
17. Reusable Rationale Blocks: Improving
Quality and Efficiency of Design Choices

Wiebe Hordijk1, Roel Wieringa

Abstract: In the current practice of designing software for user organiza-
tions, as experienced by the authors, designers often produce design knowl-
edge again and again for every decision: They re-invent the wheel. We want
to improve the quality, predictability and efficiency of the software design
process by reusing design knowledge. Our proposed solution consists of
Reusable Rationale Blocks (RRBs). An RRB is a schema and a notation to
write down decision rationale. To manage RRBs, we introduce a general-
ized design space, that consists of a collection of RRBs. And to use RRBs,
we define a process that can be added to any design process, as well as a set
of heuristics to be used in applying this process. We illustrate our solution
by a few examples taken from our own experience.

Keywords: Architecture, Design, Rationale Management, Reuse, Software
Process Improvement

17.1. Introduction

This chapter proposes an improvement of the process of designing soft-
ware for user organizations. It is based on our experience in designing en-
terprise information systems, but our solution is stated in general terms ap-
plicable to any software design process for user organizations.

17.1.1. Problem
In current practice the use and production of design knowledge by practi-
tioners does not lead to a growth of design knowledge in the community of
practitioners. Designers re-invent the wheel repeatedly [7] [Chap 1., Sect.
1.4.4.3 in this book]. The same knowledge is produced again and again,
and is not reused for later, similar decisions. This means that design takes
more effort from the designers than needed. It also entails the risk of lower
quality of results, and because knowledge is not reused, it makes the prop-
erties of the final product hard to predict, loading a lot of risk on the pro-
ject.

1 Partially sponsored by Ordina BV.

348 Wiebe Hordijk , Roel Wieringa

17.1.2. Goal

As stated, the goal of our approach is to improve the quality [7] [Chap. 1,
Sect. 1.4.3 in this book], predictability and efficiency of the software de-
sign process by reusing design knowledge. We take a generalized ap-
proach to reuse [7] [Chap. 1, Sect. 1.4.4.3 in this book]. Decisions can be
made more repeatable by reusing information used in them in later, similar
decisions, and their quality can be improved by recording their impact on
software quality. To achieve our goal of reuse, we provide a structure and
a process for such reuse, and we produce and validate the design knowl-
edge to be reused.

Before we proceed, we need to clarify this goal in a number of ways.
First, our goal is not to provide a general knowledge management tool for
reuse of design knowledge. We focus on reuse of decision rationale. This
is knowledge about which options there are for a design decision, and how
each option affects the relevant requirements. It is useful to reuse other
knowledge too, but this is not what we do here.

Second, the application of our solution is in the areas of Engineering of
systems and Acquisition of system components and infrastructural compo-
nents [7] [Chap. 1, Sect. 1.6.6 in this book]. We don’t rule out that the ap-
proach could be used in other process areas, but we have not looked at this.

Third, our experience is limited to Enterprise Information Systems
(EISs), which are systems that serve administrative purposes in organiza-
tions and are used by people in those organizations. EISs typically store
and use data, have some business logic and one or more user interfaces.
But the solutions that we come up with are stated in terms applicable to
any software design problem.

Fourth, we only consider custom-built applications, as opposed to off-
the-shelf software. These applications are of course built upon commer-
cially available components.

Fifth, we focus on higher-level design decisions, and not on the lower-
level ones. The higher-level decisions cost more effort and represent more
risks than lower-level decisions. Therefore, there is a higher demand for
quality of higher-level decisions than there is for lower-level decisions. In
our approach, we focus on the higher-level decisions. Also, these involve
teams of people from different parts of an organization, and should be
documented well for accountability and maintainability.

17.1.3. Solution outline

Our proposed solution consists of four parts:

 Reusable Rationale Blocks: Improving Quality 349
 and Efficiency of Design Choices

• Reusable Rationale Blocks (RRBs), a schema and a notation to write
down decision rationale.

• A generalized design space, consisting of a collection of RRBs for EISs.
• A process description, where the use of RRBs is added to a standard de-

sign process. This description should enable you to add the use of RRBs
to your own design process. The process also tells how to create RRBs.

• A set of heuristics to be used in applying the RRB process.

The RRBs are the core concepts of our approach. They are generalized
pieces of decision rationale. They each contain one question, a set of solu-
tion options to the question, and an evaluation table where the options are
compared to each other with respect to a set of requirements, called crite-
ria. This is similar to the Questions-Options-Criteria (QOC) approach [13].
As criteria we use quality indicators, taken from the extended ISO 9126
quality model [16] because they are measurable and of interest to the cus-
tomer. See Sect. 17.1.4.2 for a comparison between QOC and our ap-
proach.

The generalized design space is a set of RRBs on a web site
(http://is.cs.utwente.nl/QUIDS/). It is called a generalized design space be-
cause a regular design space is about a concrete system, while a general-
ized design space is about a class of systems. We will just write “design
space” instead of “generalized design space”. In addition to the decision
rationale in the RRBs, the design space adds a ‘super/sub-problem’ struc-
ture, giving designers a minimum checklist of decisions they should have
made before the design can be ready.

The process description is our idea of how RRBs should be used in
practice, both in systems design and in research, but focusing on design.
We don’t prescribe a particular design process, but rather show how a de-
sign process can be extended to use RRBs. Our solution thus is prescrip-
tive [7] [Chap. 1, Sect. 1.2.2.1 in this book].

Our solution is highly intrusive [7] [Chap. 1, Sect. 1.2.2.2 in this book]
on one hand, because the design process is changed. On the other hand, we
argue that a good designer naturally documents the argumentation behind
design decisions at the same time the decisions are made, and that doing
this in our notation does not add extra effort. This is also proposed in [7]
[Chap. 1, Sect. 1.5.2 in this book]. In our opinion, decisions should be
first-class citizens of software architecture. Under those assumptions, our
approach is non-intrusive. In other words, documenting rationale in such a
way that it can be reused later shouldn’t take more effort than just docu-
menting the rationale.

350 Wiebe Hordijk , Roel Wieringa

17.1.4. Related work

This section describes the differences between our solution and some al-
ternative approaches from rationale management and architecture research.

17.1.4.1. Design Patterns
An important approach to the reuse of design knowledge is the use of pat-
terns, which are descriptions of problems and corresponding solutions ac-
cording to some format [1,6,8,9]. Design Patterns describe solutions in de-
tail, which makes them ideal for teaching, knowledge management, and for
describing how a system is structured. One problem with patterns is that
they do not provide guidelines about how to choose among several patterns
that all in different ways satisfy a set of requirements. As mentioned in [7]
[Chap. 20 in this book], one pattern describes rationale for one solution in-
stead of several ones. In the terminology of Lee and Lai [12], patterns con-
tain design rationale (they tell us which problem a solution solves), but no
decision rationale (they do not tell us how to choose among patterns).
RRBs, on the other hand, describe alternatives and effects, but do not ex-
plain the options in great detail. They are meant for making and justifying
design decisions. Ideally, the options in an RRB are described as patterns,
or by references to known patterns, so that design rationale and explana-
tion are in one place.

17.1.4.2. QOC
The Question-Options-Criteria approach was introduced [13] to illustrate
and analyze the arguments that lead to design decisions about individual
systems in a graphical way. Each option can score in only two ways on a
criterion: good or bad. Our approach generalizes this to generic design
problems and refines the scoring of options. Our design problems are
QOC's Questions, our options are their Options, and our quality indicators
are a refinement of their Criteria. We use the term ‘design problem’ be-
cause we think that the term ‘question’ is too broad.

We refined QOC by restricting ourselves to measurable quality indica-
tors, and by ranking options on each quality indicator on more than two
ranks. We felt we needed more ranks than two for codifying general design
knowledge.

Another difference is in the goals of the methods. QOC is a descriptive
method, aimed at describing the rationale of decisions. Our approach is
prescriptive, aimed at improving design processes, for which we use ra-
tionale as a means to an end.

 Reusable Rationale Blocks: Improving Quality 351
 and Efficiency of Design Choices

17.1.4.3. ADD
Attribute Driven Design [5] is a field of research at the SEI. Their unit of
research is the Design Primitive (also known as Architectural Mecha-
nisms). An example of a design primitive is caching. Design primitives can
be compared to our Solution Options, except that a Design Primitive is not
linked to a Design Problem. Design primitives are problem-oriented: “The
performance is too low, so we use caching to fix that.” RRBs are choice-
oriented: “Should we use caching or not?”

17.1.5. Structure of this chapter
We start with a more thorough explanation of RRBs and the design space
in Sect. 17.2. Then we show how to use RRBs in Sect. 17.3 about the RRB
Process. In Sect. 17.4, we illustrate the process in three cases from a sys-
tem design project in which one of the authors took part as an architect. In
Sect. 17.5, we present the lessons learned from the cases, which make up
the heuristics of our solution.

17.2. Reusable Rationale Blocks and the Design Space

This section first explains how design decisions and software quality are
related, and then explains how such knowledge is documented in RRBs.
We start our explanation with an example of an RRB, after which we show
the general structure of RRBs. Then we proceed from individual RRBs to
our design space.

17.2.1. Design Decisions and Software Quality
Central to our approach is the assumption that decisions taken during the
design of a system partly define the quality that the system will have after
implementation. The quality of a system falls apart in many quality attrib-
utes, which can be measured using quality indicators.

352 Wiebe Hordijk , Roel Wieringa

17.2.2. RRB Example

Fig. 17.1. Web site screen shot of Reusable Rationale Block ‘Data storage type’.
See http://is.cs.utwente.nl/QUIDS. Prevalent systems are a new and experimental
kind of systems that keep all data in memory; see
http://www.prevayler.org/wiki.jsp for more information.

Fig. 17.1 shows (part of) the RRB of the design problem “data storage
type”. The leftmost column of the RRB shows the quality indicators that
are affected by the solution options. The rows show how each solution op-
tion is ranked by each quality indicator. For example, the option “Rela-
tional database” scores best on the quality indicator “Failure ratio”. This
means that in a system where data are stored in a relational database, we
expect the failure ratio will be lower than with other types of data storage.
Note that a single column when taken out of the table does not have mean-
ing: the RRB does not say that “Relational database” scores better on
“Failure ratio” than it scores on “Initial cost”.

 Reusable Rationale Blocks: Improving Quality 353
 and Efficiency of Design Choices

The orderings in a row are partial. When two options have equal ranks
for a quality indicator, such as Object databases and Prevalent systems for
“Change effort”, we do not say that those options are indifferent with re-
spect to that indicator, but rather that they are indistinguishable. The
statements we are making with respect to “Change effort” is that option 1
is worse than options 2 and 3, and option 4 is worse than all the other op-
tions.

Each row in the table is a hypothesis about the effects of options on the
system’s quality. In our design space, we motivate these hypotheses by
reference to the literature [6,9,11], as well as our own experience.

17.2.3. RRB General Structure

Fig. 17.2. Schematic representation of a Reusable Rationale Block in its environ-
ment. Some terminology is shortened because of space limitations.

The general structure of a Reusable Rationale Block (RRB) is shown in
Fig. 17.2. A design problem is described in conjunction with its available
solution options and their effects. It occurs in the context of an earlier de-
sign problem, and provides the context for further design problems. In the
RRB, we describe this in a general way, but in an actual piece of software
we will encounter an actual design problem in an actual context. The RRB,
on the other hand, only describes a generic problem, existing in a context

354 Wiebe Hordijk , Roel Wieringa

described generically, called a validity context. The designer must relate
the actual context to the validity context, and the actual problem to the ge-
neric design problem described in the design space. Then the designer can
make his or her evaluation of the options based on knowledge of the actual
problem in its actual context. This is shown at the left-hand side of Fig.
17.2. At the right-hand side, we show that every row in the table is a hy-
pothesis that can be investigated by further empirical research. In future
research, we will try to validate or refute some of the hypotheses in our de-
sign space empirically. The structure of a design problem with its context
can be reused in other situations, provided the design problem and context
match the specific situation.

17.2.4. Design Space

Fig. 17.3. UML Static structure diagram of the design space.

As said earlier, an RRB contains knowledge about a particular problem in
the design of systems, their solution options, and the relations between the
problems and solutions. Whenever a design problem is present, the corre-
sponding RRB documents its different options and their different effects
on the system’s quality attributes. This can be modeled as a ternary rela-
tion called Effect between a design problem, solution option and quality
indicator (Fig. 17.3).

 Reusable Rationale Blocks: Improving Quality 355
 and Efficiency of Design Choices

To link multiple RRBs together into a design space, a solution option
can be the problem context for more detailed design problems. For exam-
ple, after choosing the option “relational database” for the design problem
“where should the data be stored”, the design problem “what should the
data model be?” is created, which also has a corresponding RRB in the de-
sign space. The design space therefore has the structure of a tree.

17.3. RRB Process

The RRB process is an approach to software design which uses decision
rationale to improve design quality, predictability and efficiency by reus-
ing design knowledge. In this approach, rationale is a necessary compo-
nent of the design, not a by-product for later use. Decisions are first-class
citizens of the design world, at least as important as classes, components
and subsystems. Since design is a decision-making activity, documenting
decision rationale should be as natural to a good designer as documenting
source code is to a good programmer.

In this section, we propose how to use RRBs in practice and in research.
In Fig. 17.4 we show a process model consisting of the design cycle on the
right-hand side, the research cycle on the left-hand side, and flows between
them, making a double cycle.

The basic design cycle is shown on the far right of Fig. 17.4 [14]. In the
Problem analysis phase, the designer develops an understanding of the
problem, and identifies criteria by which the solution will be evaluated.
Here the Design problem and the Quality indicators of Fig. 17.3 are gener-
ated. In the Solution synthesis phase, possible solution options are gener-
ated in some way. Sources for solution alternatives include the designer’s
experience, text books and the Internet. The quality attributes of these al-
ternatives are predicted next. This property prediction can be done for ex-
ample by comparing solution alternatives to known existing systems, by
modeling the solution, or by prototyping. Here the Effect relationships of
Fig. 17.3 are established. The properties can be presented in the form of a
rationale table such as in Fig. 17.1 or the tables in Sect. 17.4. Then the
predicted properties are evaluated against criteria (solution evaluation).
This leads to either a choice for one of the alternatives, or a decision to
synthesize new solutions or analyze the problem more thoroughly.

We extended this basic design cycle with a Problem matching activity,
in which the designer uses RRBs. Problem matching influences some of
the other activities. In Problem matching, the designer tries to find an RRB
which matches the actual problem at hand. This means that the actual

356 Wiebe Hordijk , Roel Wieringa

problem can be regarded as an instance of the RRBs problem, and the con-
text of the actual problem as an instance of the RRBs validity context.
When a matching RRB is found, this makes the rest of the design cycle
much easier. The RRBs options are input to the Solution synthesis activity,
and the effects that the options have on quality indicators are input to
Property prediction. When Problem matching does not yield a matching
RRB, the regular design cycle activities are followed.

The designer must be aware that the RRB is more general than the ac-
tual problem, so in the actual problem, other options and effects may ap-
ply. That is why Problem matching does not replace the other activities.

Fig. 17.4. Process diagram of the design cycle and research cycle linked together.

On the far left of Fig. 17.4 we find the research cycle, assuming that the
research hypotheses are stated in the form of RRBs. This research process
can be used in an academic context to yield knowledge applicable to a
class of problems, as well as in an organization that needs the knowledge
to solve a particular problem.

Finally, Fig. 17.4 shows that the design cycle and research cycle are
linked together. Note that the RRB process has many similarities with the
more generic Experience Factory approach [3]. Our approach is more spe-
cific to design rationale. An RRB can be seen as a way to package experi-
ence, in the Experience Factory terminology.

 Reusable Rationale Blocks: Improving Quality 357
 and Efficiency of Design Choices

17.4. Illustrations

To make the RRBs at http://is.cs.utwente.nl/QUIDS practically usable, we
provided a Word template. Nothing more sophisticated is needed at this
point in time. We use this template in the examples below. Note that in the
Word template, we use pluses and minuses rather than vertical positioning
of crosses to indicate ranking. This is convenient in Word, but it has the
danger that designers may believe that it is meaningful to add and subtract
pluses and minuses. We applied the current version of the design space in
an industry project at a large Dutch government body. We investigated the
application of the theory by using action research, a research method in
which the researcher is actively involved in the activities that are being in-
vestigated [2,4]. To improve understandability of the examples, we sim-
plify the system and the design decisions.

In these illustrations, all decisions are product choices. This is caused by
the state of the project these examples have been taken from. We believe
that other design decisions, like which pattern to use for a certain part of
the software, can use the same process. To validate this is part of future re-
search.

17.4.1. Setting

These cases took place in a large Dutch government body. The system un-
der design (SuD) was an administrative system that supported one of the
organization’s most important primary processes. A distributed architec-
ture had been chosen for the system, with a hub-and-spoke layout with one
central node and 150 remote nodes, and asynchronous messaging as com-
munication means between the nodes.

The rationale for choosing asynchronous messaging was that some of
the communication channels between the nodes had too high latency for
the system to perform well enough with synchronous communication. The
hub-and-spoke layout was given by the geographical distribution of the
end users. The organization had already chosen a programming language
and an application server.

Up to this point, the architecture was given. These descriptions formed
the context of subsequent design problems, and those are the subjects of
the case studies in this section.

The team designing the system’s architecture consisted of one project
leader who was also a domain expert, one software architect who was also
a domain expert, and one software architect (Hordijk). The team met

358 Wiebe Hordijk , Roel Wieringa

weekly with the “architecture board”, a group of representatives from the
organization’s IT infrastructure department, technological policy makers
and the application development team leader. The time frame of the design
efforts was from November 2004 to April 2005, when implementation
started.

17.4.2. Case Description Format

Each case presented below is described according to the following format.

• Introduction, describing the design problem that was solved in the case
and the interest of the case to the chapter.

• Narrative, describing the events that happened in relation to the case in
chronological order. The narrative consists of paragraphs named accord-
ing to the steps in the design cycle, with an extra level for iterations in
the first case. Each step can appear more than once because of the itera-
tive nature of design.

• Lessons learned from the case.

17.4.3. Case 1: Message-oriented middleware

The most important decision for this system was which protocols and
products to use for communication and message routing between the nodes
of the system. For this decision, no matching RRB was found, so the regu-
lar design cycle was followed. We needed five iterations through the de-
sign cycle before arriving at a choice. We give no narrative here due to
space limitations. The most important lessons learned are in Sect. 17.5.

17.4.4. Case 2: Remote Data Storage

This case illustrates how to use an RRB in an actual design decision, and
that designers must still use their own knowledge and common sense when
applying an RRB.

The next-most important design decision in our project was which kind
of data storage to use for storing data on the remote nodes of the system.
This decision limited the possible options for some other decisions, so it
had to be answered first.

Problem analysis. Problem analysis for this decision raised interesting
questions, which we answered in a meeting with domain experts. We
needed to know what data were stored remotely and why. It turned out that

 Reusable Rationale Blocks: Improving Quality 359
 and Efficiency of Design Choices

two kinds of data were stored remotely. The first kind was data that was
entered remotely, which was stored there for future reference but also sent
to the central system. The second kind of data was entered in the central
node, sent out to the remote nodes and stored there, in a cache, for faster
reference. So all data in a remote data store either came out of, or would
soon be sent to, the central database. This made reliability and backup fa-
cilities less important for the remote data stores.

Problem matching. After problem analysis, we found an RRB that
matched our problem, shown in Fig. 17.1. Because this RRB was a bit lim-
ited and did not include any specific products, but only product types, we
decided to generate extra options and quality indicators to be complete.

Problem analysis for criteria and Solution synthesis. Options and qual-
ity indicators for this decision were generated in one brainstorm meeting
with the architecture board. The brainstorm added new options and quality
indicators to the RRB in Fig. 17.1. The options ‘Object Database’ and
‘Prevalent system’ were intentionally left out, because they did not score
well enough on ‘Product fault density’, which is an indicator for Maturity.
No matter how good these products may be, they were not yet widely in
use, and our organization did not want to be a technological fore-runner.
This ended the solution synthesis activity. The RRB was used further in
property prediction.

Property prediction. The property prediction of the options in the RRB in
Fig. 17.1 and our actual problem differ on some quality indicators. In the
actual problem, three different RDBMS products were considered, with
quite different quality indicator values. For example, we even regarded a
particular RDBMS as less mature (indicated by scoring lower on product
fault density) than file storage, while in the RRB, RDBMSs are considered
more mature. Also, in the actual problem we added some quality indicators
that were relevant in the specific context. This illustrates that an RRB con-
tains generalized design knowledge, which should be tailored when used
for actual problems. Still, RRBs are useful because they structure the deci-
sion and present an initial knowledge base to start from.

 Comma-separated files XML files
Failure ratio – +
Initial cost – +
Disk space usage + –

Table 17.1 Rationale for discarding the option Comma-separated files.
Disk space usage was added as a criterium in the brain storm session.

360 Wiebe Hordijk , Roel Wieringa

To make property prediction more efficient, we tried to reduce the num-
ber of options as quickly as possible. The option ‘comma-separated files’
could be compared locally to the option ‘XML-files’, as shown in Table
17.1. This shows that between the two, XML-files were better than
comma-separated files, so we could discard comma-separated files. Like-
wise, the alternative RDBMS Product B was compared to Product A, and
the only differences were that A had better Resource usage and B had bet-
ter Performance. Resource usage was more important at the remote nodes
and Product A would probably meet the minimum performance require-
ments, so Product B was discarded. Now we had four options left, and they
were evaluated against all our criteria in Table 17.2. For this evaluation,
we used the information in the RRB in Fig. 17.1, supplemented with prod-
uct documentation and market knowledge.

 XML-

files
RDMS
‘lite’

Open
source
RDBMS

RDBMS
Product A

Change effort ++ – – +
Failure ratio – + + ++
Initial cost ++ +/– + ++
Performance – + + +
Product fault density + + – ++
Maintenance effort +/– + – +
Installability + + ? –
Resource efficiency ++ + + –
Vendor lock–in ++ – + –

Table 17.2 Rationale table for remote data storage type. The last three cri-
teria were added in the brain storm session.

Solution evaluation and Choice. The criteria Product fault density, Fail-
ure ratio and Initial cost were of high importance to the organization. In-
stallability, Resource efficiency and Vendor lock-in were of minor impor-
tance. Therefore, RDBMS product A was chosen.

Lessons learned. This case illustrates how the knowledge contained in an
RRB can be used in decision making. We learned the following lessons
from it.

• It shows that matching the RRB to the actual problem is a difficult step,
because many factors are involved that influence which options are
available, which quality indicators are important, and what effects the
options have. One should therefore take these factors into account and
tailor the RRB to the problem at hand.

 Reusable Rationale Blocks: Improving Quality 361
 and Efficiency of Design Choices

• The case also shows that designers should deal with the decision making
process in an opportunistic way, cutting out options as early as possible
when they can show that an option is inferior to another in small itera-
tions of the design cycle. This opportunism saves time, but still pre-
serves the accountability and reusability of the rationale.

• Another thing we learned from this case is that it was invaluable to have
access to people who know the local infrastructure and the products that
run on it. This local knowledge may continue to be more valuable than
the general knowledge stored in RRBs.

17.4.5. Case 3: Central Data Storage

This case shows that application of the same RRB in different contexts can
lead to different design decisions. Another important decision in our pro-
ject was which kind of data storage to use at the central node of the sys-
tem. For this decision, the rationale table constructed in the second case
was reused. The quality indicators that were important for the central node
were different from those at the remote nodes, which led to a choice for the
same product but for different reasons.

Problem analysis. The quality indicators Maintenance effort, Installability
and Resource efficiency were less important for the central data store than
for the remote ones, because it was only one node instead of 150 and cen-
tral resources could easily be scaled up. Failure ratio and Product fault
density, however, were far more important, because the central database
double-served as a backup for the remote data stores. Also, some data was
stored in the central database only.

Problem matching, Solution synthesis and Property prediction. From
the original RRB in Fig. 17.1, we saw that according to our quality indica-
tors, an RDBMS was the only viable option. Because of Failure ratio and
Product fault density, we only wanted to consider the RDBMS products
that were already in use in the organization. Now we still had the two
RDBMS products A and B that the organization already used as options.
These were evaluated against each other in Table 17.3. Table 17.3 was de-
rived from Table 17.2 by removing the options that we could see were not
viable, and adding RDBMS product B back in. RDBMS A and B are
evaluated against each other.

362 Wiebe Hordijk , Roel Wieringa

 RDBMS

product A
RDBMS
product B

Change effort + –
Failure ratio ++ ++
Initial cost ++ +
Performance + +
Product fault density ++ ++
Vendor lock-in – –

Table 17.3 Rationale table for central data storage product.

Solution evaluation and Choice. This evaluation was presented to the ar-
chitecture board, and RDBMS product A was chosen unanimously because
everyone could easily see that the difference in initial cost and change ef-
fort made product A the better choice.
Lessons learned. This case shows that the same RRB applied to different
design problems can yield the same result for different reasons. It did be-
cause the context of the actual problem was different. This case also shows
that it is useful to reuse design knowledge, as the same knowledge in the
RRB was used in two cases, and the rationale table from the previous case
was reused in this one.

17.5. Discussion and conclusions

17.5.1. Lessons learned

Iterations through the design cycle do not always consist of sequences of
steps through the entire cycle followed by a jump back to the start. Some
iterations do, but others consist of backtracking to an earlier stage to get
more information, and still others consist in jumping forward to later tasks
before proceeding with the current one. In general, though, earlier itera-
tions focus on earlier design tasks and later iterations focus on later tasks.
This agrees with an observation made by Witte in a massive empirical sur-
vey of decision processes [15].

An existing RRB was used in case 2, and it was extended with quite
some extra options and criteria. The results were fed back into the RRB
and reused in case 3. With a less complex problem and most of the knowl-
edge already there, this decision was comparably easy.

We have found many cases in which one problem affects another prob-
lem. In those cases, we keep the problems apart, and first decide on the af-

 Reusable Rationale Blocks: Improving Quality 363
 and Efficiency of Design Choices

fecting problem, and later on the affected problem. This ‘divide and con-
quer’ tactic keeps the evaluation tables small and the decisions easy.

We have seen that RRBs give most of their input early in decision proc-
esses. They give the decision process a ‘quick start’ by providing crude
versions of the options and their effects for typical design problems. The
current body of RRBs is not so useful later on in the decision process,
when more detailed, problem-specific knowledge is needed that is not yet
codified in the RRBs. As indicated earlier, this is intentional, because the
high-risk decisions are all made early in the design process.

It is more efficient to evaluate all the options to one decision at once
than it is to add options after property prediction. In case 1, when we
added a new option after the other options had been evaluated, we needed
to re-evaluate all the options because in evaluation, all options are com-
pared to each other.

17.5.2. Advantages and disadvantages
Using the RRB process itself seems like nothing more than good design
practice. However, recording all the decision rationale so explicitly as we
did in our examples may incur high extra costs. In our cases, the use of the
RRB process didn’t incur extra costs, because explicit rationale was
needed for the decision process anyway. In projects where there is no natu-
ral inclination to record rationale, our approach may be too intrusive to
work.

Making use of the knowledge inside the RRBs certainly saves effort. In-
vesting time to make this knowledge reusable for other projects in the
same company is subject to the same sort of economical considerations as
reusing software. For generating, harvesting and validating design knowl-
edge beyond the scope of organizations, we see a role for the academia,
and our future research will take part in it.

Acknowledgements. We thank Barbara Paech for her very constructive
feedback on our early drafts and later versions, which have improved the
quality of this chapter considerably. We thank the anonymous reviewers
for their extensive feedback which has led to numerous further improve-
ments.

364 Wiebe Hordijk , Roel Wieringa

References

[1] Alexander C, Ishikawa S, Silverstein M, King I, Angel S, Jacobson M,
(1977) A Pattern Language: Towns, Buildings, Construction. Oxford Uni-
versity Press

[2] Avison D, Lau F, Myers M, Nielsen PA (1999) Action research. In:
Communications of the ACM 42(1):94–97

[3] Basili VR, Caldiera G, Rombach HD (1994) Experience Factory. In: Mar-
ciniak JJ (ed) Encyclopedia of Software Engineering. John Wiley & Sons,
vol. 1, pp. 528-532

[4] Baskerville RL (1999) Investigating Information Systems with Action Re-
search (Tutorial). In: Communications of AIS 2, Article 19

[5] Bass L, Klein M, Bachmann F (2000) Quality attribute design primitives.
Technical report, SEI, CMU/SEI-2000-TN-017

[6] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-
Oriented Software Architecture, volume 1: A System of Patterns. John Wiley
& Sons

[7] Dutoit AH, McCall R, Mistrik I, Paech B (2006) Rationale Management in
Software Engineering. Heidelberg: Springer-Verlag

[8] Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns. Addison-
Wesley Professional

[9] Fowler M, Rice D, Foemmel M, Hieatt E, Mee R, Stafford R (2002) Patterns
of Enterprise Application Architecture. Addison-Wesley Professional

[10] Hofmeister C, Nord R, Soni D (1999) Applied Software Architecture.
Addison-Wesley Object Technology Series

[11] Hohpe G, Woolf B (2003) Enterprise Integration Patterns : Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley Professional

[12] Lee J, Lai K (1996) What is Design Rationale? In: Moran TP, Carroll JM
(eds) Design Rationale: Concepts, Techniques, and Use. Lawrence Erl-
baum Associates, Mahwah, New Jersey pp 21-52

[13] MacLean A, Young RM, Bellotti VME, Moran TP (1996) Questions, options
and criteria: Elements of design space analysis. In: Moran TP, Carroll JM
(eds) Design Rationale — Concepts, Techniques, and Use (Computers, Cog-
nition, and Work). Lawrence Erlbaum Associates, Mahwah, pp 53–106

[14] Wieringa RJ (1996) Requirements Engineering: Frameworks for Under-
standing. John Wiley & Sons

[15] Witte E (1972) Field research on complex-decision-making processes—The
phase theorem. In: International Studies of Management and Organization,
Vol. 2, pp. 156-182

[16] Zeist B van, Hendriks P, Paulussen R, Trienekens J (1996) Quality of soft-
ware products — Experiences with a quality model. Kluwer Bedrijfsweten-
schappen. Book in Dutch. Website contains all relevant information in Eng-
lish. See http://www.serc.nl/quint-book/index.htm.

