partition can be found in linear time
(Golumbic [7]). A connected split graph has a minimum dominating set D such
that D ⊆ C: consider a minimum dominating set D′ of G with |D′ ∩ I| as small
as possible; then a vertex x ∈ D′ ∩ I can be replaced by a neighbor y ∈ C.
N [x] ⊆ N [y] implies that D′′ := (D′ −{x})∪{y} is a dominating set, and either
|D′′| < |D′| (if y ∈ D′), or |D′′| = |D′| and |D′′∩I| < |D′∩I|–both contradicting
the choice of D′.

Let C = {v1, v2, . . . , vk}. For every j ∈ {1, 2, . . . , k} we define Tj = N(vj)∩I.
Clearly, D ⊆ C is a dominating set in G if and only if {Ti : vi ∈ D} covers
I. Hence the minimum dominating set problem for G can be reduced to the
minimum set cover problem for (I, T) with |I| = n− k and |T | = k. For k ≤ n/2
this problem can be solved by trying all possible subsets in time O(n 2k) =
O(n 2n/2). For k > n/2, by Lemma 2, the problem can be solved in time O((n−
k)k 2n−k) = O(n2 2n/2).

Thus a minimum dominating set of G can be computed in time O(n2 2n/2).

�

A modification of the technique used to prove Theorem 2, can be used to obtain
faster algorithms for graphs with large independent set.

Theorem 3. There is an O(nz · 3n−z) time algorithm to compute a minimum
dominating set for graphs with an independent set of size z. In particular, there
is an O(n2 · 3n/2) = O∗(1.73206n) time algorithm to compute a minimum dom-
inating set for bipartite graphs.

Proof. Let G = (V, E) be a graph with an independent set of size z. Note that
such an independent set can be identified in O∗(1.2108n) time by the algorithm
of Robson [13].

Let R = V − I denote the set of vertices outside the independent set. In
an initial phase, we fix for every subset X ⊆ R some corresponding vertex set
IX ⊆ I via the following three steps.

1. Determine Y = I − N [X].
2. Compute a vertex set Z ⊆ N [X] ∩ I of minimum cardinality subject to

R − N [X] − N [Y] ⊆ N(Z).
3. Set IX = Y ∪ Z.

First, we observe that Y ⊆ I and Z ⊆ I yield IX ⊆ I. Secondly, I ⊆ Y ∪ N [X]
implies that I is dominated by X∪IX , and R−N [X]−N [Y] ⊆ N(Z) implies that

252 Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger

R is dominated by X ∪IX . Consequently, the set X ∪IX forms a dominating set
for the graph G. Thirdly, we claim that among all dominating sets D for G with
D ∩ R = X , the dominating set X ∪ IX has the smallest possible cardinality:
Indeed, D ∩ R = X means that the vertices in Y = I − N [X] can only be
dominated, if they are contained in D; hence Y ⊆ D. Furthermore, the vertices
in R − N [X]− N [Y] must all be dominated through some vertices in N [X]∩ I;
in the second step, we determine the smallest possible subset Z ⊆ N [X]∩I with
this property. Summarizing, for finding a minimum dominating set for G, it is
sufficient to look through all the 2n−z sets X ∪ IX .

What is the time complexity of this approach? The only (exponentially)
expensive step for determining the sets IX is the computation of the sets Z. And
this expensive step boils down to solving a set covering problem that consists of
a ground set R − N [X] − N [Y] with at most |R − X | ≤ n − z − |X | elements,
and that consists of a collection of |N [X]∩ I| ≤ z subsets. By Lemma 2, such a
set covering problem can be solved in O(nz · 2n−z−|X|) time. The overall time
for solving all set covering problems for all subsets X ⊆ R is proportional to∑n−z

k=1

(
n−z

k

)
nz · 2n−z−k. This yields an overall time complexity of O(nz · 3n−z).

�
Note that for graphs with an independent set of size z ≥ 0.39782 · n, the

running time of the algorithm in Theorem 3 is better than the running time of
the algorithm for general graphs from Section 3.

5 Graphs of Maximum Degree Three

Computer experiments suggest that exact exponential algorithms like the trivial
O∗(2n) time algorithm, or like our O∗(1.93782n) algorithm from Section 3 have
the slowest running times for fixed values of n, if the input graphs have large
domination numbers. One possible explanation is that the algorithm has to spend
a lot of time on checking that no vertex subset of size γ(G) − 1 is dominating
(even in case a true minimum dominating set is detected at an early stage). Since
graphs of maximum degree three have high domination numbers, the algorithms
for general graphs do not behave well on these graphs.

In this section, we design a better exact algorithm for graphs of maximum
degree three, by using the pruning a search tree technique and a structural prop-
erty of minimum dominating sets in graphs of maximum degree three provided
in the following lemma.

Lemma 3. Let G = (V, E) be a graph of maximum degree three. Then there is
a minimum dominating set D of G with the following two properties:

(i) every connected component of G[D] is either an isolated vertex, or an iso-
lated edge, and

(ii) if two vertices x, y ∈ D form an isolated edge in G[D], then x and y have
degree three in G, and N(x) ∩ N(y) = ∅.

Proof. Let D be a minimum dominating set of G with the maximum number of
isolated vertices in G[D]. If G[D] has a vertex x of degree three, then D − {x}

Exact (Exponential) Algorithms for the Dominating Set Problem 253

is a smaller dominating set of G, which is a contradiction. Thus the maximum
degree of G[D] is two.

Assume G[D] has a vertex y of degree two. If the degree of y in G is two, then
D−{y} is a smaller dominating set of G, a contradiction. Otherwise let z be the
unique neighbor of y in G that is not in D. If z ∈ N [D −{y}] then D −{y} is a
smaller dominating set of G, another contradiction. Finally, if z /∈ N [D − {y}]
then D1 := (D ∪ {z}) − {y} is another minimum dominating set in G with a
larger number of isolated vertices in G[D1] than in G[D]. This contradiction
concludes the proof of property (i).

To prove property (ii), let us first show that any two adjacent vertices x, y ∈ D
have degree three in G. For the sake of contradiction, assume that y has degree
less than three in G. Clearly y cannot have degree one, otherwise D − {y} is a
dominating set, a contradiction. Suppose y has degree two, and let z 	= x be the
second neighbor of y. If z ∈ N [D−{y}] then D−{y} is a dominating set of smaller
size than D, a contradiction. If z /∈ N [D − {y}], then D2 := (D − {y}) ∪ {z}
is a minimum dominating set in G with a larger number of isolated vertices in
G[D2] than in G[D], another contradiction.

Finally, we prove that N(x) ∩ N(y) = ∅ in G. For the sake of contradiction,
assume that N(x) ∩ N(y) 	= ∅. If N [x] ⊆ N [y] then D − {x} is a dominating
set, and if N [y] ⊆ N [x] then D − {y} is a dominating set. In both cases this
contradicts our choice of D. Hence N(x) = {y, w, u} with N(x) − N(y) = {w}
and N(x) ∩ N(y) = {u}. If w ∈ N [D − {x}] then D − {x} is a dominating set,
another contradiction. If w /∈ N [D − {x}] then D3 := (D − {x}) ∪ {w} is a
minimum dominating set in G with a larger number of isolated vertices in G[D3]
than in G[D], the final contradiction.
�

Now we construct a search tree algorithm using the restriction of the search
space guaranteed by Lemma 3, i.e. for a graph G = (V, E) of maximum degree
three only vertex sets D ⊆ V satisfying the properties of of Lemma 3 have to be
inspected. W.l.o.g. we assume that the input graph is connected.

Theorem 4. There is a O∗(1.51433n) time algorithm to compute a minimum
dominating set on graphs of maximum degree three. (The base of the exponential
function in the running time is the largest real root α ≈ 1.51433 of α6 = α3 +
2 α2 + 4.)

Proof. The algorithm is based on the pruning a search tree technique. The idea
is to branch into subcases until we obtain a graph of maximum degree two, and
for such a graph a minimum dominating set can be computed in linear time
since each of its connected components is either an induced path Pk (k ≥ 1) or
an induced cycle Ck (k ≥ 3). In this way we obtain all minimum dominating
sets of G satisfying the properties of Lemma 3

More precisely, the input graph G = (V, E) and D = ∅ correspond to the
root of the search tree. To each node of the search tree corresponds an induced
subgraph G[V ′] of G and a partial dominating set D ⊆ V −V ′ of G already chosen
to be part of the dominating set obtained in any branching from this node. To
each leaf of the tree corresponds a subgraph G[V ′] of maximum degree two. For

254 Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger

each node of the search tree to which a subgraph G[V ′] of maximum degree three
corresponds the algorithm proceeds as follows: It chooses a neighbour (called x
below) of a vertex of degree three such that x has smallest possible degree; then
it inspects x and branches in various subcases. Suppose (G[V ′], D) corresponds
to a node of the search tree and that G[V ′] has maximum degree two. Then a
linear time algorithm will be invoked to find a minimum dominating set D′ of
G[V ′], and thus D ∪ D′ is a dominating set of G. Finally the algorithm chooses
a smallest set among all dominating sets of G obtained in this way and outputs
it as a minimum dominating set of G.

To show that this algorithm has running time O∗(1.51433n) we have to study its
branching into subcases. We denote by T (n) the worst case number of recursive
calls performed by the algorithm for a graph on n vertices.

The algorithm will pick a vertex x of degree three at most once, and this can
only happen at the very beginning and only if all vertices of the input graph
have degree three. Thus this branching is of no interest for the analysis of the
overall running time of our algorithm.

We shall distinguish two cases: x has degree one or x has degree two. For
each case the algorithm chooses one or two vertices to be added to the partial
dominating set D and recurses on some smaller induced subgraphs. Based on
Lemma 3 each connected component of G[D] can be supposed to be a K1 or a
K2. (Note that our analysis deals with the subgraph G[V ′] that corresponds to
the current node of the search tree.)

Case 1: x Is a Vertex of Degree One in G[V ′]. Let y be a degree three
neighbour of x. Let z1 and z2 be the other neighbours of y. Clearly there is a
minimum dominating set of G[V ′] not containing x, and thus we may choose
x /∈ D and y ∈ D. This leaves two possible subcases for the choice of the vertices
to be added to D.

Subcase 1.A: y ∈ D Isolated Vertex in G[D]. We add y to the dominating
set D and recurse on G−N [y]. Since y has degree three the number of recursive
calls on this subcase is T (n− 4).

Subcase 1.B: y, zi ∈ D, i ∈ {1, 2}, isolated edge in G[D]. Then we
may obtain 2 subcases as follows: Add y, zi, i ∈ {1, 2}, to D and recurse on
G− (N [y]∪N [zi]). By property (ii) of Lemma 3, this requires that zi has degree
three, hence we remove 6 vertices and the number of recursive calls on this
subcase is at most 2 T (n− 6).

In total, in Case 1 we obtain the recurrence T (n) ≤ T (n − 4) + 2 · T (n − 6).
Standard calculations yield that the worst behavior of T (n) is within a constant
factor of αn. This α is the largest real root of α5 = α+2, which is approximately
1.26717. Thus T (n) = O∗(1.26717n).

Case 2: x Is a Vertex of Degree Two in G[V ′]. Let y1 and y2 be the
neighbours of x. W.l.o.g. let y1 be a degree three vertex.

Case 2.1: y1 and y2 Are Adjacent in G[V ′]. Then there is a minimum
dominating set of G[V ′] not containing x, and thus either y1 or y2 must be
added to D.

Exact (Exponential) Algorithms for the Dominating Set Problem 255

Case 2.1.1: y2 Has Degree Two. Hence w.l.o.g. y1 ∈ D and y2 /∈ D. Thus
either y1 is an isolated vertex in G[D], or y, z ∈ D where z is the third neighbour
of y1. Thus we obtain the recurrence T (n) ≤ T (n− 4)+ ·T (n− 6). Thus T (n) =
O∗(1.15097n), where α ≈ 1.15097 is the largest real root of α5 = α + 2.

Case 2.1.2: y2 Has Degree Three. For i = 1, 2, let zi be the third neighbour
of yi. Then either y1 ∈ D or y2 ∈ D is an isolated verted in G[V ′], or yi, zi ∈ D is
an isolated edge in G[V ′]. Then we recurse on G−N [yi] and remove 4 vertices, or
we recurse on G− (N [yi]∪N [zi]) and remove 6 vertices. Consequently we obtain
the recurrence T (n) ≤ 2 · T (n − 4) + 2 · T (n − 6). Thus T (n) = O∗(1.33015n),
where α ≈ 1.33015 is the largest real root of α6 = 2 α2 + 2.

Case 2.2: y1 and y2 Are Not Adjacent in G[V ′]. Since x has degree two
either x ∈ D is an isolated vertex in G[D] or x /∈ D.

Case 2.2.1: y2 Has Degree Two. Let z11 and z12 the other neighbours of y1,
and let z2 be the other neighbour of y2.

Subcase 2.2.1.A: x ∈ D Isolated Vertex in G[D]. We add x to the dom-
inating set D and recurse on G − N [x]. Since x has degree two the number of
recursive calls on this subcase is T (n− 3).

Subcase 2.2.1.B: yi ∈ D Isolated Vertex in G[D]. For i = 1, 2, we add
yi to the dominating set D and recurse on G − N [yi]. Since y1 has degree three
and y2 has degree two, the number of recursive calls on this subcase is at most
T (n − 3) + T (n − 4).

Subcase 2.2.1.C: y1, z1j ∈ D, j ∈ {1, 2}, Isolated Edge in G[D]. Then
we may obtain 2 subcases as follows: Add y1, z1j, j ∈ {1, 2}, to D and recurse
on G− (N [y1]∪N [z1j]). By property (ii) of Lemma 3, this requires that z1j has
degree three, hence we remove 6 vertices and the number of recursive calls on
this subcase is at most 2 T (n− 6).

In total, in Case 2.2.1 we obtain the recurrence T (n) ≤ 2 · T (n − 3) + T (n −
4) + 2 · T (n − 6). As we have seen before, the worst behavior of T (n) is within
a constant factor of αn. This α is the largest real root of α6 = 2 α3 + α2 + 2,
which is approximately 1.48613. Thus T (n) = O∗(1.48613n).

Case 2.2.2: y2 Has Degree Three. Let z11 and z12 be the other neighbours
of y1, and let z21 and z22 be the other neighbours of y2.

Subcase 2.2.2.A: x ∈ D Isolated Vertex in G[D]. We add x to the dom-
inating set D and recurse on G − N [x]. Since x has degree two the number of
recursive calls on this subcase is T (n− 3).

Subcase 2.2.2.B: yi ∈ D Isolated Vertex in G[D]. For i = 1, 2, we add yi

to the dominating set D and recurse on G−N [yi]. y1 and y2 have degree three,
thus the number of recursive calls on this subcase is at most 2 T (n− 4).

Subcase 2.2.2.C: yi, zij ∈ D, i, j ∈ {1, 2}, Isolated Edge in G[D]. Then
we may obtain 4 subcases as follows: Add yi, zij , i, j ∈ {1, 2}, to D and recurse
on G−(N [yij]∪N [zij]). This requires that zij has degree three, hence we remove
6 vertices and the number of recursive calls on this subcase is at most 4 T (n−6).

256 Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger

In total, in Case 2.2.2 we obtain the recurrence T (n) ≤ T (n−3)+2 ·T (n − 4)+
4 ·T (n− 6). The worst behavior of T (n) is within a constant factor of αn, where
α is the largest real root of α6 = α3+2 α2+4, which is approximately 1.5143218.
Thus T (n) = O∗(1.51433n).
�

References

1. J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier.
Fixed parameter algorithms for dominating set and related problems on planar
graphs. Algorithmica 33, 2002, pp. 461–493.

2. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Pa-

padimitriou, P. Raghavan, and U. Schöning. A deterministic (2− 2/(k +1))n

algorithm for k-SAT based on local search. Theoretical Computer Science 289, 2002,
pp. 69–83.

3. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in
Computer Science, Springer-Verlag, New York, 1999.

4. D. Eppstein. Small maximal independent sets and faster exact graph coloring. Pro-
ceedings of the 7th Workshop on Algorithms and Data Structures (WADS’2001),
LNCS 2125, Springer, 2001, pp. 462–470.

5. F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: Branch-
width and exponential speed-up. Proceedings of the 14th ACM-SIAM Symposium
on Discrete Algorithms (SODA’2003), 2003, pp. 168–177.

6. M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the
theory of NP-completeness. W.H. Freeman and Co., San Francisco, 1979.

7. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, 1980.

8. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domi-
nation in graphs. Marcel Dekker Inc., New York, 1998.

9. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in graphs: Ad-
vanced Topics. Marcel Dekker Inc., New York, 1998.

10. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly expo-
nential complexity? Journal of Computer and System Sciences 63, 2001, pp. 512–
530.

11. D. S. Johnson and M. Szegedy. What are the least tractable instances of max
independent set? Proceedings of the 10th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’1999), 1999, pp. 927–928.

12. B. Reed. Paths, stars and the number three. Combinatorics, Probability and Com-
puting 5, 1996, pp. 277–295.

13. J.M. Robson. Algorithms for maximum independent sets. Journal of Algorithms
7, 1986, pp. 425–440.

14. G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. Combinato-
rial Optimization: “Eureka, you shrink”, LNCS 2570, Springer, 2003, pp. 185–207.

	1 Introduction
	2 A Negative Observation
	3 An Exact Algorithm for Arbitrary Graphs
	4 Split Graphs and Bipartite Graphs
	5 Graphs of Maximum Degree Three
	References

