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Abstract—The paper presents a computational model of spatial
autocorrelation based on a Voronoi-like auxiliary structure. It
shows that the Voronoi-like partition of map objects can be
used to discern spatial patterns (e.g. clustered or dispersed) of
geographic phenomena. In this paper, we transform the problem
of characterizing the patterns for different geometry types (i.e.
points, curves, and polygons) into a process of calculating
spatial autocorrelation based on the auxiliary partition units.
The method is shown to be successful for the designated tasks.
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I. INTRODUCTION

In the geo-spatial information domain, spatial patterns
in vector data (i.e. points, curves, and polygons) are of
great importance. Here Spatial patterns are described in
terms of how disperse spatial phenomena are distributed in
a two-dimensional space; they are traditionally visualized
and analyzed by maps [1], [2]. The Pattern analysis of map
objects can provide insight into many processes (e.g. in
geography, urbanization, soil, crime, and social sciences)
where spatial component plays an essential role [1]–[3]. A
well-known application of this analysis is in discovering
the source of the London Cholera Epidemic of 1854 [4].
In addition, the spatial patterns of various map objects are
crucial for the map generalization process, and some of the
patterns (e.g. network patterns) should be preserved in the
process (e.g. in an urban context) [5]. However, few methods
are capable of describing the patterns of points, networks,
and polygons in a quantitatively and objectively way.

Unlike the visual inspection of maps, spatial
autocorrelation—a family of non-graphical indicators—is
commonly used to characterize1 spatial patterns [2];
it measures the degree to which the spatial objects are
intercorrelated in space [6]. However, most of them can only
be applicable to raster data or a few representations, i.e. the
point patterns and the patterns of variables associated with

1The meaning of ‘characterize’ in this paper is ‘describe in a quantitative
and objective way’.

adjacent geographic units (e.g. administrative boundaries),
and the indicators have various limitations [3], [6]–[8]. To
characterize spatial point patterns, for example, the Nearest
Neighbor Index (NNI) and Ripley’s K can be used to
characterize the point patterns [1], [9], but the NNI index
varies greatly depending on the boundary defined for the
points [10]. Another statistic is the quadrat analysis of
point features, which divides the study area into a regular
grid; yet [7] shows that this method is not well suited
for analyzing point patterns, the result of this method is
unpredictable when the size of the grid is changing. This is
also noted by the author of [10] that the quadrat method
only yields promising results when an optimal grid is
determined. For the spatial patterns of variables associated
with adjacent polygonal units, commonly used statistics
include Moran’s I, Geary’s C, and joint count analysis.
Moran’s I is, among these others, the most widely adopted
statistic of spatial autocorrelation [7]. Although it can
be used together with the quadrat analysis to summarize
point patterns, the problem remains that an optimal grid
has to be identified. While some other related methods
can be found in the literature which can characterize the
network features, such as fractal dimension on networks2

and the Candy model [11], the former aims to describe
the self-similarity in networks and the latter treats the
line segments in a network as a result of a marked point
process constrained by an interaction model [11]. Few
applications of both fractal dimension and the Candy model
are available for charactering whether a network is clustered
or not. Above all, few of these above-mentioned methods
are able to characterize spatial patterns for a set of curves
(e.g. networks) or disjoint polygons, which not only are of
particular interest for this paper but also have a wide range
of applications in e.g. crime analysis, urbanization process,
and automated map generalization.

To overcome the above deficiencies, especially the com-

2http://en.wikipedia.org/wiki/Fractal dimension on networks
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mon inability to characterize spatial patterns for curves and
disjoint polygons, we propose a novel approach to calculate
spatial autocorrelation for points, curves, and polygons.
The underlying hypothesis is that the characterization of
spatial patterns for various geometries can be achieved by a
Voronoi-like partition of the geometries.

The key idea is as follows. After partitioning the space
by Voronoi-like Diagram, we obtain a non-overlapping and
exhaustive partition of the study area, and each partition unit
contains a single feature (e.g. a point, curve, or polygon).
The process of characterizing patterns for the underlying
geometries is then transformed into a process of quantifying
the spatial autocorrelation for the partition units. In this
paper, we adopt Moran’s I coefficient to calculate spatial
autocorrelation based on the partition units. This way, this
spatial autocorrelation could be extended in a way that
enables the characterization of spatial patterns for e.g. point
symbols, areal buildings, and river or transportation net-
works, in an objective and consistent manner.

In the reminder of this paper, we first introduce the
statistical basis of Moran’s I coefficient to make it clear what
this coefficient is and how it can be used in characterizing
spatial patterns (Section II). Then a computational model is
presented in Section III, which integrates the idea of Moran’s
I coefficient with a Voronoi-like structure. This model can
characterize spatial patterns for points, curves, and polygons
in a consistent way. The experimental results in Section IV
validate the proposed model. Finally, the paper ends with
discussion (Section V) and conclusion (Section VI).

II. FUNDAMENTALS OF MORAN’S I COEFFICIENT

As mentioned above, Moran’s I coefficient is widely used
in quantifying spatial autocorrelation in the literature. We
will now introduce how to calculate the I coefficient based on
the above-mentioned materials [3], [6], [7], [9]. The Moran’s
I is defined as follows:

I =
N

∑
i

∑
j, i�=j Wij(Yi − Y )(Yj − Y )

(
∑

i

∑
j, i �=j Wij)

∑
i(Yi − Y )2

(1)

where N is the number of the variables Yi associated with
spatial units indexed by i in the study area; Yi and Yj are the
values of Y associated with unit i and j respectively (see
different colors in Figure 1); Y is the average of Y ; Wij

is a weighting function measuring the spatial contiguity of
locations i and j. Spatial units in Moran’s I are usually rep-
resented by polygons that are topologically adjacent to each
other (Figure 1). For example, administrative boundaries are
commonly used spatial units.

The I coefficient presented above is a global index of spa-
tial autocorrelation, which has several important properties.
Firstly, the index evaluates whether the pattern expressed is
clustered, dispersed, or random. A Moran’s I value (|I| ≤ 1)
near +1.0 indicates clustering (Figure 1, right end) while a

Figure 1. An illustration of Moran’s I coefficient (Modified from the
source: ArcGIS 9.2, Moran’s I, http://edndoc.esri.com)

value near −1.0 indicates dispersion (Figure 1, left end).
When the value is not significantly different from 0.0, there
is no spatial autocorrelation: the variables associated with
spatial units is completely random [6], [7]. Secondly, the
polygonal units based on which variables are collected must
be non-overlapping and exhausting the study area [7].

Another important issue is the determination of the
weighting function (Wij). In the simplest case, topological
contiguity is a popular way to calculate Wij . The function
is defined as:

Wij =

{
1 if i, j are 1st-order neighbors

0 otherwise
(2)

Note that the first-order neighbor is a relationship that
holds for those spatial units who are topologically adjacent
to each other; Wij can be either symmetric or asymmetric.
Other options to define Wij include area, common boundary
length, distance (e.g. 1

d2 ), higher-order neighbor, and their
combinations [3], [7]. Most of them need the support of
geometric algorithms.

Different from common applications of Moran’s I which
analyzes the patterns of variables associated with topologi-
cally adjacent spatial units, we aim to explore a pragmatic
way to characterize how disjoint or connected geometries
(sets of points, curves and polgons) are intercorrelated in
space. The spatial units of these geometries are later on
specified by the Voronoi-like structure.

III. A VORONOI-LIKE COMPUTATIONAL MODEL

To achieve our goals defined in the Introduction, a
Voronoi-like computational model integrating the idea of
Moran’s I statistic (Section II) is presented in this section.
We first define the basic geometries and topology required
for the proposed model in Section III-A. After partition-
ing the space by skeletonizing the conforming Delaunay
triangulation, the Voronoi-like partition of the underlying
geometries are formed (Section III-B), based on which the
elements of Moran’s I statistic (i.e. the variable Y and
weighting function Wij) can be defined (Section III-C).

206242242275275117119119119



A. Basic geometries and topology

Let S be a finite set of points; L be a finite set of curves;
A be a finite set of polygons (S,L,A is in R

2). Note that
a curve li ∈ L commonly defined in vector data consists of
a set of connected closed linear segments (see the definition
of linear segments in [12]); a curve can either have at most
one common point (i.e. two endpoints coincide) or have no
common point at all. We use CDT in R

2 to denote the
conforming Delaunay triangulation [13]. CDT is constructed
on these primitive geometries respectively. In the case of
points, CDT is nothing but the usual Delaunay triangulation
for a finit point pattern

In [12], the Voronoi diagram for a set of segments is
defined as the set of points ∈ R

2 that are closer (or at equal
distance) to segmenti than any other segment in the set,
where the Voronoi cells for segments and their endpoints
are treated separately. We adapt this definition to the case
of a set of curves and polygons, with a different treatment
to the Voronoi cells of endpoints. We define the Voronoi-
like structure as an approximate realization of the Voronoi
diagram for curves and polygons. Its construction is outlined
in Section III-B. In our definition, all points in a curve or
edges of a polygon are treated as a whole when constructing
the Voronoi-like structure.

Topological relationships of the sets (relationships that
should be preserved for elements in a set) are crucial for
the consistency of this model. The definitions and notions
of interior (x◦

i ) and boundary (∂xi) of a geometry xi are
adopted from the Point-Set Topology [14] to define the
required topology, where xi ∈ {S ∪ L ∪ A} is an instance
of any geometry type. Illustrations are shown in Figure 2.

1) Topology of L: Basic topology for L where its con-
taining curves are disjoint is: ∀ li, lj ∈ L, i �= j : l◦i ∩l◦j = ∅,
where 1 ≤ i, j ≤ |L|(the number of L); in the case of
network features, an additional rule must be added: ∀ li ∈
L,∃lj ∈ L, i �= j : ∂li ∩ ∂lj �= ∅. These topological rules
make it impossible to intersect any two curves in L without
adding nodes to intersections. A node (ni ∈ N ) can thus be
defined as a point that coincides with boundaries of at least
two curves: ∃ li, lj ∈ L, i �= j : (ni ∩∂li �= ∅)∧ (ni ∩∂lj �=
∅). The concept of interior, boundary, and node in the
occurrence of curves are illustrated in Figure 2a. Note that
a curve has two boundaries, i.e. the two end vertices, and
that nodes only occur in network features.

2) Topology of A: The boundaries of a polygon (∂ai) can
be seen as a closed curve, where one end vertex coincides
with the other. The internal topology of polygons in the
paper is relatively simple: ∀ ai, aj ∈ A, i �= j : ai ∩ aj = ∅,
meaning that all polygons can neither touch nor overlap each
other, i.e. they are disjoint. The interior and boundary are
displayed in Figure 2b.

3) Topology of CDT : The topology of CDT is defined
with respect to the primitive geometries. An important rule
that has to be kept is that: ∀ ti ∈ CDT , si ∈ S, li ∈ L, ai ∈

boundary

interior
node

(a) Topology in a curve case (inte-
rior, boundary, and node)

interior

boundary

(b) Topology in a polygon case

interior

boundary

(c) Conforming Delaunay Triangulation

Figure 2. Illustrations of primitive geometries and topology

A : (t◦i ∩ si = ∅)∧ (t◦i ∩ li = ∅)∧ (t◦i ∩ ∂ai = ∅). It means
that no interior of any triangle intersects points, curves, or
the edge of polygons. The extent of CDT is the union of
all its triangles which forms a polygon, and the interior and
boundary of CDT refer to those of this polygon respectively.
These two concepts and the relationship between a CDT and
a set of curves are demonstrated in Figure 2c.
CDT is constructed with Steiner Points [13] added to

curves or edges of polygons, aiming at keeping the shape
of triangles as right as possible. According to [15], the
additional points on the geometries will improve the quality
of the partition units derived in Section III-B.

B. Partitioning the geometric space with a Voroni-like struc-
ture

Now we will describe later in this section the first
step of the proposed model, i.e. to partition the geometry
space covered by a passage of triangles in the conforming
Delaunay triangulation, resulting in the Voronoi-like
partition. The partition for points is specialized into
calculating the Voronoi diagram for them, thus it will
not be described in detail. Here we mainly focus on the
procedure of partition for curves. Later in this section, we
will show that this procedure can be generalized to cover

207243243276276118120120120
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Figure 3. Classification of triangles in the Delaunay triangulation

the case of polygons.

Based on the primitive geometries defined in Sec-
tion III-A, five types of triangles that are crucial for the
consequent partitioning procedure are identified and illus-
trated in Figure 3. The triangle types are defined as follows:

T-I This is a ti ∈ CDT that satisfies: ∂ti ∩ nj �= ∅
and |{lk ∈ L | dim(∂ti ∩ lk) = 1}| = 2, meaning
that at least one node coincides with a vertex of
the triangle, and edges from exactly two curves
coincide with the edges of the triangle.

T-II triangle satisfies: ∂ti∩nj �= ∅ and there are always
two vertices of ti which coincide with two vertices
of a same curve.

T-III For each triangle, it is possible the case that each of
its vertices coincides with more than one curve. For
each vertex in a T-III triangle, there is at least one
coincident curve differs from the curves coinciding
with the other two vertices of the triangle.

T-IV triangle has all its vertices coincided with some
curve, though some other curves may coincide with
them.

T-V is the type of all the remaining triangles, and is the
white color triangles in Figure 3.

Note that if the CDT is constructed upon polygonal objects
as defined in Section III-A, only T-III, -IV, and -V are pos-
sible. This is due to the absence of nodes, or of intersections
between polygons.

1) Skeletonization patterns: Partitioning is based on the
skeletonization of all types of triangles except the T-IV
triangles, because this type is always inside polygons or the
bends of curves, and is therefore regarded to be the private
space of these geometries. Four skeletonization patterns are
described as follows (see also Figure 4).

First of all, new skeleton points are usually determined
at the middle of triangle edges (notated as MP). The
skeletonization of a T-I triangle is shown in Figure 4a. The
skeleton starts from a node coinciding with the triangle, to
the opposite edge on the triangle. A T-II triangle is a place
where a skeleton has to be divided into two branches, as the
skeleton is entering a place occupied by two objects (Fig-
ure 4b). Likewise, a skeleton starting from the barycenter of

(a) Type I pattern (b) Type II pattern

(c) Type III pattern (d) Boundary pattern

Figure 4. Four skeletonization patterns

2

1

Figure 5. Examples of partitioning scheme for a network feature

a T-III triangle always have three branches (Figure 4c), since
the triangle is occupied by three objects. When a skeleton
is approaching to the boundary of the CDT , as is depicted
in Figure 4d, it must be divided into two branches pointing
toward opposite directions. The skeletons of T-V triangles
are formed by consecutively connecting the MP pairs on two
edges of each T-V triangle.

2) Partitioning scheme: The next step is to put all the
skeletonization patterns into a partitioning scheme described
as follows and demonstrated in Figure 5.

1) The partitioning starts from a T-I triangle and ends
with a T-III, another Type I triangle, or the boundary
of CDT (No. 1 in Figuer 5);

2) Alternately, it starts from a T-III triangle and ends with
a T-I, another T-III triangle, or the boundary of CDT
(No. 2 in Figuer 5);

3) During step 1, and 2, the skeletonization pattern de-
scribed in Figure 4b must be deployed in case of
entering those T-II triangles.

4) The procedure repeats the first three steps until all
the T-I and -III triangles have been visited. Using
the information collected during the skeletonization
process, e.g. the left and right objects associated with
each skeleton, the partition units are then formed by
connecting adjacent skeletons around each object.

Note that for the partition of polygons, step 1 and 3 are
ignored, as there is no triangle of T-I and -II in such a case.

208244244277277119121121121



(a) A set of polygons (b) A set of curves

Figure 6. 1st-order neighbor in the Voronoi-like structure (the red bold
shapes are target objects; the gray partition units are the 1st-order neighbors
of the target objects)

The resulting partition is termed Voronoi-like structure
as it is derived from a Delaunay triangulation structure in
a similar way in which the Voronoi diagram is generated.
The Voronoi-like structure for various geometry types is
demonstrated in Section IV (Figure 7). An observation of
the partitions indicates that there is an intrinsic relationship
between the distribution of the partition units and the pattern
of the original geometries. Hence they can be used as an
indirectly indicator to characterize the spatial patterns for
these geometries.

C. Defining the variable and weighting function

1) The Variable in Moran’s I: We introduce two measures
based on the partition units for defining the variable Y in
Moran’s I statistic. They are the area and the individual
density of partition units. The individual density is defined
as follows:

DensityS = 1/AreaPU (3)

DensityL = LengthL/AreaPU (4)

DensityA = AreaA/AreaPU (5)

where Equation 3, 4, and 5 measures the density of a point,
curve, and polygon in S, L, and A, respectively; AreaPU

denotes the area of the partition unit of the geometry;
LengthL and AreaA stand for the length of the curve and
the area of the polygon in question, respectively.

Note that both the area of partition units and the individual
density can be used to calculate Moran’s I coefficient for
characterizing the patterns of these geometries, as shown in
Section IV.

2) The weighting function: For simplicity and clarity
reasons, we only examplify the use of the first-order
neighbor (Equation 2) as the weighting function. The
first-order neighbor relationship can be clearly defined
based on the proposed Voronoi-like structure. That is,
the first-order neighbor for points are represented by
adjacent Voronoi cells, and curves and disjoint polygons
by adjacent Voronoi-like cells. For curves and polygons,
more specifically, those two objects that are connected
directly by at least a Delaunay edge or by a node (in

the case of curves) are first-order neighbors, while those
otherwise are not (see Figure 6 for example). Information
on the first-order neighbors of geometries are stored in the
Voronoi-like structure.

Until now we can say that the basic computational model
has been complete. The experiment carried out on a set of
datasets in Section IV verifies the usefulness of this model
for various geometry types. Also the interpretation of results
is given with respect to the idea of spatial autocorrelation.

IV. EXPERIMENTAL RESULTS

The major aim of the section is to validate the proposed
extended spatial autocorrelation method, and to explore
its descriptive power in characterizing the spatial patterns
for various features. In the experiment, the computational
model was implemented in a interactive map generalization
system, called DOMAP, written in OBJECT-ORIENTED C++.

The results of the partitioning algorithm for networks and
polygons are illustrated in Figure 7. Here, dataset No. 1 is
a river network data and dataset No. 2 is a set of polygons
at map scale 10k (1:10000).

A. Evaluation of spatial patterns

1) Patterns of points: Four point datasets exhibiting three
hypothetical spatial patterns, i.e. regular, complete spatial
randomness, and clustered, are shown in Figure 8.

Moran’s I coefficient was calculated using the proposed
model; individual density was selected for the variable Y .
Note that the use of area measure has a similar effect on the
I values in the case of point patterns. The values of the I is
listed in the Table I.

Table I
THE CALCULATED I VALUES FOR THE HYPOTHETICAL POINT PATTERNS

Point patterns

Dataset No. 3 4 5 6
I density 0.32 0.01 0.74 0.74

The computed I clearly distinguishes clustered point pat-
terns from dispersed ones. The higher the value, the more
clustered the pattern is. An exception is the value for the
dataset No. 3. It seems plausible that the value (0.32)
indicate a clustered distribution, while the dataset exhibit a
perfect regular pattern visually. A possible account for this
is that the Voronoi units laying on the boundary are clipped
in our implementation, which thus makes the boundary units
smaller or much denser than others (Figure 9, a darker color
indicates a denser unit). This effect makes the distribution a
bit clustered for these boundary units. In the experiment, we
also calculated the coefficient for a similar point pattern (i.e.
20 × 20 points aligned on a quadrat grid), the result is 0.25
indicating also a bit clustered. Note that the boundary effect

209245245278278120122122122



(a) Dataset No. 1: A branching river
network

(b) Skeletonization: A snapshot for
the portion in the rectangle of the
left figure

(c) The partition of the whole network

(d) Dataset No. 2: A set of buildings at 10k
(Source: Kadaster, the Netherlands)

(e) Skeletonization: A snapshot
(the rectangle portion in the left
figure)

(f) The partition of the set of polygons

Figure 7. Voronoi-like partitions

(a) Dataset No. 3: Regular (b) Dataset No. 4: Completely Ran-
dom

(c) Dataset No. 5: Clustered (d) Dataset No. 6: Clustered

Figure 8. Hypothetical point patterns

Figure 9. Boundary effect

influences the estimated I values for all datasets, but the
influence is even greater in the perfect regular point patterns.

2) Patterns of curves: Since to our knowledge there is no
comprehensive studies on characterizing the spatial patterns
of curves and disjoint polygons in terms of dispersion, there
seems to be no way to give standard hypothetical patterns for
such features. As a result, we validate the calculated values
based on the common human perception.

The datasets used here is dataset No. 1, 7, and 8. The latter

(a) Dataset No. 7 (b) Dataset No. 8

Figure 10. Network features

210246246279279121123123123



two are shown in Figure 10. Both area and density measures
are used to calculate the variable Y , and the resulting I
values are listed in Table II.

Table II
THE I VALUES FOR DIFFERENT NETWORKS

Network patterns

Dataset No. 1 7 8
I density 0.25 -0.03 0.49

area 0.36 0.28 0.74

The above results reflect, regardless of the choice of
measures, the ordinal relationship between the three datasets
in terms of dispersion: dataset No. 7 ⇒ No. 1 ⇒ No. 8
(from lower to higher clustering). They are consistent with
our perception. For instance, the north-east part of dataset
No. 8 is a clustering center, while the branching river (dataset
No. 1) is not as clustered.

It is worth noting that the use of different measures for
calculating the I for curves shows deviations between the I
values. The I value of dataset No. 8 based on area measure
indicate a significantly high level of clustering, it however
cannot be validated with quantitative methods. A general
observation is that, the I value based on the area of partition
units for each dataset (1, 7, and 8) is larger than the value
based on the individual density, indicating a higher level of
clustering for these datasets. It can be explained according
to Equation 4 that, considering the length of curves reduces
the differences of Yi between neighboring units, and the
Moran’s I coefficient may reduce accordingly.

3) Patterns of polygons: The example datasets tested here
are two building datasets, produced by TD Kadaster, the
Netherlands. One is building features represented at scale
10K (dataset No. 2 shown in Figure 7d); the other is building
features represented at 50k (dataset No. 9), interactively
generalized from the dataset No. 2. The dataset No. 9 is
shown in Figure 11. We assume here that the dataset at
50k is a good abstraction of the dataset at 10k, and hence
the former is similar to the latter in terms of e.g. spatial
distribution.

The proposed spatial autocorrelation model was computed
on the two datasets, and the results are listed in Table III.

The results in the table indicate that, regardless of the

Figure 11. Dataset No. 9: Buildings at 50k generalized from dataset No. 2
(Source: Kadaster, the Netherlands)

Table III
THE I VALUES FOR THE SAME SETTLEMENT AREA (POLYGONS)

REPRESENTED AT TWO SCALES

Polygon patterns

Dataset No. (map scale) 2 (10k) 9 (50k)
I density 0.33 0.55

area 0.52 0.51

different measures used for computing the variable Y , both
datasets are to some extent clustered. This is coherent to our
perception. The clustering centers for the two datasets are
round the north-east part.

The I coefficient values based on the area of partition
units show that the degrees to which the buildings are
clustered for both datasets are almost the same. The values
based on individual density on the other hand, show that
the generalized dataset (No. 9) is much more clustered than
the base dataset (No. 2). This is mainly due to the fact
that during generalization, smaller buildings in the north-east
were enlarged to be more readable, and thus the densities
increase considerably. Meanwhile, the bigger buildings in
the south-west were left unchanged, so were the density
values. This makes the cluster center in the dataset after
generalization a much denser area, and hence increase the
Moran’I coefficient.

V. DISCUSSION

First and foremost, the experimental results show that
the proposed model extends the original capability of a
well-studied spatial autocorrelation method (i.e. Moran’s
I), so that it is able to characterize the spatial patterns
for points, curves (e.g. transportation networks) or disjoint
polygons (e.g. buildings) in a uniform manner. Most of the
existing quantitative spatial autocorrelation indicators are
not able to handle the latter two feature types. Specifically,
the proposed method is able to distinguish precisely and
objectively between dispersed and clustered patterns for
all the geometry types, providing insight to facilitate the
analysis of many spatial processes (e.g. transportation in-
frastructure or urbanization progress). In addition, the results
in the previous section show that the proposed Voronoi-like
partition overcomes some of the deficiencies reviewed in
the Introduction. Because the Voronoi-like partition forms
a native and unique subdivision of the geometric space
regardless of map scales, there is no need to decide an
optimal unit for the partition as in the case of quadrat
method or in calculating spatial autocorrelation for raster
data [7], [8]. Another advantage is that the computational
model can be readily equipped with Geary’s C statistic
instead of Moran’s I, in applications where one concerns
more sensitively about local deviations [3]. Since from the
computational view, the elements for the two indices are
almost the same [3].

211247247280280122124124124



While the use of different measures (i.e. area and indi-
vidual density of partition units) for the variable Y in the
I coefficient affects the calculated I values, especially for
curves and polygons, we consider both measures reasonable
as the difference lies in how people view the spatial patterns.
In the case of area measure, the spatial distribution is
regarded as a property that concerns mainly about locations,
while individual density views the spatial distribution as a
combination of the shapes of objects and their locations.

The proposed method is not sufficient and necessary for
comparing the similarity of different distribution in map
generalization, although the result for evaluating the polygon
patterns appears that it is more appropriate to use area
measures for comparing the similarity between different
polygon distributions. That is, while two similar distributions
may have similar I values (e.g. the I values obtained in
Table III using area measure), similar values does not
necessarily follow that these two distributions are similar
(e.g. the I values for dataset No. 5 and No. 6 in Table I
are the same, but the two distributions are totally different).
Unfortunately, none of the existing approaches satisfy this
requirement, and therefore, further research into this area is
still needed.

In the context of charactering spatial patterns, the ap-
proach can be extended in many ways. In addition to area
and individual density measures, one can use the main
directions of building polygons to define the variable Y ,
and then follow the proposed method to characterize orien-
tation patterns. This pattern is of great importance for map
generalization in urban areas [5]. Another extension is to
improve the weighting function to be more comprehensive.
Since the higher order neighbor can be defined on the
Voronoi-like structure [16], more weighting functions can be
defined according to the discussion in Section II. Despite the
descriptive ability, i.e. to characterize the spatial dispersion,
the proposed model can be used to identify clusters (in
transportation networks) and denser areas (in urban districts)
by user specified density thresholds. This is highly useful in
e.g. the urban planning and crime analysis.

From a statistical point of view, this current work is still an
empirical study illustrating how the underlying idea works
and its potential applications. No justified explanations why
Moran’s I can be much larger than zero even for a perfectly
regular point pattern is available at this stage. A possibility
is due to the edge effects which can be easily accounted
for by excluding the boundary units in most situations.
However, this will leave the Moron’s I undefined for those
perfectly regular point patterns, since consequently all the
remaining Voronoi-like cells in such a pattern will have
exactly the same area or density and hence the denominator
of Equation 1 will be zero. Besides, current results only
show the ordinary relationship between different patterns in
terms of clustering degree. Further work needs to be done
to clarify which values of this extend Moran’s I should be

considered as indicating clustering in contrast to regularity.

VI. CONCLUSION

The paper proposes and implements a Voronoi-like model
of spatial autocorrelation for characterizing spatial patterns
in vector data, including points, curves or networks, and
polygons. In this work, Morans I coefficient, a well-known
spatial autocorrelation statistic in geography, is extended
with this new model to be able to calculate spatial pat-
terns for various geometry types in a uniform manner. The
experimental results show that this Voronoi-like partition
is successful in characterizing spatial patterns in terms of
how dispersed these various geometries are distributed in
space. That is, a higher value indicates a higher level of
clustering, and vice verse. At the end of the paper, strengths
and limitations of the approach are discussed; applications
and further investigations are suggested.
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