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ABSTRACT

The map requirements (constraints) can be intexgrey computer programs using their basic
embedded functionalities. There are a huge numberonstraints available to define the
objective of various generalization outputs. Sonfetle constraints contain high-level
knowledge which is not easy to interpret. This meachuge amount of efforts to implement
those constraints. The fact that many constraistge hsomething in common makes the
implementation per constraint a waste of resoulidee paper proposes to decompose the
constraints into more basic units, so as to in&rtrose constraints more flexible and reuse the
already developed functionality as much as possible

1. INTRODUCTION

This work is motivated by the effort of enabling@mated evaluation of generalization output,
which aims to give insight into the overall qualdf generalized data and comparing different
generalization solutions regarding specific mapuiginents and map tasks (Ruas, 2001;
Mackaness & Ruas, 2007). The quality of generadinabutput is specified in terms of map
requirements. To automate the process of evaluatiap requirements should be defined and
formalized in a machine-interpretable manner. Havethe formalization is not always an
easy task, since map requirements might involvé-hégel knowledge which is difficult to
formalize and interpret. This paper presents arragmh to formalize map requirements by
decomposing them into different types of low-ledalowledge. Then a framework for
automatic interpretation of the formalized map iegpents is presented. The basic assumption
is that, in order to cover all possible output mapsere are infinite map requirements which can
be described by countable sorts of low-level knolgée The formalization and interpretation at
knowledge level rather than at requirement levél provide a more flexible framework for
automated evaluation.

The work will only focus on the formalization antterpretation of map requirements without
addressing how the requirements will be evaluafsttion 2 reviews previous effort on
defining map requirements for generalization owgp(gection 2.1). And data enrichment
techniques for automatic interpretation are deedriln section 2.2. Section 3 proposes a
conceptual framework for formalization and intetpt®n of map requirements in the context
of automated evaluation. In section 4, we illugirabw the framework works by addressing a
special interpretation issue. The paper ends upeaibclusions in section 5.



2.  RELATED WORKS

2.1. Defining Map Requirements based on Constraints

Beard (1991) introduced the first time a constraged approach which aims to provide a
flexible framework for automated generalization.eTtonstraints provide a natural means to
define explicitly the requirements (objectives)geheralization output, without addressing how
the result needs to be achieved (Weibel, 1996; @eahd Dutton, 1998). The definition of

map requirements with constraints offers also thesibility to evaluate generalization output
(Burghardt et al., 2007). Galanda (2003) utilizedea of formalized constraints (e.g. metric,
topological) for automated evaluation before anteraf step of generalization iteration

however, the formalization of constraints is faonfr being fully machine-interpretable.

Burghart et al. (2007) found that the degree ofnfalization of constraints varies strongly and
some of them can not be interpreted by computersinStance, most metric constraints in their
case can easily be formalized while shape congdraire insufficiently formalized. They also

argued that all information that is added to geimton process by humans need to be
formalized.

2.2. Data Enrichment Techniques for Automatic Interpretation in Map Generalization

Huge gap still lies between data representation dath interpretation for automated
generalization. Well-structured data can be inttgal automatically to some extent but still has
a lot of implicit information which could only benterpreted visually (Ruas, 1998; Sester,
2000). The understanding of spatial data depenmdeliaon contextual relationships in a scene
(e.g. the adjacency and neighborhood informatiohjckv need to be explicitly modeled.
However, it is arguable whether this kind of infation is best stored or calculated on demand
(Ruas & Lagrange, 1995). Due to the fact that thetext or salient feature is always temporary
and changing with the purpose and scale of mappand Edwardes (2006) pointed out it is
more useful to compute contextual information omded. Meanwhile, they agreed also that
the design of application-specific spatial databad®uld be supported by semantics modeling
(e.g. ontologie3, since semantic properties cannot be deduced fgeometry. As for
contextual especially structural aspect, considerptogress has been made. The recognition
of spatial concepts (e.g. shape, bend structuieimity, alignment, and cluster) is made
possible by adopting auxiliary data structures,hsas Delaunay Triangulation Voronoi
Diagram and Minimum Spanning TregGold, 1994; Jones et al., 1995; Regnauld, 199GtA
al., 2000; Ai, 2007). Besides the enrichment meigmanin spatial aspect, enrichment in
semantic aspect has already been carried out. ¥@mpe, Stoter et al. (2007) discuss the
design of a semantically-rich multi-scale data ntofler facilitating (semi-)automated
generalization and producing coherent topographi@lthses across designated scales. The
UML-based data model shows the possibilities tondize constraints with Object Constraint
Language (OCL) at schema level, while the integii@h of these formal constraints still
depends on the functionalities of GIS systems. Phger attempts to build a link between the
description and interpretation of cartographic ¢aists.



3. A FRAMEWORK FOR THE FORMALIZATION AND AUTOMATIC
INTERPRETATION OF MAP REQUIREMENTS

3.1. Knowledge Decomposition for Constraint Formalizatio
Motivation of the Decomposition

In algorithm-driven generalization, different typesknowledge in constraints were mixed up
and hardcoded into algorithms. The knowledge in algorithm cannot be reused for the
situations with even slight difference from theigasd one (Steiniger, 2007) or for other parts
of the generalization system. For instance, therga®on of bend structure can be used both
for simplifying sinuous river and for generalizimggouping contour lines on the surface.
Normally, different algorithms were developed sepely and namettiver simplification’ and
‘contour line generalizationrespectively. But this is not a modular approatie structure
knowledge in this case should be detached from wsgtn&nowledge and be used
independently for multiple purposes.

For the purpose of automated evaluation, one ainstis evaluated by one measure and
treated as a whole (Galanda, 2003). One main disadge of this approach is that, when new
constraints are added new measures have to beigeees The constraint might be very
complex, and it is also true for the design of esponding measure, which always involves
repeated implementations for at least part of tkistiag algorithms. If different types of
knowledge in algorithms can be decomposed and mmguded independently, the previous
algorithms in a system can be reused as much agfms

Knowledge-based Decomposition of Constraints

The decomposition of generalization knowledge iuliferent types of knowledge was
discussed by previous work (e.g. Ruas and Lagrad§85). The authors decompose
constraints into five type of knowledge: Geometric knowledgeontains basic knowledge of
geometry type, length, area, distance, orientattm,2)Topological knowledgeontains well-
defined elements like contain, meet, intersectitisjpint, and other topological relationships. 3)
Semantic knowledgévolves information about meaning of geographigjeots and their
interactions, such as Building is accessed by Rtgublogic and semantic). Brocedural
knowledgeimplies what actions (operators) to take underci§ipecircumstances. 5) At last,
structural knowledgelescribes characteristics of spatial organization.

Principles of knowledge-based decomposition are:

- Decomposed knowledge should be formalized for &rrtecognition, as well as its
context and hierarchical relations (Liischer e2@Q7)

- High-level concepts (e.g. peninsula) in constradhisuld be decoupled into different
low-level knowledge and their interrelation

- Low-level knowledge means it can be interpretediégmgnted by automated
generalization or evaluation systems (operatioegliirement)

Structural knowledgevas frequently discussed in the past and it hidareit implications. For
instance, structural knowledge was referred to escribing aesthetic and visual balance



(Weibel, 1996), which is difficult to define and asire. Some may define structure knowledge
as describing spatial and semantic order as wéfiesinterdependencies (AGENT, 1998).

For the sake of clarity, we defirstructural knowledgén our research aselations concerned
with spatial arrangement/ordering of the sub-olgetitat form the relationsFor example,
ring/star-shape of road network is composed of eoted segments with different length and
orientation; grid alignment of building clusters ferm by the certain configuration of
individual buildings; shape of geometric objectdetermined by its vertices and their spatial
distribution. According to the number of featuresdlved,structure knowledgean be divided
into intra-structure (e.g. shape, bend of individual geometries) amigr-structure (e.g.
alignment, pattern, distribution, density of a groof objects). Againintra-structurecan be
divided further intolinear structureand non-linear structure The latter one considers not
linear sequence but the context of the structuresa-dimension space (e.g. hierarchical bend
structure as will be discussed in section 4.3).

Multiple uses of structural knowledge (roles) candistinguished:

- It acts as objective of generalization and evatuate.g. detect small bends; preserve
the balance of building density in different area)

- It acts as the identification of specific situasqiecontext), which helps the selection of
operators, parameters, etc. (e.g. different constvalue in different context)

- It acts as basic analysis tools for interpretingggaphic meaning from spatial data.

One problem is how to aggregate the decomposed jphren constraint together for the
interpretation of this constraint.

3.2. Automatic Interpretation Framework

Overview of the Framework

Procedural Cartographic
Knowledge Requirements
Decomposed into /
» 4
Metric Topological Structural Semantic
Knowledge knowledge Knowledge Knowledge Create rules
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Intermediate Tool Box Results of measurements:
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Figure 1: Conceptual framework of machine-based form@izand interpretation of cartographic
requirements for automated evaluation.




Figure 1 shows basic framework for automatic imetation and implementation of constraints
(i.e. cartographic requirements). The framework poses three major layers. The first layer is
cartographic requirements, which are specified jyglieation domains and decomposed into
low-level knowledge. The second layer is intermtdlayer, which is used for interpreting the
constraints based on the low-level knowledge. Maduation layer makes the third layer.

In the motivation part of section 3.1, we mentioiledt a constraint is used to be treated as a
whole when it is evaluated. In that case, evalnaigstem can be designed as a two-layered
architecture, where the intermediate layer in Fegliis dismissed and constraints are validated
directly by evaluation system. While in this propdsframework, the intermediate layer is
introduced for automatic interpretation of consttaiand the evaluation of a constraint can be
performed by the reasoning of the low-level knowledWithin this layer, several elements
should be paid attention to: a) measures itbabox are designed against the low-level
knowledge but not on constraints; b) iaference enginshould be developed to perform the
reasoning process; c¢) the rule of the inferencequ® is created by analyzing the syntactic
structure of cartographic constraints. Note tietmetri¢ topological, structural and semantic
knowledgeare first measured by theolbox The results of measures then enter into the
inference engingvhich at last interprets the constraint.

Predicate Logic and Terminological Reasoning for Automatic | nterpretation

We analyze the roles that different types of knolgkeplay in constraints, and then discuss two
levels of inference faced in the process of machemed interpretation. Firstly, let us observe
some concrete constraints with semantics informaticscale 1:50k:

Feature type Geometry Attribute Attribute value (partial)

Data model Road Line Type inter-settlement’, ‘intra-settlement

(partial)

‘individual’, ‘building block’,

Building Polygon Type ‘settlement’, ‘industrial’

Constraint inter-settlement road should be contained by settlear@htneet at the

Constraint 1 boundary of settlement building.

Constraint building size should be at least 0.04 map‘mm

Preferred actionindividual buildings in urban district with size < 0.04 nrap?
should be eliminated; individual building in rural distrigtiwsize from 0.01 to 0.04
map mni should be enlarged to 0.04 map fam

Constraint 2

Stoter et al. (2008) pointed out that preferredbast(procedural knowledge) suggested in map
requirements should be added as part of the camtstravhich will improve the description of
generalization output. In Constraint 2, preferrations are added. As for interpretation,
Constraint 1 is simpler since all elements are nm&chnterpretable and semantically adequate,
where thetopological knowledgean be formulated by Line-Region relations (e.gefhofer

& Mark, 1995). While constraint 2 is not machingeimpretable since high-level concepts such
as ‘urban district’ and ‘rural district’ cannot bderred from the data model.



Analyzing the syntactic structure of cartographinistraints gives insights into how the low-
level knowledge is organized logically in the caastts. This step is good for translating the
constraints intgredicate logic which can be used by tlference enginé the last section. In
this paper, we propose to usabject subjectmodifier (s_modifie}, predicate object and
object modifier (o_modifie) to describe syntactic structure of constrainter Example,
constraint: “intra-settlement road should get as¢edndividual building” can be expressed as
follows (pseudo formal language):

Accessg(Building | Type (Building) = ‘individual’, Road | Type (Road) #itra-settlement= True

[subject — Building

[s_modifiet — Type (Building) = ‘individual’
[objeci — Road

[o_modifiet — Type (Road) = ‘intra-settlement’
[predicatg — Accesy(...) =True

Subjectand object refer to map objects expressed in constraiptedicate describe the
conditions to which the properties of objects datienships between objects should adhere
(e.g.Size (buildingl) > 0.04 map mfj1 modifier has the functionality of filtering thsubjects

or objectsby setting conditions to them. For exampemantic knowledg€ype (Building) =
‘individual’) or structural knowledgé€Context (Building) = ‘rural district) can be used as different
modifiers The syntactic structure of constraints is illatd in Figure 2.

Another kind of reasoning is also important for tagomatic interpretation process. That is
terminological reasoning as defined in Haarslev et al. (1994). If we obsemwestraint 2, it is
easy to find that themodifier ‘urban district’ is an ill-defined concept, whiatannot be
interpreted. The concept can be formalized by delomgiit into lower-level knowledge such as
size, shape, proximity distance, density of buigiin their local context. Similar formalization
was discussed on topics of urban building structewognition by (Lischer et al, 2007).
Terminological reasoningims to identify and classify the instances in daésed on the
knowledge used to describe certain concepts. Thid kf reasoning is implemented by
incorporating a set of rules with spatial analyteishniques (e.g. spatial reasoning/structural
recognition techniques). In case of constrainhi, teasoning process is needed for identify the
concept of ‘urban district’.

optional
>

subject predicate
. -

] <
' “a v True
predicate ‘

T

False

Figure 2: Syntactic structure of constraints

Within the proposed framework (i.eference enginge predicate logic reasonings employed
to see if certain condition is satisfied (syntaéicel of constraints)Terminological reasoning
occurs at lexical level of constraints, isebjectsobjectsand concepts imodifiers in case that
they are not well-defined. Note that masedicatesmentioned here are spatial predicate, and



the type of the results are either numerical orlam. Besidegredicatesin constraints can be
1-nary, binary andn-nary respectivelyl-nary predicateevaluates the constraints on one object;
binary predicatedescribes the constraint between 2 objects;nandry predicatedescribes the
constraints on groups of objects. Several exanmgrkegiven to demonstrate thugedicate logic
(pseudo formal language):

Size(Building) > X map mrA

Access(Building, Road) =True

Density (target building group) = énsity (initial building group) * X %

Exist (Building | size (BuildingYJ [a, b]and Context (Building) = ‘rural district’) =True

Where, size and exist are two 1-nary predicatesaccess is dinary predicateconcerning
topological constraintdensity is an n-nary predicate The lastpredicate logicmeans if
buildings in rural district with size in [a, b],ah they should be preserved. But thedifier.
context (Building) = ‘rural district’ should be interpretehroughterminological reasoning

4. A SPECIAL INTERPRETATION ISSUE: BUILDINGS AT THE EN D OF
PENINSULA

In this section, the framework is applied to a &lanterpretation issue to show the flexibility
of the framework.

4.1. Problem Statement

In coastal area cartography at small scale, thexecartographic requirements liképads
leading to a building at the end of peninsulas nmegtbe omitted’and“buildings at the end of
peninsula should be preservedThese requirements can be expressed using thee-abo
mentioned approach (pseudo formal language):

C1 Exist (Building |Context (Building) =‘peninsula) = True, where

[subject — Building;
[s_modifiet — Context (Building) =‘peninsula;}
[predicatg — Exist (...) = True;
C2 accesqBuilding, Road) #rue, where
[subject — Building;
[objeci — Road;
[predicatg — Access (...) = True

All the elements in these two constraints can bgdd with syntactic symbols described in the
second part of section 3.2. The form of the comgBas likely to be interpreted by computers.
Take C2 for example, it is evaluated with high level oftemation based on topological
relation predicate logic However, it is not the case f&@1l since thes_modifier: context
(Building) = ‘peninsula’ is not well-defined, especially the concept ‘péninsula’. Since
‘peninsula’ is not stored as attribute of polygamsiatabases. Even the meanindabfthe end

of' in natural language is not clear, which is inteted differently according to different scales
and culture. But this is out of the scope of traper.



4.2. Formalization of ‘Peninsula’ with Low-level Knowledge

Geographical phenomen@reninsula’is defined in natural language as “a piece of lduad is
bordered on three sides by water. It can alsolieadland, cape, island promontory, bill, point,
or spit”. The expression contains various synonysnanod ambiguous terms. In order to be
machine-readablepeninsula’ could be defined as a geometric bend structureliies or
polygons) of coastal line that is adjacent to Hattd and sea feature. This definition makes use
of structural and semantic knowledgexplicit. We use a semantic model to demonstiaite t
formalization (see Figure 3).

Structural knowledge size

compactness

Bend structure ——yp> Pog’ggg of ||
A depth
\
mouth width
Cover \

Part of \\ N\

Semantic knowledge \ Be outside of
A

Land feature

Coastal line

Seafeature |

Figure 3: Semantic model gfeninsula’ its low-level knowledge and interconnections.

The figure shows what a ‘peninsula’ is, by diffaréypes of low-level knowledge and their
interconnectionsPeninsula’is abend structurehat is gpart of acoastal line it is represented
by thepolygon of that bend structurevith land featureinside and sea featureoutside; the
bend polygon ofpeninsula’is specified by a set of descriptors accordingpplications (only
few of them are listed here). In this model, we os®nly structural andsemantic knowledge
and spatial relations between them. In practieemetric knowledgghould be also involved.

Terminological reasonings suggested for triggering structure recognitiechniques to tag
polygons of bend and then identifying the geo-faétpeninsula’ The adopted techniques are
in the following section and will be implemented §yatial analysisoolboxat evaluation end
as proposed in section 3.2.

4.3. Bend Structure Recognition Technique

Detection of bend structure: The description of bend structure has long besnudsed and
investigated, since bend structure is frequentlynébon linear and polygonal in the context of
map generalization. There are a lot of techniquesdetecting bend structure. We use a
technique that was proposed by Ai et al. (2000)tbocapability of detecting bend structure at
different levels of detail bypelaunay TriangulationThe technique is illustrated in Figure 4.
Detailed discussion will not be covered by thisgrap



Figure 4: Detection of bend structure. 1: trian\gulation ardacheristic point detection; 2: bend
detection; 3: hierarchical bend structure; 4: binary tepeesentation of all embedded bends.

Characterization of bend structure: In the case study, we adopt size, compactness,inde
mouth width and depth of bend for characterizingead structure. The computation of mouth
width and depth is based on triangulation and skelanalysis (see Ai et al., 2000). With the
advantages of the hierarchical representation ofl lstructure, all these characteristics can be
derived at different levels of detail accordingdifferent applications. Table 1 outlines the
chosen characteristics and their corresponding unes.s

Characteristics Measures

Size size =area (polygon); polygon is enclosed by
bend segment arshse line | /.

“ the ratio of the area of the polygon over the O i
Compactness circle whose circumference length is the same

<mp.= 1.0 cmp.=0.7

index as the length of the circumference of the L

polygon” (Wang and Mdiller, 1998) amp=0T  cmp=054
Mouth width width = lengthi{ase ling N
Depth depth = lengtttrend ling (Ai, 2007)

Jo—
]
width

Table 1: Measures (terrain unit) for characterizing bendtstre.

4.4. ldentification of ‘Peninsula’

Figure 5 illustrates the whole process of machiagel identification ofpeninsula’ by linking

the low-level knowledge introduced in section 4.ghvihe technique in section 4.3. One can
hardly identify the polygon ofpeninsula’ without semantic knowledge like land and sea
feature, since it is ambiguous to infer on whidhesihe ‘peninsulas’ reside based on structural
knowledge only (lower right picture). While this aigion could be made by the following
reasoning on semantic and topologic relations:

meet(bend polygon, sea featur@)d coverby (bend polygon, land feature)true

A similar expression with slight change semantic knowledgeill help machines to identify
‘bay’ (e.g. cove and harbor):

meet (bend polygon, land featurahd coverby (bend polygon, sea feature}rae



The resulting area presented here are still veughipand the candidates can be refined with
different criteria (e.g. size, mouth width, dep#ic.) specified by users according to different
applications.

= o placename_paint
= & road_line

= & coastal_line

= 7 land_feacls

= 7 sea_paly

feature types in data model coastal area

.

triangulation ‘peninsula’identified

Figure 5:'Peninsula’identification

A further analysis based on the hierarchical bénectire description will give the possibility
of interpreting the whole sentencéuilding at the end of peninsulaAnd this will not be
discussed in detail in this paper.

5. CONCLUSIONS

The paper proposed a framework for the formaliraimd automatic interpretation of map
requirements for automated evaluation. Followirgfilamework, high-level knowledge in map
requirements can be formalized into machine-readalt-level knowledge, so that they can be
interpreted by evaluation system. The proposed dveonk was demonstrated by a special
interpretation issue, which showed that furtherlenmgentations for this topic is needed. Future
work includes: 1) testing and using a formal largguto represent map requirements under the
proposed framework (the use of an ontology langisagens to be promising); 2) research on
how the proposed framework can be implemented amddecomposed map requirements can
be used for evaluation.
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