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9.1 Introduction

In this chapter we address two approaches to extract high-level concepts from
video footage and show the integrated use of both. We also describe an ex-
periment used for validation.

The spatio-temporal approach deals with space and time. Reasoning about
space and time is a major field of interest in many areas, for instance in
navigation of autonomous mobile robots. Its overall goal is to increase the
understanding of reasoning processes that apply to moving objects in space.
Spatio-temporal formalization is also used to infer semantics from low-level
video features. The formalization presented in this chapter has been validated
in at least three case studies. A medical case deals with modeling of walking
persons defining events like “walking on toes”, “wide walking”, etc. In the
sports domain there are two case studies dealing with soccer and tennis re-
spectively. The soccer case describes formalizations for events such as “player
has the ball”, “pass”, “scoring a goal”, etc. Elsewhere we have described the
soccer and the medical case [11].

Here we concentrate on the tennis case. We encounter high-level objects
(“player”, “ball”, “net”) together with spatial (“covered by”, “east of”) and
temporal relations (“before”, “during”). Using these objects and relations, we
formalize and derive events like “net playing” and “rally”. We may apply this
approach to even more complex events, like strokes (“forehand”, “backhand”,
and so on). Unfortunately, we then run into accuracy problems, as shown by
Sudhir et al. [17], for example.

So, how to recognize strokes? Some recent research shows that it is pos-
sible to recognize human activities from their binary representations, see for
example [14]. Moreover, we notice that probabilistic methods often exploit
automatic learning capabilities to derive knowledge. For example, Naphade
et al. [9] use hierarchical hidden Markov models to extract events like explo-
sions. This motivates us to train and use hidden Markov models. In order to
achieve this goal we start to extract the player from the background and to
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derive informative features from the player’s binary representation. So, in this
chapter we explain the use of hidden Markov models to recognize strokes and
we describe some experiments to validate the approach.

To experiment with, we have built a prototype system with a general
architecture that allows the development of video applications from several
areas. Experiments reported in this chapter are based on video footage taken
from ordinary TV broadcast tennis videos with different players at different
tennis tournaments, like the Australian Open, Swisscom Challenge, Vienna
Open, etc. Objects and events are high-level concepts (metadata) that are
stored within a database management system. We give an example of a query
which requires exploitation of both approaches.

9.1.1 Relation to Other Chapters

In this chapter we deal with video. Some of the image processing techniques
described in Chapter 5, are used here. To capture high-level concepts we also
follow a probabilistic approach. The approach is based on hidden Markov
models, which are explained rather extensively in Chapter 3. Text processing
is applied to frames to detect names of players. In Chapter 10 text processing
is discussed in more detail.

9.1.2 Outline

The remainder of this chapter is organized as follows. Next three sections
investigate the practical exploitation of spatio-temporal reasoning and hid-
den Markov models in a real situation using ordinary TV broadcasts of ten-
nis matches. Section 9.2 details some necessary video analysis techniques re-
garding shot detection, low-level features, and object detection and tracking.
Section 9.3 is dedicated to the detection and recognition of video events us-
ing spatio-temporal formalizations, while in Section 9.4, we introduce hidden
Markov models and demonstrate how they can be used for recognition of ten-
nis strokes. In Section 9.5, we describe a prototype system that implements
the approaches. We present an example of integrated querying. The last two
sections summarize the chapter and give some hints for further reading.

9.2 Tennis Video Analysis
Before we extract high-level concepts we have to do some preprocessing. This
includes reconstruction of the video structure, i.e., shot detection and classifi-
cation, but also object segmentation and tracking, and finally low-level feature
extraction. We explain this process with help of Figure 9.1. In this figure the
tennis video is pictured by the frames at the top.

9.2.1 Shot Detection and Classification

A typical video of a tennis match consists of different video shots (do not
confuse a video shot with a tennis shot!). The majority of shots show a tennis
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court with two players (we only consider single matches). These shots are
called playing shots. However, there are also some advertisement and close
up shots, as well as shots showing audience, which are usually taken during
game breaks. This can be seen in the second row of frames in Figure 9.1.
Selection of video shots containing a tennis court from other shots is necessary,
since our analysis is limited to playing shots. As video segmentation and shot
classification is already described in Chapter 3 we only briefly explain how
it is applied here. A tennis video is first segmented into different shots using
differences in color histograms of neighboring frames. For each shot, we extract
its dominant color. A simplified robust M-estimator is used to estimate the
parameters of the Gaussian, discarding other color pixels as outliers. The
dominant color that repeats the most number of times is supposed to be
the color of the tennis court. By analyzing the dominant color of shots on
other surfaces, we generalize our segmentation algorithm to different classes
of tennis courts: clay, grass, and so on.

Counting the number of skin-colored pixels and using a certain threshold
helps us to define close up shots. Also audience shots have a high number of
skin-colored pixels, but now entropy (mean and variance) are used as distin-
guishing characteristics. Remaining shots are called “other”. From now on we
concentrate on playing shots.

9.2.2 Player Segmentation and Tracking

The first step in the segmentation of players is to filter the dominant color (in
a playing shot this is the color of tennis court). Assume the leftmost frame
of the second row of Figure 9.1 to be the first frame of a playing shot. We
carry out the initial quadratic segmentation of the first two frames of the
playing shot using estimated statistics of the dominant color. The obtained
black-white frame is shown in the third row. Then, the player is detected as the
largest compact region in the lower half of the frame using some morphological
operations [10]. The other player and the ball may be detected too.

We fit the 3D tennis court model to the actual lines in the image. The new
knowledge about the scene is used to form the start values for robust estima-
tion of the parameters of a number of Gaussian models. Model parameters for
the color of the field, the lines and eventually the net are estimated using the
data from some neighborhood of the initially detected player. These values
are used to refine the player segmentation [19]. (Having the human figure in
this particular application, we extract special parameters trying to maximize
their informative content.) The center of mass of the region is taken as the
player position. The algorithm processes the next frame and searches for a
region similar to the region of the detected player using the player’s position.
Doing this for more frames delivers an estimate for the speed. This segmenta-
tion and tracking algorithm is a bit rough, but satisfactory, and is described
by Petković et al. [12].
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Fig. 9.1. Tennis video analysis.

9.2.3 Audio and Text

Until now we have focused on images. The audio signal, as one of the essen-
tial video components, provides a rich source of information to supplement
understanding of a video. Combining audio with other modalities gives more
information than any modality alone. The raw audio data can be divided into
speech and non-speech parts. Speech recognition results into a time-aligned
transcript of spoken words. Non-speech parts can be put into clusters with
textual descriptions like cheering and stroke sound. See Chapter 10 for more
information.

We observe that at the start of the match the names of the players appear
in a frame sequence. Using OCR techniques we detect which players are play-
ing and are able to keep these names during the match using player specific
characteristics. The text showing names of players has to be distinguished
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from text appearing in advertisements, and so on. These and other problems
are extensively dealt with in Chapter 10.

�

}

}

ca

Fig. 9.2. Orientation and eccentricity.

9.2.4 Low-Level Image Features
In previous sections we already introduced some low-level features. The list of
features includes the color histogram (f1), which is in fact a list of 256 values,
the dominant color (f2), entropy characteristics mean (f3), and variance (f4),
number of skin colored pixels (f5), player position (f6), area (f7), orientation
(f8), and eccentricity (f9). Area denotes the actual number of pixels in the
region. Orientation is the angle between the X-axis and the major axis of
the ellipse that has the same second moment as the region (in Figure 9.2 it
is called α). Eccentricity is the ratio of the distance between the foci of the
ellipse and its major axis length (in Figure 9.2 this is c/a). The eccentricity
takes a value between zero and one; these values are actually degenerate cases.
An ellipse with eccentricity zero is a circle, while an ellipse with eccentricity
one is a line segment.

Fig. 9.3. Specific features: (a) extracted shape; (b) pie features; (c) skeleton fea-
tures.

The features defined until now are used by both the spatio-temporal and the
hidden Markov model approach. We have, however, also some features which
are used by the second approach alone. The latter features are:
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• The position of the upper half of the mask with respect to the mass center
(f10−11), its orientation (f12), and the eccentricity (f13). Those features
describe the upper part of the body that contains most of the information.

• For each circle sector that is centered at the mass center, we count the
percentage of pixels in the pie (f14−21) as shown in Figure 9.3b.

• The sticking-out parts (f22−23) are extracted by filtering and finding local
maxima of the distance from a point on the contour to the mass center.
Only certain angles are considered, as indicated in Figure 9.3c.

9.3 Spatio-temporal Approach

Now we turn our attention to the spatio-temporal approach. First, we define
spatial and temporal relations that can hold between spatial objects. Then
we give rules to describe object and event types and we conclude with an
example query.

9.3.1 Spatial Relations

The concept of neighborhood is defined by topological relations which stay
invariant under transformations such as translation, rotation, and scaling.
Order in space is defined by direction relations. A notion of distance between
points is the last element of spatial relations. The most often used distance
metric is the well-known Euclidian metric.

Topological Relations

Each object is represented in two-dimensional space as a point set, which has
an interior, a boundary, and an exterior. The nine intersections of the three
properties of each of two objects describe the topological relations between
any two objects. The following eight relations are meaningful for region ob-
jects [3]: “disjoint”, “meet”, “equal”, “overlap”, “contains”, “inside”, “covers”,
and “covered by”.

Directional Relations

A video object is very often represented by a polygon. However, it is a common
strategy when dealing with spatial objects to use the Minimum Bounding
Rectangle approximation to increase efficiency. The reason is that we need to
store only two points (one corresponding to the lower left and another to the
upper right corner of the Minimum Bounding Rectangle). We base directional
relations on the cone-shaped concept of directions. They are defined using
angular regions between objects, which are abstracted as single points based
on the center of mass. Therefore, there are eight directional relations, namely
“north”, “east”, “north-east”, and so on.
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9.3.2 Temporal Relations

Video shots take time and so do actions of tennis players. A time interval has
a start time, an end time, and a duration. Tracking spatial objects defines
time intervals in which certain conditions like “player near the net” may hold.
Allen [1] defines thirteen relations between two time intervals. They can be
represented by the following seven: “before”, “meets”, “overlaps”, “during”,
“starts”, “finishes”, “equal”. The other six are inverse relations. For example,
“after” is the inverse relation of “before”. Only the equality relation has no
inverse. We refer to Allen [1] for a formal definition of the temporal relations.

9.3.3 Rules for Object and Event Types

To describe object and event types we use rules expressed in a syntax.
These rules form a part of an object and event grammar. Low-level fea-
tures and spatio-temporal relations form rules. The grammar is described
by Petković [10]. Below we will use a simplified form of the syntax.

We distinguish between simple and compound objects. In a soccer match
we may consider a ball to be a simple object and a goal post a compound
one. A goal post is then composed of two vertical bars and one horizontal
bar with their well-known spatial relationships. We also distinguish between
simple and compound event types. Simple event types are defined with help
of features types, object types, and all kinds of relations, but no event types.
Compound event types have event types in their defining rule.

The video analysis delivers a set of feature types:

{f1, f2, f3, f4, f5, f6, f7, f8, f9}

Moreover, we assume that the video analysis also established two sets of basic
visual object and audio event types:

{SpatialObject, Ball, Net}

{Cheering, StrokeSound, SighSound}

In the remainder of this section, we first give some rules to describe simple
object and event types. Then we present some rules to define compound types
that build on already defined concepts.

Simple Types

Consider a video frame. A simple object description that defines the player
closer to the camera (than the other one) using shape features and the spatial
relation contain is defined as:

PlayerCloserToCamera ::=

{r1: SpatialObject, r2: rect(0, 144, 384, 288)},

{700 < f7(r1) < 1200}, {contain(r2, r1)}
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In fact, in all frames of a playing shot the same player would be the
PlayerCloserToCamera. There are two regions involved: r1 corresponds to
a spatial object and r2 to the lower half of the frame. The criterion concern-
ing the area feature f7 has to be fulfilled. Furthermore, the region r2 has to
contain the region r1.

Let us consider a simple event type. The rule defines events in which Venus
Williams is playing close to the net for a given period of time:

PlayerNearTheNet ::=

{o1: PlayerCloserToCamera}, {o1.name = ‘‘V.Williams’’},

{y_distance (o1, Net) < 50}, {duration > 60})

Assume that the object types PlayerCloserToCamera and Net are already de-
fined. The new PlayerNearTheNet event type is expressed in terms of spatio-
temporal object interactions. Among others the distance to the net along the
Y-axis must be smaller than 10. The temporal relation says that this event
type should last for a specific period, as well as that the spatial relation should
be valid for that period of time. This description also shows how event types
can be parameterized (a user might be interested not only in Venus Williams,
but in other players playing as well).

Compound Types

In the description of the event type PlayerNearTheNet audio characteristics
do not play a part. The following event type descriptions use an audio event
type:

ForehandTouch ::=

{o1:PlayerCloserToCamera, o2:Ball}, {s:StrokeSound},

{IsRightHanded(o1)}, {overlap(o1, o2), east(o2, o1)}

BackhandTouch ::=

{o1:PlayerCloserToCamera, o2:Ball}, {s:StrokeSound},

{IsRightHanded(o1)}, {overlap(o1, o2), west(o2, o1)}

The rules define event types based on the occurrence of an event of type
StrokeSound, some conceptual information about the player, the topological
operator overlap, and the direction operators east and west. The direction
operators ensure that the ball is on the correct side of the player.

A user can also reuse already defined event types in order to define other
ones. For example, in our case study the “rally” event is defined as a compound
event type. First, we define simple event types PlayerInRightCorner and
PlayerInLeftCorner. An event like PlayerInRightCorner lasts as long as
the defining conditions remain true:

PlayerInRightCorner ::=

{o1:PlayerCloserToCamera}, { f6.x(o1)>=190, f6.y(o1)>=170}

PlayerInLeftCorner ::=

{o1:PlayerCloserToCamera}, { f6.x(o1)<190, f6.y(o1)>=170}
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Notice that these rules use feature f6, the position of the player. Having
defined these two event types, we create a compound event type that can be
used to extract all frame sequences in which a player goes two times from the
left part of the court to the right part and back. This event type is called
left-to-right rally. The rule includes the temporal relation meet: the relation
meet means that the first event has to finish at the moment the second event
starts:

LtRRally ::=

{e1,e2:PlayerInLeftCorner, e3,e4:PlayerInRightCorner},

{e1.o1 = e2.o1 = e3.o1 = e4.o1},

{meet(e1,e3), meet(e3,e2), meet(e2,e4)}

So, a user can build new event types. The list of described event types grows
very quickly. For example, in the following event description, some lobs are
retrieved by describing a new event type using the already defined event types
PlayerNearTheNet and PlayerNearTheBaseline and some additional crite-
ria:

Lob ::=

{e1: PlayerNearTheNet, e2: PlayerNearTheBaseline},

{e1.o1 = e2.o1}, {meet (e1, e2)}

This rule captures the situations that a player is near the net and has to run
back to the baseline to fetch the ball. However, a query with this event type
will not retrieve all lobs (for example, the ones where the player stays at the
net or smashes the ball at the service line will not be retrieved). To be able
to retrieve all lobs, the position of the ball must be taken into account.

9.3.4 Discussion

The spatio-temporal approach works for “simple” object and event types and
is easy to understand for the end user. In Section 9.1 we already mentioned a
major drawback of the spatio-temporal approach: the difficult task of defining
object and event types. An expert can help, but even then for some events the
approach will not grant the best results. Furthermore, we are able to specify
rules for forehand and backhand, but to recognize more different strokes will
not result in reasonable accuracy (as shown by Sudhir [17], for example). We
can enrich the rules with the concept of “ball position” together with some
other features. This might increase the accuracy, but, unfortunately, this will
make these descriptions even more complicated. Finally, it is very difficult to
find and track the ball because of its high speed (can be more than 200 km/h)
and occlusion problems. So, for the recognition of tennis strokes we try the
probabilistic approach.
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9.4 Stroke Recognition Using Hidden Markov Models
In this section we concentrate on hidden Markov models to map strokes into
classes such as forehand, smash, and service. To this end we use low-level
visual features.

Performing a stroke, the shape of a player is changing over time. So, we
have to map time-varying patterns into stroke classes.

9.4.1 Feature Extraction

The first step is to extract specific features from the player silhouette to
reduce the dimensionality of the problem. For each frame we obtain a vector
of feature values as described in Section 9.2.4. In Figure 9.4 each dot or + sign
represents a feature value in an n-dimensional space.

Time Feature extraction

Time

Fig. 9.4. Feature values extracted from a stroke.

Codebook

Having the low-level features extracted as described in Section 9.2.4, we pro-
ceed with vector quantization. This means that a vector of feature values that
characterizes the shape of the player is represented by only one discrete sym-
bol. The set of possible discrete symbols is called the codebook. This step is
required by the used discrete hidden Markov models, see further on.
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Vector quantization is the joint quantization of a vector of feature values.
This process implies that n-dimensional space is partitioned into M clusters,
where n is the number of feature types, while M is the codebook size. A simple
example of a quantization process, where two feature types are jointly quan-
tized using a codebook size of three symbols (A, B, C), is given in Figure 9.5.

A

B

C

Fig. 9.5. Example of vector quantization.

In order to design a codebook we use an iterative clustering algorithm known
in the pattern-recognition literature as the k-means algorithm. However, the
k-means algorithm can only converge to a local minimum of the quantiza-
tion error. Hence, it is wise to repeat it a number of times with different
initial values for cluster centers, and then choose the clustering with the min-
imum overall quantization error. Selection of the codebook size is a trade-off
between a smaller quantization error (larger codebook size) and faster opera-
tions (smaller codebook size).

9.4.2 Hidden Markov Models

Hidden Markov models are very effective tools for modeling time-varying pat-
terns with automatic learning capabilities. They are applied in many fields,
such as speech recognition, and more recently in human gesture recognition
and handwriting recognition.
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Hidden Markov models are explained in Chapter 3. Figure 9.6 pictures
some parameters of a stroke considered as a hidden Markov model. The num-
ber of hidden states NS = 3, the number of observation symbols, i.e., the
codebook size, K = 20, the sequence of observed symbols is pictured by the
line of numbers, and so on.

time

… …

hidden states

observation symbols

1 16 1 16 16 16 16 16 19 16 19 19 19 4 16 16 1 16 4 16 16 16 19 13 19 7 7 7 19 7 19 7 7 7 7 7 7 7 7 7 7 19 19 19 19

Fig. 9.6. A stroke and some related HMM parameters.

We observe that a stroke is a continuous movement of the player. In a stroke
it is unlikely that a certain posture recurs. This property leads us to an impor-
tant class of Hidden Markov models, namely a first order left-to-right hidden
Markov model. A left-to-right model always starts from the first state to the
left and is allowed to make transitions only toward right states or to the same
state, see Figure 9.7.

In Chapter 3 the learning, evaluation, and decoding problems are intro-
duced. In that chapter a general discussion on solutions to these three prob-
lems is given. Our aim is to recognize strokes and we do this is two steps. First,
we solve the learning problem using training video sequences with strokes.
This results in a hidden Markov model for each stroke class. Then we use the
obtained models to evaluate strokes in new video sequences.
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Fig. 9.7. A left-to-right model.

9.4.3 Learning Process

For each stroke class (forehand, volley, etc.) we have to find the optimal hidden
Markov model, meaning that we have to optimally estimate the probabilities
of the model by using the observations in the training process.

Training sequences with strokes were manually selected, using a tool that
was developed for video annotation and pre-processing. Then we set up the
hidden Markov model parameters, which include the number of states and the
size of a codebook, based on some heuristics. Subsequently, we trained 50 dif-
ferent models for each stroke class using the Baum–Welch algorithm with the
modified re-estimation formula for the training with multiple observation se-
quences [2]. Finally, after trying different codebook sizes and number of states
from 4 to 48, we selected the codebook size of 24 symbols and hidden Markov
models with 8 states. This gave the models with the highest probability to
represent a class of strokes.

The experiments, we carried out, are divided into two series based on the
number of stroke classes used.

9.4.4 Recognizing Strokes of Six Classes

Having a model for each class of strokes, we perform stroke recognition using
the first order, left-to-right, discrete hidden Markov models.

In the first experiment, we aimed at achieving of two goals: (1) determine
the best feature set and (2) investigate person independence of different fea-
ture sets. Hence, we have performed a number of experiments with different
feature combinations. In order to examine how invariant they are on different
male or female players, two series of experiments have been conducted: 1a
and 1b. In the series 1a, we used the same player in the training and eval-
uation sets, while in 1b hidden Markov models were trained with one group
of players, but strokes performed by another group were evaluated. In both
cases, the training set contained 120 different sequences, while the evaluation
set contained 240 sequences.
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We selected stroke classes to be recognized: forehand, backhand, service,
smash, forehand volley, and backhand volley. In each experiment, six hidden
Markov models were constructed – one for each stroke class we would like
to recognize. Each stroke sequence was evaluated by all six hidden Markov
models. The one with the highest probability was selected as the result. This
is called parallel evaluation.

Table 9.1. Recognition results (%).

Feature/Experiment 1a 1b 2

f8−11 82 79 76
f8−13 85 82 80
f8−9,12−13 81 78 76
f8−9,22−23 89 88 87
f8−23 86 82 79
f9−11,22−23 91 89 88
f14−21 85 78 78
f14−23 93 87 86

The recognition accuracies in Table 9.1 (percentages of rightly classified
strokes using parallel evaluation) show that the combination of pie and skele-
ton features (f14−23) achieved the highest accuracy in experiment 1a. The
recognition rates dropped in experiment 1b as expected. Two feature combi-
nations showed to be the most person independent, i.e., invariant on different
player constitutions. The first is the combination of eccentricity, the mass cen-
ter of the upper part, and skeleton features, while another is the combination
of orientation, eccentricity, and skeleton features.

9.4.5 Recognizing Strokes of Eleven Classes

In the second experiment, we investigated recognition rates of different feature
combinations using an extensive classification of strokes from tennis litera-
ture [20]. There are 11 different stroke classes: service, backhand slice, back-
hand spin, backhand spin two-handed, forehand slice, forehand spin, smash,
forehand volley, forehand half-volley, backhand volley, and backhand half-
volley. The training and the evaluation set remained the same as in exper-
iment 1b, only the new classification was applied. Although at first glance
some strokes in this new classification are very similar to each other (for ex-
ample volley and half-volley or backhand slice and spin), the performance
(Table 9.1, last column) dropped only slightly. The results have proved that
there is an evident difference between, for example, backhand slice and spin
stroke. The arm position and the swing are different. In this experiment, the
majority of false recognitions remained the same as in experiment 1. Nearly
65% comes from forehands recognized as backhands and vice versa, as well
as from forehand-volleys recognized as forehands and vice versa. A reason for



9 A Spatio-Temporal and a Probabilistic Approach for Video Retrieval 265

that can also be an unbalanced number of strokes in different stroke classes in
our test set. A bigger test collection with the exactly same number of strokes
in each stroke groups would lead to a more comprehensive analysis of mis-
recognition in this experiment with expanded classification of tennis strokes.

9.4.6 Discussion
The recognition rate did not drop much from experiment 1a to experiment
1b. We believe that this is due to the advanced, very informative, invariant
features (in the first place novel skeleton features). The high recognition rate
we achieved is certainly more significant taking into account that we used
TV video scenes with a very small player’s shape. In order to improve the
performance of our approach, one could further fine-tune feature extraction
taking into consideration human body parts and their kinematics. The use of
shape axis model introduced by Liu and Geiger [8] would be interesting in
this context. On the other hand, having the ball position known (an attempt
is reported by Pingali [13]) would certainly make the distinction between fore-
hand and backhands as well as between volleys and half-valleys more robust
and significantly increase the recognition rate. The approach presented here
has some limitations. The performance of stroke recognition depends on the
camera position and the noise strength, as skeleton features are very sensitive
on video quality. Some features are also dependent on the resolution of input
images. Furthermore, we used only right-handed players in our experiments.
Introducing left-handed players would require training of additional hidden
Markov models and further experiments to assess the accuracy of stroke recog-
nition of mixed right- and left-handed players. However, an easier way is to
use conceptual information from the player profile and then choose the right
hidden Markov models for recognition.

9.5 Prototype
Based on the architecture shown in Figure 9.8 we implemented a prototype
system. In this system raw video data are stored as files. As metadata server we
choose the MONET database system, which has been extended with modules
to deal with hidden Markov models, (dynamic) Bayesian networks, and rules.
We added also an interface to simplify definition of object and event types
and the formulation of queries.

Using the interface, a user can easily define a query by selecting particular
features and by setting constraints on them. Moreover, the event grammar
allows users to define new events types and build the metadata themselves.
For example, a user can define a new event called “rallies with net playing”
by introducing the “overlap” temporal operation between the “playing on the
net’ and “rally” event types. After the evaluation of the query, results are
added to the metadata. This speeds up further querying of this event, which
is resolved directly in the event layer of metadata without performing costly
join operation for resolving the temporal relation.
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Fig. 9.8. Architecture of prototype.

The feature extraction component is used for video segmentation and fea-
ture extraction purposes.

The advantage of this framework is that it supports the integrated use of
different techniques for semantic extraction (elsewhere we give more details
about the integrated use [10, 11]). Therefore, we can benefit from using the
spatio-temporal event formalization together with the stochastic formaliza-
tion. The system can answer very detailed complex queries, such as “Select
all video sequences from the game between Kournikova and Kuti Kis where
one of the players smashes being near the net”. Figure 9.9 shows a graphical
user interface that allows to formulate a query like this one:

SELECT vi.frame_seq

FROM video vi

WHERE s_contains (vi.frame_seq,

SmashOnNet = ({e1: PlayerNearTheNet, e2: Smash},

{overlap (e2, e1)},e1.o1= e2.o1)) = 1 AND

vi.name = ‘KournikovaKutiKis’

The query retrieves all video segments from the game between Kournikova
and Kis. The name of the video is “KournikovaKutiKis”. The query is for-
mulated using an extended OQL, where s_contains is a function that checks
whether a frame sequence contains requested objects or events. The query
comprises a new event type, namely the SmashOnNet event type that consists
of two event types. PlayerNearTheNet is defined using the spatio-temporal
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approach, while Smash has been detected with the hidden Markov model ap-
proach.

Fig. 9.9. Graphical user interface for combined queries.

9.6 Summary
We have presented a framework for automatic extraction of high-level concepts
(objects and events) from raw video data. The extraction is supported by two
components. The rule-based component formalizes descriptions of high-level
concepts using spatio-temporal reasoning. The stochastic component exploits
the learning capability of hidden Markov models to recognize events in video
data automatically. By integrating these techniques within the database man-
agement system, the users are provided with ability to define and extract
events dynamically. These two approaches have been applied for retrieval in
the particular domain of tennis game videos. The spatio-temporal approach
is used for retrieval of more “exact” events such as “net-playing” and “rally”,
while hidden Markov models are used for the retrieval of more “fuzzy” events
like “forehand”, “service”, etc. Consequently, the complete set of video pro-
cessing tools for the Tennis domain has been introduced, starting from shot
segmentation and classification, through player segmentation and tracking,
to feature extraction. A number of experiments with hidden Markov mod-
els have been carried out in order to find which combination of features, but
also which hidden Markov model parameters give the best results. The results
have proved that specific features, such as the skeleton and the pie features are
of the greatest importance. Furthermore, experimental results with a regular
classification of tennis strokes demonstrated that our hidden Markov model
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approach is promising to realize statistics of tennis games automatically using
normal TV broadcast videos.

9.7 Further Reading

The problem addressed in this chapter is to automatically derive high-level
representation of video content based on low-level features. In order to solve
this problem, several domain-dependent research efforts have been under-
taken. These approaches take an advantage of using domain knowledge to
facilitate extraction of high-level concepts directly from features. In partic-
ular, they mainly use information on object positions, their transitions over
time, etc., and relate them to particular events (high-level concepts). For ex-
ample, methods have been proposed to detect events in football [7], soccer [5],
and hunting [6], etc. Motion (for review see [16]) and audio are, in isolation,
very often used for event recognition. Rui et al. [15] for example, base ex-
tracting highlights from baseball games on audio only. Although these efforts
resulted in the mapping from features to high-level concepts, they are essen-
tially restricted to the extent of recognizable events, since it might become
difficult to formalize complex actions of non-spatial objects using rules. Fur-
thermore, rules require expert knowledge and have problems when dealing
with uncertainty.

On the other hand, some other approaches use probabilistic methods that
often exploit automatic learning capabilities to derive knowledge. For example,
Naphade et al. [9] used hierarchical hidden Markov models to extract events
like explosions. Structuring of video using Bayesian networks alone [18] or
together with hidden Markov models [4] has been also proposed.
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