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SUMMARY 

The applications of remote sensing have been restricted to those species dominating the canopy of 
ecosystems. Dominant invasive species determine the spectral signature received by the remote 
sensing scanner and thus allow detection using this spectral signature in a straightforward manner. 
Many invasive species however, do not dominate the canopy. They are rare or hidden below the 
ecosystem canopy. The aim of this study was to map the seed productivity of such hidden invasive 
species. We have selected Chromolaena odorata which is one of the world’s worst invasive species 
invading the entire tropical region of the world. We applied ETM+ imagery, GIS and statistics to map 
and model its seed productivity. Light intensity and biomass of other forest under-storey vegetation 
significantly determined the productivity of the species. Data analysis showed that other variables 
such as grazing intensity and distance from forest edge and road to forest interior had an indirect 
effect on productivity of Chromolaena. Populations of Chromolaena were present, but failed to flower 
below a light intensity of 6.5 mJ m-2 day-1. This suggests that light intensity segregates the species in 
reproductive and non-reproductive populations. These patterns in Chromolaena were mapped using 
remote sensing imagery and GIS. Localization of such populations could significantly reduce 
eradication/control costs. This may prove particularly valuable when implementing control measures 
under circumstances of limited capital and manpower. 
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INTRODUCTION 

The spread of invasive species has stimulated interest in the prediction of their distribution. Many 
studies have been undertaken to map the distribution of invasive species (Anderson et al., 1993; 
McCormick, 1999). Typically, such maps display the presence and absence of an invader.  
 

Why are we interested in distribution maps for invasive species? First of all, once an invader has 
been recognized as problematic, we are interested to localize its distribution and monitor its eventual 
further spread. Secondly, ecological knowledge is required to assess their density and impact. 
Distribution maps have been used since long to acquire such knowledge. For example species climate 
models have been used to assess the risk of further spread of invaders (Rouget et al., 2004). Thirdly, it 
has been argued that spatial information is needed to develop policies aimed at invasive species 
management (Wittenberg & Cock, 2001). Policy intervention derived from such maps may range 



 

from total eradication towards control or merely alleviation of its negative impacts. For instance, 
Goodall & Naude (1998) recommend that habitats be ranked according to criteria that encompass the 
habitat's status, protection and management. This is particularly so where financial resource and 
manpower do not suffice to cover the entire area infested. In such cases, information on the 
distribution of invasive species could be used to prioritize areas deserves interventions. One could for 
instance, focus on those areas where biodiversity or ecosystem services have been most badly 
affected.  Alternatively, one might put priorities on areas where the invader poses a risk for further 
infestation. The common practice to predict presence and absence of an invader however, does not 
satisfy this purpose. Instead, it would be more useful to have spatial information on the density or the 
competitive ability of the invader or its reproductive success. Spatial segregation of seed productive 
and non-productive areas might allow one to concentrate control efforts to manage habitats so as to 
curtail the spread of invasive species. 

 
Since the first satellite images reached the scientific community it has been recognized that remote 

sensing offers the possibility to map the distribution of invasive species at local scale (Anderson et al., 
1993; Epp & Reed, 1986; McCormick, 1999; Ramsey et al., 2002; Underwood et al., 2003; 
Williamson, 1996; Zhang et al., 2002). However, applications have been restricted to those species 
dominating the canopy of ecosystems (Joshi et al., 2004). Dominant invasive species determine the 
spectral signature received by the remote sensing scanner and thus allow detection using this spectral 
signature in a straightforward manner. Many invasive species however, do not dominate the canopy. 
They are rare or hidden below the ecosystem canopy. Joshi et al., (2004) observed that 67 out of the 
one hundred of the world’s worst invasive species (ISSG, 2004) fall in this category. Such species 
would be more difficult to detect using their spectral signature, since they contribute only partly or not 
at all to the radiation received by a remote sensing device. Not surprisingly, none of these sixty seven 
species has been successfully mapped.  

 
Joshi et al., (2004) proposed indirect mapping approaches to map their distribution. Indirect 

mapping approaches predict the distribution of species using knowledge on the ecological relation 
between a species and its environment. This approach is commonly used in determining niche 
dimensions of species geographical distribution (Baker et al., 2000; Sutherst, 2003). It has been 
recognized that the distribution of invaders is related to variability of the environment. Frenot et al. 
(2001) for instance related the distribution of invasive species to land cover and land use change. 
Similarly, Rouget et al. (2004) developed climatic envelop models to map potential ranges of 71 
major plant invaders in South Africa, Lesotho and Swaziland. Species highly invasive in one 
environment may well be incapable of maintaining viable populations under different conditions. 
Hence, spatial information on environmental conditions affecting an invaders reproductive and 
competitive trait could be used to segregate its reproductive and non-reproductive populations. 

 
Chromolaena odorata (L.) R. M. King & H. Robinson (Eupatorium odoratum L.) is one of the 

world’s worst invasive species (ISSG, 2004). The genus Chromolaena includes 129 species and all 
are found in the neotropics (King & Robinson 1970) and only C. odorata has spread to the Old 
World. Nowadays, it is distributed throughout the warm and humid tropical regions, latitudes about 
30° North and South. A single mature plant of Chromolaena can produce up to 440,000 achenes 
(seeds) per year (see Erasmus, 1985, pp. 31). Seeds are very light (25,000 seeds/g) and are wind-
borne.  

 
The invadability of Chromolaena odorata is though depend on the combination of production of 

large amounts of easily dispersed achenes and its capability to outcompete native flora (Erasmus, 
1985; Honu & Dang, 2000). These traits however, appear to be phenotypical, since the species shows 
a remarkable response to light (Witkowski & Wilson, 2001). It remains virtually absent from dense 
forest, but dominates and vigorously produces seed in forest clearings and ruderal environments 
outside forest. This information suggests that light intensity determines the competitive and 



 

reproductive traits of Chromolaena odorata. Hence, light intensity in the forest could possibly be used 
to map the distribution and reproduction of Chromolaena. 

 
The aim of this study was to investigate the possibility to map the seed production of Chromolaena 

odorata. For this, a statistical model relating environmental factors and seed production was 
developed. Furthermore, how these predictive maps can be helpful for management of invasive 
species was discussed.  

 
METHODS AND MATERIALS 
Study Area 

The study area (figure 1) is a forest corridor linking the Himalayan middle mountains to Royal 
Chitwan National Park in Nepal (27°31´ to 27°44´N and 84°24´ to 84°31´E).  

 

 
 

Figure 1: Location of the study area: A) Part of Asia, B) Nepal C) ETM+ image used for this study, 
the box indicates the study area and D) Chromolaena odorata growing under Shorea forest. 

 
Data Collection and analysis 

A total of 275 plots of 30 x 30m were visited in Sept-Oct. 2003 to measure forest canopy density 
and light intensity using hemispherical photography taken with a Nikon digital camera with a fisheye 
lens attached. Total light intensity was calculated from the digital hemispherical photographs using 
Gap light analyzer software version 2 (Frazer et al., 1999; Frazer, 2001). A smaller sub sample of 153 
plots from the above sample was used to estimate the cover and average height of Chromolaena. 
Next, five plants were randomly selected per plot on which were measured: number of flowering 
stems per plant (st), number of flowering branches per stem (br), number of inflorescence per 
flowering branch (in), number of capitulum per inflorescence (ca) and number of cypsela (achenes or 
seeds) per capitulum (cy). From these we calculated a seed production index (SPI): Seed Production 
Index (SPI)= st *  br *  in *  ca *  cy.  
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The cover (c) and height (h) of other herb (H) and shrub (S) layer in the forest under-storey were 

estimated and from these a biomass index was calculated.  
Biomass index =  Hc *  Hh + Sc *  Sh. 

Furthermore, grazing intensity was scored based on sign of grazing, height and cover of palatable 
species and dung density.  

 
Topographic maps (scale 1:25000) of 1996 of the study area were digitized to obtain maps of land 

use/land cover. The settlements, roads and distances from these infrastructures were calculated using 
ILWIS 3.2. Waterlogged depressions with open grassland which did not represent the forest 
environment were classified using maximum likelihood image classification method. Image 
classification and analyses were done with ENVI 4.0, IDL 6.1 and Erdas 8.7.  

 
Mapping Light Intensity 

Field measurements on light intensity were combined with an ETM+ image to produce a map of 
light intensity in the forest under-storey. A three-layer feedforward backpropagation artificial neural 
network (ANN) consisting of an input, a hidden and an output layer was used for image classification. 
The Landsat ETM+ image of October 24, 2001 was registered with subpixel accuracy (±17m). The 
first seven bands were used as input to the network. Light intensity calculated from the hemispherical 
photographs was used to train the ANN. The total data set of 275 samples was randomly divided into 
two groups. One subset of 138 samples was used for training and the other 137 samples for testing. 
The backpropagation algorithm used is designed to minimize the root mean square error (RMSE) 
between the actual output of a multi-layered feed forward perception and the desired output 
(Skidmore et al., 1997). The best results were obtained with a learning rate of 0.9, a momentum of 0.7 
and two hidden nodes. Finally 20 iterations of 7000 epochs were performed (the RMSE stabilized 
after approximately 7000 epochs) and we selected the best classification based on least RSME. Forest 
canopy density in percentage was also calculated using the same data set and procedure. 

 
RESULTS 
Reproductive Ecology of Chromolaena 

Exploratory data analysis revealed that light intensity had a much stronger relationship with the 
cover of Chromolaena than any other environmental variable (table 1). The relation with light 
intensity was therefore analyzed before considering the contribution of other factors.  

 

 
Table 1: Correlation (r) between six environmental variables and the cover of Chromolaena odorata. 

Significance levels:  * = 0.001. 
 

Figure 2 shows the relationship between light intensity and seed reproduction index (SPI) of 
Chromolaena. The figure reveals that Chromolaena does not produce seed below light intensity of 6.5 
mJ m-2 day-1.  

Environmental variable r 
Light intensity 0.71* 
Forest canopy density -0.69* 
Grazing intensity 0.32* 
Distance from road/trail -0.34* 
Distance from forest edge -0.25* 
Biomass of other  forest under-storey species -0.50* 
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Figure 2: 10 Log of seed production index of Chromolaena odorata in relation to the light intensity. 
The dotted line indicates the light intensity threshold between reproductive and non reproductive 

populations of Chromolaena. 
 

The relation between seed production index and light intensity was best explained by an MMF 
(Multiple Multiplicative Factor) model:  

257.5

257.5
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76.31049
*11.62.6528)1(Log
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+

+−
=+ …......……..…. (1) 

Where, Y is the seed production index and X is light intensity received at the forest floor. The 
equation explained 93% of the variation in 10Log Y+1. 
 
Other Factors Affecting Seed Productivity of Chromolaena 

The results presented above indicated that Chromolaena produces seed at light intensities above 6.5 
mJ m-2day-1. This does not imply however, that Chromolaena was always present above or absent 
below this threshold. Out of 153 cases, Chromolaena was absent in 22 where light conditions were 
suitable for seed production. Also, the species was present in 17 cases where light conditions were 
unsuitable for seed production.  

 
The reproductive biometry of Chromolaena was significantly correlated to a number of 

environmental variables (table 1). These variables were strongly interrelated. Some may have had a 
direct influence on Chromolaena, while others may have affected its productivity indirectly through 
other variables. Therefore, we conducted a path analysis (Sokal & Rohlf, 1995) to determine the 
degree to which single environmental factors made an independent contribution to the prediction of 
Chromolaena seed productivity. Path analysis (figure 3) revealed that distance from forest edge and 
from road had a direct influence on seed production of Chromolaena as well as indirect through 
grazing which influenced the biomass of forest under-storey vegetation. Similarly, forest canopy 
density influenced it through light intensity. 

 

 
 

Figure 3: Path diagram showing the effect of independent variables on seed production of 
Chromolaena odorata. Number between arrows indicate significant effects with path coefficients, 

width of the line is proportional to the size of path coefficients. 



 

 
Mapping Light Intensity and Other Environment Data Layers 

Figure 4A and B shows the distance data layers used for spatial predictions of seed productivity. 
The resulting light intensity map predicted by the artificial neural network (figure 4C) explained about 
81 % of the variance in observed light intensity.  

 

 
 

Figure 4: A) Map displaying distance from forest edge, B) distance from road and C) the light 
intensity (mJ m-2 day-1) map predicted by the artificial neural network. 

 
Figure 5 presents the performance of the artificial neural networks in scatterplots of observed versus 

predicted canopy cover.  It revealed that the prediction of light intensity by the artificial neural 
network was unbiased. The t-statistic of the slope (b) and intercept (a) reveal that these did not differ 
significantly from 1 and 0 respectively (a = - 0.002, sea = 0.005, ta = - 0.361, b = 1.003, seb = 0.035, tb 
= 0.086, r2 = 0.81).  
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Figure 5: Scatterplot of light intensity reaching the forest floor observed in the field, against the 

predicted light intensity derived from a classification of a Landsat ETM+ image. 
 

Spatial Prediction of Seed Productivity of Chromolaena odorata 
Although biomass of the forest under-storey vegetation and grazing intensity were two variables 

influencing the seed productivity of Chromolaena, we could not include this in our spatial prediction 
of Chromolaena seed productivity. The reason was that it proved to be difficult to predict the spatial 
variability of this factor from remotely sensed variables, only light intensity, forest canopy density, 

A B C



 

distances from road forest and forest edge could be utilized for spatial prediction of Chromolaena 
odorata. Hence, we used regression and selected the best fitting model:  

 
10Log Y+1= 0.79 + 0.35* X1 - 0.0014* X2 - 0.00009* X3 ……… (2) 

Where, Y is seed reproduction index, X1 is light intensity, X2 is the distance from road to the forest 
interior and X3  is the distance from edge to the forest interior.  

 
This model explained 75% of the variation in 10log (Y+1). We inverted this model to map seed 

production index (10Log of number of seeds) of Chromolaena odorata in the Chitwan region of Nepal 
(figure 6). Chromolaena currently present along the forest edge and road, however, it has a high 
potential to substantially increase its range. It could potentially invade large areas of the forest interior 
which are climatically suitable for seed production. 

 

 
 

Figure 6: Map displaying the seed production index (SPI) of Chromolaena odorata. 
 

DISCUSSION 
In this research we demonstrated the possibility to map the seed production of a forest under-storey 

invasive species. Light intensity was the predominant factor in the models used to predict seed 
production. This study shows that seed productivity of Chromolaena increases exponentially with 
light intensity.  

 
As we mentioned earlier, our results indicated that Chromolaena was not always present above or 

absent below light threshold we established. Results have shown that when cover of Chromolaena is 
not limited by light intensity other limitations could be closed under-storey vegetation. The under-
storey biomass is significantly and negatively correlated with cover and ultimately with invasion 
success of Chromolaena. High under-storey vegetation decreases amount of light intensity reaching to 



 

the soil. Chromolaena achenes are positively photoblastic, hence few or no seedlings emerge under 
dense vegetation canopy (Erasmus, 1985). Furthermore under-storey vegetation increases inter-
specific competition where successful incursion of Chromolaena seedlings is almost impossible.  This 
suggests that even if the forest canopy were open, successful establishment of Chromolaena 
population would be doubtful. Chromolaena may be a strong invader in disturbed forest areas. 
However, Chromolaena populations in more stressful (low light) environments appear sterile. In 
Chitwan, Nepal, plants that have matured beyond the seedling stage with some potential to flower are 
only present in an area that receives transmitted light at least above 6.5 (mj /m2 /day).  

 
The productive populations of Chromolaena have been found to differ significantly along the 

distance gradient from the road towards the interior of the forest. Only source populations have been 
restricted to the disturbed areas. However, vegetative populations had probably once become 
established via dispersal from road edges, grazed and disturbed sites, where a continuous flow of 
surplus seeds is produced and transported to the new environment. We noted that, notwithstanding 
suitable light conditions, Chromolaena was absent in natural gaps in the forest in the well protected 
Chitwan National Park. Here other native grass species reached a height of 2m, thus limiting the 
possibility of Chromolaena to establish and rise to dominance. Outside these well protected areas 
however, the forest under-storey was intensively grazed. In these areas the density and height of the 
grass and herb layer was generally much lower. We thus concluded that under suitable light 
conditions grazing might break the suppression of Chromolaena by native plant species. 

 
Reproductive success in many species is determined by physical factors such as light, moisture 

nutrient availability or distance related seed dispersal mechanisms. Spatial distribution of these factors 
are increasingly available or can be mapped using GIS and remote sensing (Austin et al., 1996; Baker 
et al., 2000; Corsi et al., 2000; Dennis & Brusven, 1993; Guisan & Zimmermann, 2000; Kerr & 
Ostrovsky, 2003; Robinson & Valentine, 1979; Stone et al., 1997). Our study showed how these 
physical factors linked to GIS and remote sensing techniques in mapping the distribution and 
productivity of an invasive species. The invasion success in suitable habitat and limitations in 
stressful environment as presented here could be highly useful as studies on response of invasive plant 
species to its environment appear extremely limited (Hobbs & Huenneke, 1992; Stohlgren et al., 
1999).  

 
The seed production approach taken in this study could be well applied to other invasive species. 

Incorporation of remote sensing and GIS techniques with species biometry would yield instantaneous, 
useful, cost effective, multi-scale and temporal information on productive population of an invasive 
species. Segregation of the Chromolaena population into productive and non productive habitat could 
significantly reduce control cost by allowing one to concentrate control efforts to manage habitats so 
as to curtail the spread of invasive species. In this respect the immediate benefit of this research has 
been to contribute to the knowledge base of land managers by providing improved information on the 
spatial segregation of source and sink populations of the Chromolaena odorata, which will support 
efficient habitat ranking to restore invaded areas and protect non-invaded ecosystems.  
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