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1.1 Introduction
Most educational research data have a multilevel character. Typically, lower-level
observations are nested in students at a second level, students nested in classes at
a third level, classes nested in schools at a fourth level, and so forth. The multi-
level structure implies multiple levels of analysis to account for differences between
observations, between students, and between other higher-level units. A straightfor-
ward linear analysis is not possible due to dependencies between observations in
each cluster, since the clustering leads to a violation of the common assumption of
independently distributed observations.

When ignoring the nested structure of such data, aggregation bias (i.e. group-
level inferences are incorrectly assumed to apply to all group members), also known
as the ecological fallacy, is most likely to occur. Furthermore, the estimated measure-
ment precision is most often biased. Partly in response to these technical problems,
hierarchical linear or multilevel models emerged. They are characterized by the fact
that observations within each group vary as functions of group-specific or lower-level
(micro) parameters. These parameters may vary randomly across the population of
groups as a function of second-level (macro) parameters. The multilevel model takes
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the hierarchical structure into account, and variance components are modeled at each
sampling level. As a result, homogeneity of results of students in the same class
is accounted for since they share common experiences. Specifically, the multilevel
model can describe relationships between one or more dependent variables, school
and teacher characteristics (teacher’s attitude, financial resources, class size), and
student characteristics (achievements, social background).

After tackling computational problems, the appropriateness of multilevel mod-
els in educational research studies was shown by Aitkin and Longford (1986). From
that time, multilevel modeling of hierarchically structured data received much atten-
tion and important contributions were made (e.g., Goldstein, 2003; Longford, 1993,
Raudenbush & Bryk, 2002; Snijders & Bosker, 2011). Besides technical innovations
to estimate appropriate error structures, attention has also been focused on testing
hypothesis of within-cluster, between-cluster, and cross-level effects.

1.1.1 Multilevel Modeling Perspective on IRT

With the increasing popularity in multilevel modeling, IRT models were synthesized
with multilevel models in various ways. In the straightforward multilevel approach
on item response theory modeling (Adams, Wilson, and Wu, 1997), the level of ob-
servations are defined as the first level, and the population distribution of students as
the second level. Such an approach adheres to the multi-stage sampling design that is
often used to collect educational data. When the data are collected through a complex
multistage sampling design, standard analysis methods that rely on the assumption
of independently and identically distributed observations are not suitable. Therefore,
in the 1980s, techniques were developed for univariate multilevel response models
(e.g., Bock, 1989; Raudenbush & Bryk, 1988). In the 1990s, relevant statistical tech-
niques were developed, which supported the extensions of techniques for multilevel
regression modeling of multivariate responses.

Others (e.g., Raudenbush & Sampson, 1999, Muthén, 1991), took a slightly dif-
ferent perspective and integrated the latent variable measurement model in a more
general multilevel model. The general idea is that a multilevel design can include
various latent variables at different levels. And when observing item responses as
level-1 units, the response model automatically defines the lowest level of the multi-
level model. Note that in educational research, latent variables are often measured at
different levels. For example, for the purpose of accountability, latent variables are
to be measured at the teacher, school, and district level, besides the student level.

IRT models were also viewed from the perspective of generalized linear mixed
models (GLMM; see Skrondal & Rabe-Hesketh, vol. 1, chap. 30; Muthén and As-
parouhov, vol. 1, chap. 31; De Boeck & Wilson, vol. 1, chap. 34). In specific, in the
multilevel formulation of the Rasch model, the Rasch model is considered to define
the lowest level of the GLMM. The presentation of IRT models as GLMMs has re-
ceived much attention (e.g, Adams & Wilson, 1996; Adams, Wilson, & Wang, 1997;
Kamata, 2001, 2007; Pastor, 2003; Rijmen, Tuerlinckx, De Boeck, & Kuppens, 2003;
De Boeck & Wilson, 2004; Tuerlinkx & Wang, 2004). Various statistical computer
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programs supports the estimation of GLMMs, which made the modeling framework
directly accessible for different applications.

1.1.2 Bayesian Multilevel IRT Modeling

Developments in latent variable response modeling make it possible to model in a
flexible way the response observations, which often contain several complex char-
acteristics. First, response data are often sparse at the individual level. This sparsity
complicates an estimation procedure for obtaining reliable estimates of individual ef-
fects. The individual response data are linked to many respondents and by borrowing
strength from the other individuals’ response data, improved estimates of individual
effects can be obtained. In the same way, more accurate estimates can be obtained at
an aggregate level using the within-individual data. Second, response data are often
integer-valued. Responses are obtained as correct or incorrect, or obtained on a five-
or seven-point scale. The lumpy nature of response data requires a special modeling
approach since the standard distributional assumptions do not apply. Third, response
data are often obtained in combination with other input variables. For example, re-
sponse data are obtained from respondents together with school information, and
the object is to make joint inferences about individual and school effects given an
outcome variable. In a hierarchical modeling framework, different sources of infor-
mation can be handled efficiently, accounting for their level of uncertainty.

The extension of an IRT model to more than two levels (i.e., item response defines
level 1 and student level 2) is considered a multilevel IRT model. A typical exam-
ple is educational survey data collected through multistage sampling, where the pri-
mary sampling units are schools, and students are sampled conditional on the school
unit. Following Fox (2010), Fox and Glas (2001), and Aitkin and Aitkin (2011),
among others, a complete hierarchical modeling framework can be defined by in-
tegrating the item response model with the survey population distribution. Besides
item-specific differences, this multilevel item response model takes the survey design
into account, the backgrounds of the respondents and clusters in which respondents
are located. The heterogeneity between respondents is a typical source of variation
that is modeled with the respondents’ population distribution, which describes the
between-individual and between-group variability.

The Bayesian modeling framework provides additional features (Congdon, 2001;
Fox, 2010). First, it supports in a natural way extensions of common item response
models, where prior models at separate levels are described to account for differ-
ent sources of uncertainty, complex dependencies, and other sources of information.
This flexibility is one of the strengths, which makes it possible to handle more com-
plex sampling designs comprising complex dependency structures. Inferences can
be directly made at different levels from posterior distributions of individual-level
and higher-level parameters. Second, although the attractiveness of the Bayesian
response modeling framework was recognized in the 1980s (e.g., Mislevy, 1986),
Bayesian inference became feasible with the introduction of Bayesian computational
methods such as computer simulation and Markov chain Monte Carlo (MCMC) tech-
niques. The development of powerful computational simulation techniques induced a
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tremendous positive change in the applicability of Bayesian methodology. The mul-
tilevel IRT model combined with powerful numerical simulation techniques make
practical applications in educational test and survey research possible.

Multilevel IRT models accommodates the dependency typically found in hier-
archical data, but also the estimation of latent variables and their relationships with
explanatory variables at different levels. This chapter provides both a description
and application of Multilevel IRT models. New developments and applications in
this field will be demonstrated and directions for future research are given.

Besides the field of educational measurement, multilevel IRT models have been
applied in other research fields. Van den Berg et al. (2007) showed how a multilevel
IRT model can be applied in twin studies to account for measurement error variance
that would otherwise be interpreted as environmental variance. They demonstrated
that heritability estimates can be severely biased if analyses are simply based on sum
scores. He et al. (2010) used the multilevel item response model to measure hospital
quality and to assess its geographical variation. In this approach, hospital’s quality
was measured from different therapies, where a higher success rate corresponds to a
better quality. The observations provided information about eligible patients receiv-
ing the therapy (coded one) or not receiving the therapy (coded zero). Patients were
nested in hospitals, which were nested in geographical units. The IRT model enabled
the measurement of a single quality score for each hospital, while accounting for
differential measurement-specific weights. The multilevel component addressed the
multilevel structure of the data.

1.2 Presentation of the Models
1.2.1 Multilevel IRT Model

Assume a multistage sampling design, where schools j ( j = 1, . . . ,J) are sampled,
and subsequently students are sampled within each school j. Students’ abilities are
assessed using a test of I items. To ease the notation, a balanced test design is as-
sumed such that each student p (p = 1, . . . ,P) responds to each item i (i = 1, . . . , I).

Let Up ji denote the response of student p in school j to item i. For dichotomous
items, a two-parameter IRT model describes the conditional probability of a correct
response of student p to item i;

P
{

Up ji = 1;θp j,ai,bi
}
= Φ(ai (θp j−bi)) , (1.1)

where Φ(.) represents the cumulative normal distribution function. Furthermore, the
item discrimination parameter is denoted by ai, the difficulty parameter by bi, and
the latent variable by θp j, which represents the student’s ability.

The two-parameter IRT model in (1.1) defines the level 1 or observational
level of the multilevel IRT model. The level-2 component describes the within-
school distribution of abilities. Let level-2 explanatory variables be denoted by
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xp j = (x0p j,x1p j, . . . ,xQp j)
t , where x0p j usually equals one. The level-2 model is rep-

resented by

θp j = β0 j + . . .+βq jxqp j + . . .+βQ jxQp j + ep j,

=
Q

∑
q=0

βq jxqp j + ep j (1.2)

where the errors are independently and identically distributed with mean zero and
variance σ2

θ
. The regression parameters are allowed to vary across schools. Level-3

explanatory variables are denoted by wq j = (w0q j,w1q j, . . . ,wSq j)
t , where w0q j typ-

ically equals one. The random regression coefficients defined in Equation (1.2) are
considered to be outcomes in the linear regression at level 3,

βq j = γq0 + . . .+ γqswsq j + . . .+ γqSwSq j + rq j,

=
S

∑
s=0

γqswsq j + rq j (1.3)

for q = 0, . . . ,Q. The level-2 error terms, r j, are multivariate normally distributed
with mean zero and covariance matrix T. The elements of T are denoted by τ2

qq′ for
q,q′ = 0, . . . ,Q.

Within each school j, the abilities are a linear function of the student charac-
teristics x j plus an error term e j. The level-2 random regression parameters βββ j are
assumed to vary across schools as a function of the school predictors w j plus an error
term uj. Within each school j, the matrix of explanatory data x j is assumed to be of
full rank. The level-2 and level-3 components can be represented by a single equa-
tion by filling in (1.3) into (1.2), and by stacking appropriately the matrices. Then,
it resembles the general Bayesian linear model and allows x j to be of less than full
rank. Furthermore, not all level-2 parameters are necessarily random effects, where
some of them can also be viewed as fixed effects (i.e., not varying across schools).

1.2.2 The GLMM Presentation

The Rasch model with components that describe the between student and between
school variation is referred to as a multilevel Rasch model. The model permits the
measurement of latent variables at different hierarchical levels, while accounting for
the nested structure of the data at the level of students and higher levels. This model
can be stated as a generalized linear mixed effects model (e.g., Adams et al., 1997;
Kamata, 2001; Rijmen et al., 2003).

Consider the empty multilevel Rasch model, which does not have student or
school predictors. Let πp ji denote the probability of endorsing item i for student p in
school j. A logit or probit link function defines the relationship between the log-odds
of the probability πp ji and a linear term with the item difficulty and ability parameter.
Let indicator variable Dp jk equal one for student p when k = i, and zero otherwise.
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Then, the level-1 model is represented by

log
(

πp ji

1−πp ji

)
= ηp j0 +

I

∑
k=1

ηp jkDp jk,

where ηp jI = 0 to ensure that the design matrix is of full rank. The ηp j0 can be
interpreted as an overall effect across items and comprehends the ability level of of
student p in school j. The level-2 and level-3 model is represented by,

ηp j0 = γ00 + r0 j + ep j

and ηp jk = γ0k for k = 1, . . . , I− 1. The error terms r0 j and ep j are normally dis-
tributed and represent the between-student and between-school variation, respec-
tively. The model can be extended with student and school predictors.

1.2.3 The Multiple Group IRT Model

Closely related to the multilevel IRT model is the multiple group IRT model. In some
research studies, interest is focused in several specific groups. The selected groups
are not considered to be sampled from a larger population. However, respondents
are randomly sampled from each group. Bock and Zimowski (1997) proposed the
multiple group IRT model, defining a group-specific population distribution, to han-
dle the clustering of respondents in groups. This population distribution representing
the clustered respondents completely specifies the distribution of respondents in each
group. No assumptions are made about groups that are not selected. Inferences can be
made with respect to the sampled groups but not to some higher level of population
of groups.

When modeling the grouping structure of subjects using group-specific normal
population distributions for the latent traits, the multiple group model can be seen as
a natural extension of the two-parameter item response model. Azevedo, Andrade,
and Fox (2012) generalized the multiple group IRT model. In a Bayesian modeling
approach, other item response functions are considered such as the skew probit, logit,
and the log-log. The multiple group latent variable distribution is characterized by a
normal, Students t, skew normal, skew Students t, or finite mixture of normals.

This flexibility in item response functions and population distributions is param-
eterized by a mixture of different response functions (l = 1, . . . ,L) based on different
cumulative distribution functions (h= 1, ...,H), and different latent trait distributions
across items and groups. For a dichotomous response, the success probability of this
generalized multiple group IRT model is given by

P
{

Up ji = 1;θp j,ξξξi,ωωω
}

=
L

∑
l=1

H

∏
h=1

Flh (ηp j,ξξξi,ωωω)

θp j | ηηη j ∼ G(ηηη) (1.4)

where cumulative distribution function Flh has parameters, ωωω, and G(ηηη j) represents a
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continuous population distribution function, where ηηη j denotes the population param-
eters of group j. The model includes the well-known one-, two- and three-parameter
item response models using a probit, logit, loglog, Students t, skew probit, or skew
probit link function.

1.2.4 The Mixture IRT Model

In the multiple group and multilevel IRT model, it is assumed that the response data
are sampled from respondents nested in manifest groups. The groups are observed
entities such as schools and countries. The nested structure leads to additional de-
pendencies between response patterns. When the respondents are clustered but the
clusters cannot be observed directly, a latent class model can be used. The latent
class model can be used to capture the nesting of students in latent clusters and to
identify the associated additional dependencies.

Following Rost (1997), when student p is classified to latent class g (g =
1, . . . ,G), the success probability of a correct response is given by

P{Upgi = 1;θpg,ξξξi,g} = Φ(aig (θpg−big))

θpg | µg,σ
2
g ∼ N

(
µg,σ

2
g
)
, (1.5)

where θpg is the ability of student p in latent class g, aig and big are the class-specific
item discrimination and difficulty parameter, respectively. The class-specific mean
and variance parameter are given by µg, σ2

g, respectively.
The mixture IRT model has been used for detecting differential item functioning,

differential use of response strategies, and effects of different test accommodations.
When assuming measurement invariance, the mixture modeling approach is suitable
to identify unobserved clusters of students. Vermunt (2003), and Cho and Cohen
(2010), defined a multilevel latent class structure to model the latent clustering of
schools and the clustering of students within schools. The mixture proportions at the
school and student level can be modeled using explanatory information.

1.2.5 Multilevel IRT With Random Item Parameters

Item response data are cross-classified, which means that they are nested within stu-
dents and nested within items. The IRT model uses item characteristic parameters
to model the dependencies between observations due to the within-item clustering.
Thus far, attention has been focused on the clustering of students. However, the item
side of the multilevel IRT model needs to be correctly specified to make proper in-
ferences.

The within-item correlation structure can be specified with an hierarchical prior.
For the IRT model specified in Equation (1.1), a multivariate normal prior density for
the item parameters can be specified as

(ai,bi)
t ∼ N

(
µµµξ,ΣΣΣξ

)
I(ai > 0), (1.6)
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with hyper prior parameters

ΣΣΣξ ∼ IW (ν,ΣΣΣ0),

µµµξ | ΣΣΣξ ∼ N(µµµ0,ΣΣΣξ/K0).

This prior assumes that the item characteristics are measurement invariant, meaning
that they are equal across populations. As an extension to this multivariate normal
prior, prior distributions for item parameters have been discussed that account for
measurement variance. For a variant item, the item response function is not identical
across populations.

Different applications have been discussed, where items are assumed to function
differently across populations. Glas, van der Linden, and Geerlings (vol 1, chap. 26)
discussed item cloning, where items are generated by a computer algorithm. Varia-
tion in item parameters have also been discussed by De Boeck and Wilson (2004;
vol. 1, chap. 33) and De Jong et al. (2007). Verhagen and Fox (2013) discussed a
longitudinal IRT model for ordinal response data, where items function differently
over time, using random item prior distributions.

The prior in Equation (1.6) defines invariant item characteristics over groups. To
allow for slight variations in item functioning over groups, random item parame-
ters can be defined that allow for slight changes in item functions over populations.
Let group-specific item parameters (ãi j and b̃i j) vary from the mean (measurement
invariant) item parameters (ai and bi), and be distributed as,

ξ̃ξξi j =
(
ãi j, b̃i j

)t ∼ N
(
(ai,bi)

t ,ΣΣΣ
ξ̃

)
(1.7)

for j = 1, . . . ,J. Independent random item parameters can be defined when ΣΣΣ
ξ̃

is a
diagonal matrix.

The random item parameter specification in the multilevel IRT model induces an
identification problem. In each group, the group-specific mean ability and the mean
test difficulty are not identified. Therefore, the mean test difficulty is restricted to
be equal across groups such that between-group score differences are attributable to
differences in ability and residual differences in item functioning. This identification
rule has the objective to let the random item parameters explain between-group resid-
ual variance, such that the multilevel IRT model with measurement invariant item
parameters is the theoretical optimal model. In the same way, item discriminations
are allowed to vary across groups, where the average item discrimination is constant
over groups. The random item discriminations explains residual between-group vari-
ation in item discrimination, where the preferred case is measurement invariant item
discriminations but small fluctuations are allowed. Differences in item functioning
across groups can be explained by background differences (e.g., culture or gender
differences) as described in Verhagen and Fox (2013). It is also possible to allow for
cross-classified differences in item characteristics when, for example, cross-national
and cross-cultural response heterogeneity is present.
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1.3 Parameter Estimation
The Bayesian modeling approach gives a natural way for taking into account all
sources of uncertainty in the estimation of the parameters. The fully Bayesian frame-
work results in a straightforward and easily implemented estimation procedure.

Therefore, the multilevel IRT model requires prior specifications of all model
parameters. In Fox (2010), vague proper priors for the remaining model parameters
are defined. That is, non-informative inverse gamma priors are specified for the vari-
ance components. An inverse Wishart prior is specified for the covariance matrix.
Vague normal priors are specified for the remaining mean parameters. Then, a Gibbs
sampling procedure can be used to estimate all model parameters. Following Albert
(1992), an augmentation scheme is defined to sample latent continuous responses.
The item parameters and multilevel model parameters can be sampled directly from
the full conditionals given the augmented data, as described by Fox and Glas (2001),
and Fox (2010). Furthermore, several packages in R and WinBUGS can also be used
to estimate the model parameters. Cho & Cohen (2010) developed WinBUGS pro-
grams to estimate the multilevel IRT model, which includes mixture components.

In the GLMM presentation, various programs exist to estimate the model pa-
rameters. Tuerlinckx et al. (2004) compared the performance of different programs
(GLIMMIX, HLM, MLwiN, MIXOR/MIXNO, NLMixed, and SPlus) and found
overall similar results.

1.4 Model Fit
Posterior predictive checks provide a natural way to check assumptions of the model.
Therefore, discrepancy measures need to be defined that provide information about a
specific model assumptions. The extremeness of a fitted discrepancy measure given
the data is evaluated using posterior predictive data, which are generated from their
posterior predictive distribution. Discrepancy measures have been proposed to eval-
uate the assumption of local independence and unidimensionality. For an overview
to posterior predictive model evaluation (see Sinharay vol. 2, chap. 19). Posterior
predictive checks for evaluating IRT models have been proposed by Glas and Mei-
jer (2003), Levy, Mislevy, and Sinharay (2009), and Sinharay, Johnson, and Stern
(2006), among others.

Multilevel IRT models can be compared using the Deviance Information Crite-
rion (DIC). The DIC is defined as

DIC = D
(

Ω̂ΩΩ

)
+2pD

= −2log p
(

y | Ω̂ΩΩ
)
+2pD



DRAFT

10 Book title goes here

where ΩΩΩ represents the multilevel IRT model parameters and D
(

Ω̂ΩΩ

)
the deviance

evaluated at the posterior mean Ω̂ΩΩ, and pD represents the effective number of param-
eters and equals the posterior mean of the deviance minus the deviance evaluated at
the posterior mean of the model parameters. When ΩΩΩ =

(
ξξξ,γγγ,σ2

θ
,T
)
, the likelihood

of interest of the multilevel IRT model can be presented as,

p
{

u;ξξξ,γγγ,σ2
θ,T
}

= ∏
j

∫
βββ j

[
∏
p| j

∫
θp j

∏
i

p(up ji | θp j,ξξξi)

p
(

θp j | βββ j,σ
2
θ

)
dθp j

]
p
(

βββ j | γγγ,T
)

dβββ j, (1.8)

such that the fit of random effects are not expressed in the likelihood.

1.5 Empirical Example

Data of 2003 from the Programme for International Student Assessment (PISA) of
the Organisation for Economic Co-operation and Development (OECD) were ana-
lyzed to illustrate the multilevel IRT model. The PISA 2003 results and data can be
found at http://pisa2003.acer.edu.au. Following Fox (2010), performances of Dutch
students was investigated using various background variables. Furthermore, the ran-
dom item parameter multilevel IRT model was used to investigate measurement in-
variance assumptions across Dutch schools.

1.5.1 Data

From the PISA 2003 study, the Dutch student results in mathematics were inves-
tigated using the multilevel IRT model. Student performance in mathematics was
measured using 84 items. Students were given credit for each item they answered
correctly. Although some items were scored with partial credit, for this analysis all
item responses were coded as zero (incorrect) or one (correct). In PISA 2003 each
student was given a test booklet with clusters of items, and each mathematics item
appeared in the same number of test booklets. A number of 3,829 students across
150 Dutch schools were selected, where students with less than nine responses were
not included in the present analysis.

1.5.2 Model Specification

To investigate individual and school differences in student performances, an empty
multilevel IRT model was used. The following empty multilevel IRT model was used
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to analyze the data,

P
{

up ji = 1;θp j,ξξξi
}

= Φ(ai(θp j−bi))

θp j ∼ N(β0 j,σ
2
θ)

β0 j ∼ N(γ00,τ
2
00).

The three levels of the model were specified to identify the with-student, between-
student, and between-school variability. To account for measurement variance, item
characteristics were considered to be random item parameters.

1.5.3 Results

The parameters of the multilevel IRT models were estimated using MCMC, as imple-
mented in the package mlirt1. A total of 10,000 MCMC iterations were made, where
the first 1,000 iterations were used as a burn-in. The multilevel IRT model was iden-
tified by fixing the mean and variance of the scale to zero and one, respectively.

In Table 1.1, the parameter estimates of the empty multilevel IRT model are given
under the label Empty MLIRT. On the standardized ability scale, the between-student
variance was .43 and the between-school variability around .61. The estimated intra-
class correlation coefficient was around 59%. This represented the percentage of
variability between math scores explained by differences between schools. In PISA
2003, the estimated intra-class correlation coefficient varied from country to country,
with many countries scoring above the 50%.

The PISA 2003 results were computed using plausible values for the student’s
math abilities. Multilevel parameter estimates can be biased when point estimates
are used as a dependent variable. The plausible values facilitate the computation of
standard errors, while taking into account the uncertainty associated with the ability
estimates. The plausible values were obtained as random draws from the posterior
distribution of the ability parameters given the response data. Fox (2010, chap. 6)
showed that the multilevel IRT parameters estimates and standard deviations were
comparable to the multilevel model estimates using plausible values as outcomes.

The between-student and between-school differences in math performance were
investigated using background variables. At the student level, female, place of birth
(Netherlands or foreign), language (speaks foreign language most of the time), index
of economic, social and cultural status, were used as explanatory variables. At the
school level, the school-level mean index of economic, social and cultural status was
used to explain variability between the conditional average school performances. In
Table 1.1, the multilevel IRT model parameter estimates are given under the label
MLIRT. It was concluded that male students performed slightly better than the female
students. Native speakers performed better than non-native speakers with a migrant
background. Students from more advantaged socio-economic backgrounds generally
performed better. The school’s index of economic, social, and cultural status had a
significant positive effect on the school’s average score.

1The Splus and R package mlirt are available at www.jean-paulfox.com
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TABLE 1.1
Math performances of Dutch students in PISA 2003: Parameter estimates of the mul-
tilevel IRT models

Empty MLIRT MLIRT
Mean HPD Mean HPD

Fixed part
Intercept -.04 [-.17,.09] .02 [-.10,.14]

Student Variables
Female −.16 [-.22,-.11]
Foreign born −.28 [-.38,-.17]
Foreign language −.23 [-.34-,-.12]
Index .15 [.12,.18]

School Variables
Mean index .39 [.08, .70]

Random part
σ2

θ
.43 [.40,.45] .40 [.37,.42]

τ2
00 .61 [.47,.76] .49 [.38,.61]

FIGURE 1.1
Random item difficulty estimates of items one to five for the 150 Dutch schools in
PISA 2003

The multilevel IRT analysis were performed given measurement invariant items.
That is, the test was assumed to be invariant across schools. The multilevel IRT model
with random item parameters was used to investigate whether small deviations in
item functioning across schools would lead to a better model fit. Therefore, the empty
multilevel IRT model was generalized with random item parameters, and school-
specific item parameters were specified. Although the optimal preferred model was
the measurement invariant multilevel IRT model, the more flexible multilevel IRT
model with random item parameters could capture additional residual variance.

The estimated intra-class correlation coefficient was slightly lower and around
43%. However, the item parameter estimates hardly varied across schools and only
small variations in item discriminations were detected. For the first five math items
the average difficulty estimates were -.94, .17, .32, 2.21, -1.02, respectively. In Figure
1.1, the estimated item difficulties per item for each school were plotted for item one
to five. It can be seen that there was almost no variation in item difficulty across
schools. The school-specific difficulty estimates did not differ much and were not
significantly different from the average (Dutch-specific) item difficulty.
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1.6 Discussion
An overview is given of the multilevel IRT modeling framework, which general-
izes the two-level IRT model with an additional level. The psychometric literature
shows extensions where the student population distribution and/or the item popula-
tion model is extended. In both cases, an extra clustering of students and/or items is
modeled by an extra hierarchical level in the model. Generalizations have been made
to model different types of response data and different types of clustering, among
other things. The Bayesian modeling approach gives the possibility to use MCMC
methods for parameter estimation. Those methods enable a a joint estimation proce-
dure and via posterior predictive assessment a way to evaluate model assumptions.

The model has shown to be useful for school effectiveness research, where differ-
ences within and between schools are explored. Differences can be studied using the
item response data as outcomes at level 1, and student abilities as outcomes at level
2, while accounting for the nested structure of the data. The typical nested struc-
ture in school effectiveness research can be easily modeled via multilevel modeling
techniques.

Multilevel IRT models have been considered where the student variable of in-
terest is unidimensional. When multiple student abilities are involved in producing
the observed responses, a multidimensional IRT model can be specified such that
multiple student abilities are considered to be outcomes at level 2. This requires a
multivariate multilevel model at level 2. Such a modeling framework has been de-
veloped for modeling responses and response times to measure ability and speed of
working (see van der Linden, vol. 1, chap. 29).
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