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Abstract A methodology for the identification of an impact damage using guided
waves on a composite structure is implemented. Both numerical and experimental
results are used, and a graphical user interface is developed to visualise the
potentially damaged area. The latter allows, on top of detection, an assessment of
the location and severity of the damage. The input can be experimentally based or
calculated with the help of numerical models. Within this work, two numerical
models are presented, based on stacked-shell finite element approach and on
spectral element approach in time domain. The graphical interface allows the user
to choose the most suitable approach from various damage identification methods
using pitch-catch acousto-ultrasonics. The numerical models allow us to test a
variety of damage locations with variable extents. The quality of the models is
shown by a comparison of simulated and experimental data in time domain and
respective damage indices. Finally, the visualisation allows to focus on specific
areas, enhancing the analysis of multiple damages in a structure. The damage
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identification tool is a powerful tool in understanding the effects of various damage
scenarios on the time response data and together with the numerical model provides
a valuable input for model-assisted probability of detection (MAPOD).

Nomenclature

Ap Ripple amplitude
Ast Amplitude attenuation
D Diameter
D Damaged state (subscript)
DI Damage index
E Modulus of elasticity
F Frequency
f Filtered (subscript)
fa Actuation frequency
fc Cut-off frequency
G Shear modulus
H Thickness
H Healthy state (subscript)
i, j, k Index
I(x, y) Damage intensity as function of spatial coordinates
L Length
lpf Low-pass filter (subscript)
N Filter order or total number
Np Number of actuator–sensor paths
R(x, y) Relative distance as function of spatial coordinates
s(t) Time signal of piezoelectric transducer
S(ω) Frequency domain signal of piezoelectric transducer
T Time
tlayer Layer thickness
tPWAS Thickness of piezoelectric wafer active sensor
W Width
x, y Spatial coordinates
X(ω) Frequency domain function of low-pass filter
Β Scaling
Ν Poisson ratio
Ρ Correlation coefficient
ρv Volumetric density
ω Angular frequency
A0 First asymmetric guided wave
AS Application scenario
CFRP Carbon fibre-reinforced plastic
GUI Graphical user interface
IS Integration scenario
MAPOD Model-assisted probability of detection
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PWAS Piezoelectric wafer active sensor
S0 First symmetric guided wave
SEM Spectral element method
SS-FEM Stacked-shell finite element method

1 Introduction

The objective of application scenario 6 (AS06) of the SARISTU project is to
develop a tool to assess an impact damage in a composite structure. The assessment
relies on the use of integrated ultrasonic sensors, and the composite structures under
investigation are representative for a door surrounding structure. The methods
developed should be able to identify barely visible impact damages, effectively
translated to delaminations with a minimum radius 20 ± 5 mm: all smaller del-
aminations are in principle considered to be too small to be detected reliably, but all
larger delaminations are expected to be found as they pose a safety risk for the
component. The accuracy in location is specified to be ±10 mm.

The door surrounding representative composite structure is a quasi-isotropic,
prepreg-based composite skin structure stiffened with Omega stringers that are
cobonded to the structure. Within AS06, flat plates with and without stiffeners are
investigated as well as curved plates with stiffeners. The full-scale door surrounding
structure, as manufactured in the integration scenario (IS13), is also curved.

The tool has to have the functionality to support the inspection process and
decision-making process regarding maintenance and repair of structures.
A graphical interface is a prerequisite for this. The graphical user interface should
allow the user to analyse data, choosing various options related to the type of
analysis and region of interest, while not requesting in-depth knowledge on the
algorithms implemented. It should also provide a clear output to be used in, for
example (model-assisted) probability of detection—(MA)POD—analysis.
Visualisation of the data and the potentially damaged area is an important element
in the user interface.

The main principle of the damage assessment is that an acousto-ultrasonic signal
is used to interrogate the structure. Typically, this implies a windowed wave packet
containing a limited number (*3–10) of sine waves with a frequency in the order
of 50–500 kHz. The signal is subsequently registered by a sensor positioned at
some distance from the actuator. The way the signal is altered while travelling
through the material forms the base of the damage assessment. The signal is also
subjected to a number of environmental influences and noise. Signal processing
techniques are applied to the raw data signals to reduce noise and eliminate
crosstalk (the interference of signals of different channels, for example the actuation
signal and the sensor signal channels).

Piezoelectric transducers are employed as actuators and sensors. Here, a network
of transducers, referred to as a workspace, is considered, in which all transducers
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can act as actuator and sensor. If one transducer is assigned as actuator, the others
act as sensors. Each straight line from actuator to sensor is referred to as a path.
A full coverage of paths for the area enclosed by the transducers is obtained by
alternating the actuator. Note that each path provides information on the possible
presence of damage close to the path, but only the combination of paths provides
sufficient information to localise potentially damaged spot. This is partly caused by
the reversibility assumption: it is assumed that switching the actuator and sensor for
a path does not affect the resulting signal. Strictly taken, this assumption only holds
for the pristine situation, since damage will introduce nonlinearities [1]. The
assumption implies that the signal does not hold any information on the location of
the possible damage on the path. For that reason, each path is only measured once,
with each actuation frequency.

Damage assessment can be based on a single set of measurements (unrefer-
enced) or on the comparison between measurements of the pristine condition and
those of the current condition (referenced). The latter is used here, despite the fact
that it may be difficult in practice to define the pristine state, as this state depends on
environmental conditions: the pristine condition may not be representative if, for
example, temperature, humidity or loading are different during the measurement of
the current condition. However, the initial use of the tool is anticipated to be in the
inspection phase, allowing to create a limited window of variability in the envi-
ronmental condition: the aircraft will for example be on the ground, which provides
some control on the environmental conditions.

Various algorithms are available to assess the presence of damage based on the
comparison of pristine path signals and path signals from a structure potentially
containing damage. The ability to identify damage depends on multiple factors,
amongst which the frequency of actuation, the presence of stiffeners or transitions
on a path and the location of the damage. An assessment of the performance of a
large number of algorithms is therefore carried out. This assessment is briefly
discussed in this paper.

Initially, flat panels without stiffeners are used to test the methods, both
experimentally and numerically. This is motivated by the fact that the propagation
of guided waves in a structure built from anisotropic layers is not well understood,
in particular the response to the presence of damage and transitions such as a
stiffener. Numerical models can assist in shedding light on the phenomena occur-
ring when a wave travels through the material and encounters a flaw or transition in
thickness or fibre orientation. Two numerical methods are implemented: the
spectral element model (SEM) and a stacked-shell finite element model (SS-FEM).

2 Signal Processing and Damage Identification

The first task of the software developed for the acousto-ultrasonic damage identi-
fication is to load the data from a pristine and a potentially damaged case. This can
either be data from experiments or from numerical models. In the first case, a

582 R. Loendersloot et al.

r.loendersloot@utwente.nl



number of signal processing steps are required to prepare the data for the actual
damage identification. This paper does not intend to discuss the origin of some of
the distorting effects that are filtered during the signal processing phase, but merely
presents the solution as it is implemented. There are three important signal pro-
cessing steps:

1. Distortion of first few measurement points,
2. Zero offset and
3. Electro-magnetic crosstalk.

The first two are dealt with rather straightforwardly. The first few points (from
experience, the default value is set to 5) are ignored by setting them to zero. Note
that this corresponds to a time of 0.4 ns, given a typical sampling frequency of
12 MHz. The zero offset is corrected by subtracting the mean value (excluding the
first few points that were already set to zero) from the signal.

The electro-magnetic crosstalk poses more challenges. Without going in further
details, it can be stated that the length of the part of the sensor signal that is affected
by the crosstalk is related to the actuation frequency and the number of cycles in a
burst—be it not directly. A pragmatic approach would be to simply ignore the part
of the signal that is affected by the crosstalk. However, in some cases, the real
response of the sensor starts before the effect of the crosstalk has vanished.

To this end, a filter routine is implemented. It is assumed that the crosstalk signal
mainly contains the actuation frequency. This is a reasonable, but not entirely
correct assumption, as was shown by Moix-Bonet in a technical report issued in the
SARISTU project [2]. The problem with using a more accurate representation of the
actuation signal is that the number of cycles in the crosstalk signal does not cor-
respond to the number of cycles in the actuation signal (6 against 5 cycles).
Filtering only the actuation frequency will leave some high-frequency components
behind, but these are small compared to the actual sensor signal. Evidently, the
actuation frequency will also be present in the sensor signal, leading to a part of the
actual sensor signal being unintendently filtered in case there is overlap between the
crosstalk signal and the actual sensor signal. The overlap, if present, is small for the
cases investigated, justifying the assumption that the filtering will not affect the
damage identification. A flow chart of the filter routine is presented in Fig. 1.

The steps in the routine are visualised in Fig. 2. First, the raw signal (Fig. 2a) is
loaded, after which a low-pass filter is applied with a cut-off frequency fc of (by
default) 150 % of the actuation frequency fa (Fig. 2b). The software allows us to use
different models for the low-pass filter—essentially, those offered by MATLAB.
The filtered signal is shown in Fig. 2c, which is subtracted from the original signal
(Fig. 2a), yielding the filtered signal in Fig. 2d. The experimental data from a flat
panel with stiffeners are used for this illustration. An actuation frequency of 80 kHz
was used, leading to a cut-off frequency of 120 kHz. The maximum ripple in the
passband (f < fc) is set to 1 dB, while the attenuation of 80 dB is used for the stop
band (f > fc).

Once the raw data are processed, the damage identification algorithms can be
applied. The approach followed corresponds with the signal correlation analysis
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technique as described by Su and Ye [1]. First, a grid is defined, overlaying the
panel. The damage intensity I(x,y) at each grid point (x,y) is calculated, by assuming
a certain area of influence of the actuator–sensor paths. The damage intensity is
defined as follows:

Fig. 1 Flow chart of the electro-mechanical crosstalk filter

Fig. 2 Graphical overview of the crosstalk routine. Raw signal from experimental data from a flat
test panel with Omega stringers, actuation frequency 80 kHz, cut-off frequency 120 kHz, passband
ripple 1 dB and stop band amplitude attenuation 80 dB. a The raw signal; b the low-pass fitler;
c the low-pass filtered signal; and d the raw signal minus the low-pass filtered signal
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I x; yð Þ ¼
X

Np
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1� qkð Þ b� R x; yð Þ
b� 1

� �

ð1Þ

where ρk being the correlation coefficient of the kth actuator–sensor path, Np the
number of paths, β the scaling factor determining the area of influence and R(x,
y) defined as:
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where (xi,yi) and (xj,yj) indicate the locations of transducer i and j, respectively.
Typically, β is equal to 1.05. Su and Ye [1] use the correlation coefficient as an
indicator of damage. The correlation coefficient equals one if there is no damage
and is lower than one if there is damage (as the correlation between the signals will
be less).

The correlation function is not the only possible indicator of damage: there are
many methods to calculate a damage index (DI). Fourteen methods are imple-
mented and tested on their performance [3] next to the method based on the cor-
relation coefficient. The damage indices are based on signal’s intensity, time of an
event (e.g. time of flight), frequency domain expressions, signal energy, etc. In
every method, attributes of baseline (healthy) and currently acquired (unknown
health state) signals are compared to identify potential change in the structural
characteristics, which in turn would be an indication of damage. The performance
depends on the type of damage (i.e. how the signal is affected) and on the actuation
frequency. It is therefore difficult, if not impossible, to formulate definite conclu-
sions on the performance.

The methodologies implemented, along with their mathematical formulas, are
presented in Table 1. This allows the user to mutually compare methods and select
the best performing method for the case under investigation. An issue to address is
that the damage index that is calculated in most methods gives a value of zero if no
damage is present and tends to infinity (theoretically, in practice a large number) if
there is damage. The following relation applies between the value of the correlation
coefficient and the damage index:

qk ¼
1

DI þ 1
ð3Þ

The only exceptions are the signal amplitude peak ratio (SAPR) method and the
ratio of covariance matrix eigenvalues (RCME) method. In case of the SAPR
method, the damage index equals 1, rather than 0 in case of no damage, but also
tends to infinity in case of damage: the ‘+1’ in the denominator of Eq. 3 is dropped.
The RCME method gives a value between 1 and 0 for the healthy and damaged
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Table 1 Damage identification algorithms implemented in the software

Method name Abbr. Mathematical formula

1 Correlation coefficient CC
q ¼

PN

i¼1
SH;iSD;i�

PN

i¼1
SH;i

PN

i¼1
SD;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1
S2H;i�

PN

i¼1
SH;i

� �2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1
S2D;i�

PN

i¼1
SD;i

� �2
q

2 Signal amplitude peak
ratio

SAPR DI ¼ max SH½ �
max SD½ �

3 Signal amplitude peak
squared percentage
differences

SAPS
DI ¼ max SH½ ��max SD½ �

max SH½ �
� �2

4 Signal amplitude hilbert
transform maximum

SAHM DI ¼ max H SH½ �½ ��max H SD½ �½ �
max H SH½ �½ �

	

	

	

	

	

	

5 Signal sum of squared
differences

SSSD DI ¼
P

SH�SDð Þ2
P

S2H

6 Welch-based power
spectral density

WPSD
DI ¼

R 2�fex
0

PW SD½ �df�
R 2�fex
0

PW SH½ �df
	

	

	

	

	

	

R 2�fex
0

PW SH½ �df

7 Welch-based transfer
function

WTF
DI ¼

R 2�fex
0

TF SD½ �df�
R 2�fex
0

TF SH½ �df
	

	

	

	

	

	

R 2�fex
0

TF SH½ �df

8 Parametric (AR-based)
power spectral density

ARPSD
DI ¼

R 2�fex
0

PAR SD½ �df�
R 2�fex
0

PAR SH½ �df
	

	

	

	

	

	

R 2�fex
0

PAR SH½ �df

9 Parametric (AR-based)
resonance frequency
differences

ARRFD

DI ¼
f Hpeak � f Dpeak

	

	

	

	

	

	

f Hpeak

f H;Dpeak ¼ argmax
f

PAR SH;D fð Þ
 �
 �

10 Parametric (AR-based)
chi-squared statistic

ARCS DI ¼ dPT � dC � dP
dP ¼ PH � PD; dC ¼ CH þ CD

11 Cross-correlation-based
TOF percentage difference

CCTOF
DI ¼ tmaxCCH � tmaxCCDj j

tmaxCCH

tH;DmaxCC ¼ argmax
t

CCH;DðtÞ

 �

12 Cross-correlation
maximum percentage
difference

CCMPD DI ¼ max CCH½ ��max CCD½ �j j
max CCH½ �

13 Hilbert transform-based
TOF percentage difference

HTOF
DI ¼ tHmaxH � tDmaxH

	

	

	

	

tHmaxH

tH;DmaxCC ¼ argmax
t

H SH;D tð Þ
 �
 �

14 Discrete wavelet transform
approximation
coefficient-based DI

DWTC DI ¼
P

DWT SH½ ��DWT SD½ �ð Þ2
P

DWT SH½ �2

15 Ratio of covariance matrix
eigenvalues

RCME q ¼ 1� k2
k1
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state, respectively, like the correlation coefficient. Using Eq. 3 allows to use any
damage indicator in combination with the damage intensity I(x,y) as defined in
Eq. 1.

3 Software with Graphical User Interface

The routines to convert the raw data signals to a coloured contour plot indicating
possible damage locations are embedded in a software package with a graphical
user interface (GUI). The user can quickly analyse a set of measured responses,
without having to be an expert in the signal processing and damage identification
algorithms. It is however also possible to tune many of the variables, allowing a
more experienced user to perform a more detailed analysis of the data.

Both experimental and numerical data can be analysed with the GUI. It is
therefore, for example, possible to run a series of numerical analysis to investigate
the effect of specific damage characteristics on the capability of the damage iden-
tification process. A better understanding of these effects will enhance the inter-
pretation of experimental results (Sect. 6). An example of the analysis of data from
numerical models is presented in Sect. 5.

The GUI is structured in three sections: a section with buttons to toggle between
the different user control panels; a section for the user control panels; and a section
for graphical representations. There are five different user control panels, overlaying
each other and allowing the user to control the operations applied to the data. These
panels are as follows:

1. The file load panel,
2. The preprocessor panel,
3. The algorithms panel,
4. The data visualisation panel, and
5. The export panel.

Some additional functionality is embedded in the part with the graphical rep-
resentation, as well as in the part of the menu block. Note that one can only proceed
to the other sections of the software once a complete data set is loaded.

3.1 File Load

The software is developed to handle different types of input. Data that can be loaded
are experimental data from the ScanGenie system as used by the DLR and espe-
cially Airbus, experimental data from measurements from the University of Siegen
and numerical data from the models from the University of Siegen and the
University of Patras. The format of the data is different. Hence, the user first needs
to select the type of data. A distinction is made between geometrical data and
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signals from the transducers. Although currently not implemented, an additional
functionality is scheduled to be implemented to specify the geometrical properties
(partly) manually.

The signals from the transducers are restructured to obtain a memory efficient
and logical structure. The memory efficiency is significantly higher than the default
structure of the ScanGenie MATLAB export; this contains a fair amount of
redundancy, since the actuator signal is stored for each path, also if the sensor signal
from another path is obtained from the very same actuator signal. In general, a
number of transducer act as sensor each time a transducer is acting as actuator. All
sensor signals of a single actuation cycle are saved together with the actuator signal
of that cycle. This avoids redundancy and in the end allows the user to load multiple
cases at once, without running into memory-related errors or slow functioning of
the computer.

Fig. 3 File load panel. The file containing the geometric information is selected in the top part;
once loaded, the lower part of the panel becomes active and the signal data files can be specified
and loaded
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The panel in the software with all the options for loading the geometry and data
files is shown in Fig. 3. Note that a geometry file must first be loaded before it is
possible to load data files. Moreover, it is possible to analyse data files without a
reference or baseline file, although no damage identification algorithms are
implemented for this case, leaving only a limited number of functions available in
the visualisation section. Finally, one can also choose to load a configuration. A file
saved from a previous analysis is then loaded. It can contain anything from just the
geometry to the damage identification data. The ‘save’ button allows to save the
data that is in the program at that moment, creating a configuration file. This allows
the user to create a restart point at any time wanted.

3.2 Preprocessor

The signal processing steps described in Section 2 of this paper can be activated in
this part of the software (see Fig. 4). The user can decide to skip these, as, for
example, the numerical data do not show electro-magnetic crosstalk. It is also
possible to change settings of the signal processing steps, although it is recom-
mended to follow the default settings if one is not familiar with the signal pro-
cessing concepts.

The crosstalk filter takes the largest part of the preprocessor panel. Most
graphical elements are related to settings of the filter and will not further be
addressed here. It is however important to note that the filtering is first applied to a
copy of the data and shown to the user in the graphical visualisation panel on the
right-hand side of the GUI. Initially, only a limited set of signals is shown, due to
the large amount of signals. The user can select other signals to be shown by
selecting the signals in the list box next to the main graphical area. The filter is only
applied upon acceptance by the user; the original data are overwritten by the filtered
data, and the temporary data are deleted.

Finally, the grid for the damage plot has to be created. The default is a (nearly)
square grid, with a density based on the dimensions of the workspace; the number
of elements must be an integer number, and therefore, the edge lengths are set as
close as possible to a square grid by default. The ratio of the grid dimensions can
also be unconstrained, resulting in a rectangular grid, and the grid can also be based
on edge size rather than on a number of elements in each direction. Again, the edge
lengths are adjusted to obtain the nearest integer number for the number of elements
along the domain edge.

3.3 Algorithm

Once the data have passed through the necessary signal processing steps, a damage
identification method can be selected. The pop-up menu in this panel (see Fig. 5)

Damage Identification in Composite Panels … 589

r.loendersloot@utwente.nl



provides the possibility to select one of the algorithms listed in Table 1. It is not
possible yet to select more than one damage identification algorithm, although this
is foreseen to be implemented in future versions. Moreover, it is not yet possible to
change any of the parameters of the algorithms. Although not all algorithms have
variables that can be set, it may be of interest to fine tune specific algorithms.

The damage identification algorithms are applied to all combinations of refer-
ence and current data sets. If multiple reference data sets are used, the difference
between these data sets can also be analysed, which gives an indication of the

Fig. 4 Preprocessor panel. The signal processing steps are defined in the three sections on the top
of the panel, whereas the creation of the grid for mapping the damage intensity is controlled in the
bottom section of the panel
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scatter of the measurements. The same algorithms are used for this noise estimation
as are used for the damage identification, and again, all possible combinations of
data sets are analysed.

3.4 Visualisation

Various aspects can be shown in the graphical representation area. The visualisation
panel (Fig. 6) allows the user to control what is shown. First of all, the geometry can
be shown. This means the geometry of the entire panel, but also that of (one of) the
workspace(s). If a workspace is selected, the paths can be added to the plot.

Secondly, the raw data can be plot. The term ‘raw’ here refers to the time data of
the transducers that are stored, after the signal processing if applied. The actuator
and sensor signals are separated as are the reference and current state data, resulting
in a set of four graphs. The raw data plot is the only plot that can be made if no
reference data are loaded. In that case, only two graphs are shown.

The largest subpanel is the damage surface plot section. The damage intensity
I(x,y) is plotted as a coloured surface plot, using Eqs. 1 and 2. The colour indicates
the intensity, where blue refers to a low intensity (no damage) and yellow to a high
likelihood of damage. The absolute values of the damage intensities are given in the
colour bar that is either positioned below or aside the main plot. It is possible to
show the intensity for specific actuation frequencies, if multiple actuation fre-
quencies are used. Note that in general only a single actuation frequency is used per
actuator, such that an incomplete path coverage is obtained if not all actuation
frequencies are included. Multiple damage indices per path are available if multiple
actuation frequencies per actuator are used; the user can choose to plot the maxi-
mum, mean or minimum intensity in that case.

The intensity gives an indication of possible damage locations. However, it is up
to the user to set a threshold, as the absolute value of the damage intensity depends
on many variables, such as the type and location of the damage or the presence of
other damages, and no physical interpretation is available to set a general threshold.
A slider can be used to set the threshold. If a threshold is set, dynamic contour lines

Fig. 5 Algorithm panel. The algorithms to be used for the damage identification and the noise
estimation (if multiple reference files are loaded) can be selected individually
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are plot, indicating the border between the intensities below and above the
threshold. The contour lines are updated each time the threshold is changed.
A potentially damaged area can be selected by choosing a proper threshold value.
Square markers are added as well, indicating peaks in the damage intensity. A peak
is defined as a damage intensity value that is higher than the damage intensity of all
its surrounding points and higher than a preset (hardcoded) threshold. Once the
threshold is set, an area enclosed by a contour can be selected. The damage index of
the area is subsequently stored. The user can now either focus further on the area

Fig. 6 Visualisation panel. This panel permits the user to control the graphical output displayed
on the right-hand side of the GUI (not visible here)
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enclosed in the contour, by isolating it, or focus on other areas by excluding this.
The colour scaling of the intensity is updated after isolation or exclusion of the area
enclosed by the contour. Thus, in case of the latter, secondary potentially damaged
areas can more easily be identified: this procedure offers unique possibilities for
assessing multiple damages in the structure.

3.5 Export

The damage intensity indicates possible locations for the damage: to investigate the
likelihood that it concerns a real damage, the data need to be exported and sub-
sequently imported in a probability of detection analysis. The data to export are
controlled in the export panel (Fig. 7). Prior to be allowed to enter this section, at

Fig. 7 Export panel. Two different output files, both in ASCII format, can be exported. The
content of the files can be adapted by (de)activating the checkboxes
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least one damaged area must be identified, by setting a threshold for the damage
intensity and selecting an area enclosed by a contour. Two different export files,
both in ASCII format, can be exported:

1. Data file containing information on the damage intensity in the contour(s)
selected and

2. Data file containing the damage indices for each path.

The files start with a header providing information on the data files used, the date
the file was created and the dates it was appended (if). The damage extent file then
contains by default four elements for each contour that is exported:

1. The damage intensity integrated over the area enclosed by the contour,
2. The area enclosed by the contour,
3. The coordinates of the peaks in the contour and their values, and
4. The centre coordinates of all grid elements in the contour and their damage

intensity value

The user can chose to deselect each of these items to exclude them from being
exported. The damage path file contains per path in a workspace the following
information:

1. The transducer number of the actuator,
2. The transducer number of the sensor,
3. The actuation frequency,
4. The damage index of the path,
5. The x-coordinate of the actuator,
6. The y-coordinate of the actuator,
7. The x-coordinate of the sensor,
8. The y-coordinate of the sensor and
9. The length of the path

Again, the user can control which of these items are included in the export file.

3.6 Graphs

The data visualisation panel covers approximately 50 % of the GUI. It mainly
contains space to display graphs, either from the geometry, the signals or the
damage intensity. Some additional functionality is added to facilitate the export of
graphs. The buttons ‘undock’ and ‘redock’ are used to transfer the data to a separate
figure window and vice versa. The user can manipulate the graphical material in the
separate figure, using the built-in MATLAB functionalities. The graphical visual-
isation panel is shown in Fig. 12.
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4 Numerical Modelling

Developing a finite element (FE) model can contribute to the understanding of the
scattering phenomena of Lamb waves upon encountering structural damage.
Standard FE model has a number of limitations that should be taken into account:

• A fine FE mesh, comprising at least 10 or even more nodes per Lamb wave-
length, is a prerequisite to deliver good spatial precision;

• A laminate may have to be divided into sublaminates in thickness, to properly
represent interlaminar damage and damage into the individual laminas;

• The time step for dynamic calculation should be less than the ratio of the
minimum distance of any two adjoining nodes to the maximum wave velocity
(often the velocity of the S0 mode).

Two solutions to overcome these limitations are presented in this paper. The first
method is the spectral element method (SEM), whereas the second relies on a
stacked-shell FE model.

4.1 SEM

The spectral element method combines the advantages of global pseudospectral
methods with the flexibility of finite element methods. One of the first use-cases can
be found at [4], dealing with fluid dynamics. The use of the spectral element
method in time domain for structural health monitoring in general is described in
[5]. The SEM model used in this work is described in detail in [6]. The SEM model
uses a flat shell spectral element, based on first-order plate theory (first-order shear
deformation theory). As the structure is modelled with one element over the
thickness for undamaged parts, the number of degrees of freedom is comparably
small. The nodes for these elements are not distributed evenly, but follow the roots
of a Gauss–Lobatto–Legendre polynomial. Their irregular distribution combined
with the use of Lagrange interpolation polynomials as shape functions makes it
possible to use less elements than necessary for traditional low-order FEM. In
particular for higher frequencies and bigger structures, this is an advantage.
Moreover, a band-like structure of system matrices (like mass matrix) enables a
reduction of computational costs in time domain. Nevertheless to introduce
delamination, the one element over the thickness has to be divided into two new
elements, each comprising of multiple layers of the composite material; if a
delamination is modelled between layer k and k + 1, then the bottom element
contains layer 1 to k and the top element layers k + 1 to N, where N is the total
number of layers. Note that this division causes more system matrix elements to
differ from zero. The calculation of contact forces prohibits penetration of the
two elements above and below the delamination. More information about the
delamination introduction can be found in [7]. For the implementation of SEM, the
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plate-like character has to be ensured. For this, the relation of size of the damage
and plate thickness is important.

4.2 Stacked-Shell FEM

The three basic requirements mentioned above usually result in high demands in
terms of computational cost, particularly for large composite structures. To balance
the need for precision and computational efficiency, the ‘stacked-shell’ or ‘layered
shell’ approach under the finite element method (SS-FEM) is investigated for the
Lamb wave simulation. The explicit FE code LS-DYNA is used for this purpose. In
the stacked-shell approach, the composite laminates are represented by a discrete
number of sublaminates modelled as shell elements, which can be tied together with
solid cohesive elements or contact interface elements with cohesive zone properties.
These interfaces have the capability to behave as matrix interlayers which connect
the plies and are capable to fail during the simulation when appropriate conditions
are met, either by introducing a cohesive law in the interface, or by setting
appropriate interface strength limits. A schematic of the stacked-shell approach is
given in Fig. 8. It should be noted that the number of layers in the SS-FEM model
does not need to correspond to the number lamina in the composite, although in the
model implemented here, each lamina is represented by a shell layer.

The stacked-shell approach is capable of representing accurately the out-of-plane
behaviour of laminated structures, while maintaining the higher computational
efficiency and simplicity of conventional shell approaches. The main advantage
comes from the disconnection of the mesh discretization requirements of the
in-plane and the through-thickness directions of the structure; the mesh density of

Fig. 8 Schematic of the stacked-shell approach. A 4-layer laminate is modelled by stacking 1-, 2-,
4- and n-sublaminates
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the shell elements is independent of the through-thickness mesh density, whereas
the latter normally dictates a significantly more dense mesh than the in-plane
requirements demand. Furthermore, using the layered shell approach, an intrinsic
delamination capability is introduced, i.e. delaminated areas can be easily and
properly represented.

5 Use-Cases

Within the SARISTU project, a plate-like exemplary structure was used for exper-
imental investigations, which can be compared to numerical simulations. This
structure exhibits 11 layers of CFRP made from M21 matrix with T800S fibres. The
properties of a layer of unidirectional composite material are listed in Table 2, the
dimensions of the test panel and the piezoelectric transducers (PWAS—piezoelectric
wafer active sensors), including their position in Table 3, whereas a schematic of the
plate is presented in Fig. 9. The transducers are cobonded on the plate, making a
shortening of the critical path on the production line possible. The actuator is excited
by a five-cycle sinusoidal tone bursts, modulated utilising a Hanning window.
Central frequency of 120 kHz (SS-FEM) and 250 kHz (SEM) is used.

5.1 Definition of the Test Cases

Various damage scenarios were implemented in the numerical models to test the
damage identification algorithms in the software, as well as the capabilities of the

Table 2 Material properties of the CFRP [11 layers, (45, 0, −45, 90, 0, 90, 0, 90, −45, 0, 45),
M21 matrix with T800 fibres]

Ex (GPa) Ey = Ez (GPa) Gxy = Gxz (GPa) Gyz (GPa) νxy = νxz [] νyz [] ρv [kg·m
−3]

157 8.5 4.2 2.2 0.35 0.53 1580

Table 3 Dimensions. Panel
and the transducers including
their location

Symbol Unit Value

Length L mm 500

Width W mm 500

Thickness H mm 2.024

Layer thickness tlayer mm 0,184

PWAS
transducer

d mm 6.35

tPWAS mm 0.25

x mm 100 400

y mm 100 200 300 400
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graphical representation of the damage offered by the software. The damage sce-
nario of the SEM analysis is based on the experimentally introduced damage and
differs from the damage scenarios in the SS-FEM model. The details are given in
Table 4. Note that the composite layers are numbered from top to bottom.

5.2 Results of SEM Model

To validate the SEM model, measurements of the undamaged structure are com-
pared with results from the SEM. An exemplary timeline is shown in Fig. 10. After a
path independent scaling for all transducers, the wave packages of the different
modes can be represented properly. To compare the results of the damaged structure,
the software, described in Sect. 4, was used. The correlation coefficient has been
exported for all paths. The path between PWAS 6 and PWAS 4 is directly crossing
the damage zone, while all other paths starting at actuator 6 are not. As it can be seen
in Fig. 11, the agreement between SEM simulation and experiment is fairly good.

The usage of SEM simulation data with the developed software is possible very
easily. With its help, a damage localisation can be realised. As the simulation does
not include noise, even from data of a single frequency, the localisation results are
excellent. The output of the software is shown in Fig. 12. The red contour line is set
by the user by increasing the threshold up to the desired level. It corresponds to the
damage implemented in the numerical model, as defined in Table 4.

Fig. 9 Set-up of the SARISTU plate-like structure. Test structure for software, experiment and
numerical simulations; a geometry with its dimensions and locations of the transducers; b the
lay-up with orientation of the different layers

Table 4 Damage scenarios implemented in the numerical models

Scenario Model Shape Dimensions Location Layer

1 SEM + experiment Elliptical d1 = 28 mm,
d2 = 19 mm, θ = 45°

(x,y) = (0.25,0.2) 9–10

2 SS-FEM Round d = 10 mm (x,y) = (0.25,0.4) 1–2

3 SS-FEM Round d = 10 mm (x,y) = (0.25,0.4) 1–5

4 SS-FEM Round d = 30 mm (x,y) = (0.25,0.4) 10–11

5 SS-FEM Round d = 30 mm (x,y) = (0.25,0.4) 7–11
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5.3 Results of the SS-FEM Model

An indicative comparison of the numerical and experimental time response results
for the undamaged case, in which transducer 1 is the actuator and transducers 2–8
are sensors, is presented in Fig. 13. The presented results refer to calculated strain
values at the position of sensor 3.

From the indicative comparison of Fig. 13, it arises that the methodology seems
effective for the simulation of Lamb wave propagation: a qualitative correspon-
dence of the results is obtained. However, the need for further development and
optimisation of the simulation parameters is obvious as well. Improvements are

Fig. 10 Exemplary timeline to compare experimental and numerical SEM results. The different
modes and their amplitudes can be simulated properly. An adaptation of the signal amplitude is
necessary. This correction factor is the same for all sensing transducers

Fig. 11 Comparison of damage indices for SEM simulation and experiment. While for paths,
which are not directly crossing the delamination, the experimental data results in slightly lower
correlation coefficient, for the direct path, simulation and experimental results show an excellent
agreement
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foreseen to be achieved by means of mesh convergence studies for the in-plane
mesh density and an optimisation of the number of sublaminates. Finally, a cali-
bration of the simulation parameters, to match the real properties of the panel from
which the experimental results are obtained, will further diminish the differences
between the simulation and the experimental results.

The time response results of transducer 5 for the various damage cases inves-
tigated are compared to the response of that transducer for a pristine structure. The
results are depicted in Fig. 14. The ultrasonic wave generated by the actuator (here
transducer 1) crosses the damage, that is located in the middle of the path from
transducer 1–5.

It can be observed, from Fig. 14, that the signal from the damaged panels is
slightly reduced compared to the signal of the pristine panel. The amplitude
reduction is marginal; the only visible difference is from the case of a damage with
a 30 mm diameter located at the top of the laminate (the side of the transducers).

5.4 Discussion of the Numerical Models

A first analysis of the two numerical models indicates that a higher accuracy is
obtained using the SEM model. The SS-FEM model is less accurate when

Fig. 12 Output of the software for damage localisation. Using the SEM simulations as input, the
software detects the damage with the help of the correlation coefficient and localises it with
path-based methods. The red contour line is set by the user by increasing the threshold level to the
desired level. The square markers indicate maxima in the damage intensity

600 R. Loendersloot et al.

r.loendersloot@utwente.nl



compared to the experimental results. However, the SEM model only allows for the
modelling of a single-layer delamination in the material, whereas a complex, but far
more realistic, multilayer delamination can be modelled in the SS-FEM model. This
by itself offers valuable opportunities to enhance the damage identification, since it
is to be expected that the response to a delamination with a certain area, located
between two layers close to the surface, will cause a similar damage intensity, but
different response when compared to a delamination spanning multiple layers, but
with a smaller area. The SS-FEM indicates a difference in the response depending
on the location of the damage, but unfortunately, the results show that the difference
lies in being detected or not. However, it must be note that the SS-FEM results are
based on a limited set of paths, with only transducer 1 acting as an actuator. At this
point, it is difficult to compare the numerical models in more detail, since a different
type of damage is implemented (see Table 4).

Fig. 13 Comparison of numerical and experimental time response. Results of transducer 3 for the
undamaged flat panel case

Fig. 14 Comparison of numerical responses between undamaged and damaged flat panels for
transducer 5. The damage is located in the middle of the path from transducer 1 (which acts as the
actuator) to 5. Only the response of the case with the 30 mm delamination located at the top differs
visually from the pristine response
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(a)

(b)

Fig. 15 Output of the software damage identification. Experimental data of a flat panel with
Omega stringers is used. Actuation frequencies from 50 to 300 kHz are used. The red contours
indicate potentially damaged area. The damage is located in the centre of the image. a Using all
actuation frequencies and the maximum value of the correlation coefficient for each actuator–
sensor path; b using a subset of the actuation frequencies and the mean value of the correlation
coefficient for each path
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5.5 Results of Experimental Data

The software is also tested on experimental results in order to assess the influence of
environmental conditions on the capability of the damage identification algorithms.
The environmental conditions are mainly limited to the higher level of noise that is
observed in experiments compared to numerical models, since the experiments
were performed in a relatively well-controlled laboratory environment. Instead of
using a single actuation frequency, multiple actuation frequencies were used,
ranging from 50 to 300 kHz. The resulting damage intensity plot, based on the
correlation coefficient damage identification algorithm, is shown in Fig. 15. The
difference between using all frequencies or a subset (all frequencies up to 120 kHz)
and using the maximum or the mean of the correlation coefficient of each actuator–
sensor path is highlighted clearly by the two damage intensity plots in Fig. 15: the
top figure shows a lot of disturbance making it difficult to unambiguously identify
the location of the damage, whereas the lower figure clearly indicates the location of
the damage. The choices of the actuation frequencies, the damage identification
method and other settings are clearly relevant, but sometime hard to make
beforehand. The software allows to analyse the effect of these choices in a quick
and convenient manner.

6 Conclusion

It has been shown that the software for the damage identification discussed in this
paper offers a convenient manner of analysis of data from monitoring tests, based
on a network of piezoelectric transducers. The software can handle both numerical
and experimental data, making it suitable to be used in both the design phase of a
monitoring system as well as in the use phase. The user can analyse the data without
an in-depth knowledge on the signal processing algorithms that are implemented,
but can at the same time adjust all kind of settings, making the software a powerful
tool both for a quick scan of measured data and for a more elaborate investigation
by an experienced user (in the field of signal processing).

The numerical models show different results: the SEM model is more accurate
compared to the SS-FEM model in terms of correspondence to the experimental
results. The SS-FEM promises a more detailed representation of the damage, by
allowing the damage to span different layers. The accuracy of the SS-FEM method
is however still not at the desired level.
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