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Abstract In this Chapter we present some detailed examples of modelling in several

domains using port and port-Hamiltonian concepts, as have been presented in the

previous chapters. We start with the electromechanical domain in Sect. 3.1, while

in Sect. 3.2 it is shown how port-Hamiltonian systems can be fruitfully used for the

structured modelling of robotics mechanisms. In Sect. 3.3, it is show how to model

simple elastic systems either in the Lagrangian and Hamiltonian framework, while,

in Sect. 3.4, an expressions of the models representing momentum, heat and mass

transfer as well as chemical reactions within homogeneous fluids in the port-based

formalism is proposed. To this end, the entropy balance and the associated source

terms are systematically written in accordance with the principle of irreversible ther-

modynamics. Some insights are also given concerning the constitutive equations and

models allowing to calculate transport and thermodynamic properties. As it will be

shown, for each physical domain, these port-based models can be translated into

bond-graph models, in the case of distributed as well as lumped parameters models.

3.1 Modeling of electrical systems

Electromechanical energy conversion has already been discussed in Sect. 1.9.3, and,

in particular, the constraints imposed by energy conservation on the constitutive

laws of the ports, Maxwell’s relations, have been derived. As the name indicates,

electromechanical systems (EMS) bridge the gap between the electrical and me-

chanical domains. In practice, on the electrical side one has an electric circuit of a

very special class, what is called an electronic power converter, which, if the sys-

tem is working as an electrical motor, takes the electrical energy from some source

and provides a suitable voltage to the EMS so that the desired mechanical speed is

reached; likewise, if the system acts as a generator, the power converter transforms

the raw electrical energy into a form adapted for immediate use, storage or trans-

portation. The main characteristic of electronic power converters is that they are

variable structure systems (VSS). They contain a number of switches and diodes, of
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132 3 Port-Based Modeling in Different Domains

Fig. 3.1 A functional descrip-

tion of the boost converter.
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which the former can be opened or closed in a periodic manner by a suitable control

algorithm, in order to effect the necessary electrical energy conversion.

Since electronic power converters are so important for EMS, and also for many

other applications, such as portable equipment, energy supply systems in the aero-

space industry, or uninterruptible power supply systems, we present first an explicit

example of modelling of a power converter in the port-Hamiltonian framework.

Next we discuss in detail the port-Hamiltonian description of a general EMS, and

use it to describe an elementary electromagnet. Finally we couple both systems and

display the complete port-Hamiltonian structure.

Although modelling of VSS in the port-Hamiltonian framework is straightfor-

ward, numerical simulation can be quite complex and time-intensive, due to the

abrupt structure changes. Approximate, smooth models can be obtained from a VSS,

using suitable averages of the state variables and the control signals. For complete-

ness, we also present the simplest form of this averaging theory, which yields models

which can be easily implemented in bond graph theory.

3.1.1 Electronic power converter circuits

Fig. 3.1 shows a functional model1 of the boost (or elevator) converter (the detailed

electronics of how the switches are implemented is not shown). The switches s1 and

s2 are complementary: when s1 is closed (s1 = 1), s2 is open (s2 = 0), and vice-

versa. Thus, the different circuit topologies can be described with a single boolean

variable S = s2.

The port Hamiltonian modeling of electric circuits can be done in a systematic

way using tools from graph theory [145], but since we are dealing here with a circuit

of very small size we will adopt a more pedestrian approach and concentrate on

the problems presented by the switches, using the ideas of [74]. A more in-deep

conceptual analysis of the switches can be found in [63, 73, 82]. The Hamiltonian

dynamical variables of the boost converter are the magnetic flux at the coil, φL, and

the charge of the capacitor, qC. Hence we have two one-dimensional Hamiltonian

1 In a real setup, one of the switches (s1) is replaced by a diode. This may cause, under the ap-

propriate conditions, the apparition of the so-called discontinuous conduction modes, which this

simplified model cannot support.
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subsystems, with a global Hamiltonian HB = HC +HL,

dqC

dt
= iC vC =

∂HB

∂qC

, (3.1)

and

dφL

dt
= vL iL =

∂HB

∂φL

(3.2)

connected by Kirchhoff’s laws

iL = i1 + i2

i1 = iC − iR

v2 + vL = E0

vC + v1 = v2

vC = vR

i0 − iL = 0

(3.3)

These 6 independent relations define a Dirac structure in R
12, the space of the ef-

forts and flows of the 6 interconnected electrical elements (the two switches, the

capacitor, the inductor, the load and the voltage source).

Here we treat the switches as ports, with their correspondent effort and flow

variables. For the time being we do not terminate the resistive port, i.e. we do not

use vR = −RiR (the minus sign is necessary since we are adopting an input power

convention for the rest of the system, hence an output power one for the resistor;

we could get rid of this nuisance by introducing auxiliary variables at the resistive

port). Using (3.1) and (3.2), the first four equations of (3.3) can be written as

∂HB

∂φL

= i1 + i2

i1 =
dqC

dt
− iR

v2 +
dφL

dt
= E0

∂HB

∂qC

+ v1 = v2

(3.4)

The second and third equations in (3.4) yield a Hamiltonian system with four inputs

and J = R = 0:

d

dt

[
qC

φL

]
=

[
1 0 1 0

0 −1 0 1

]



i1
v2

iR
E0


 (3.5)
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Next we will use the constraints imposed by the switches to absorb the ports s1 and

s2 into the Hamiltonian structure:

• S = 0 ⇒ s1 = 1, s2 = 0 ⇒ v1 = 0, i2 = 0;

• S = 1 ⇒ s1 = 0, s2 = 1 ⇒ i1 = 0, v2 = 0.

Hence, when S = 1 we already have the values of the port variables i1, v2 in (3.5),

while if S = 0, using the first and fourth equations in (3.4),

i1 =
∂HB

∂φL

v2 =
∂HB

∂qC

We can put together both results as

i1 = (1−S)
∂HB

∂φL

v2 = (1−S)
∂HB

∂qC

. (3.6)

Now

d

dt

[
qC

φL

]
=

[
1 0 1 0

0 −1 0 1

]



(1−S) ∂HB

∂φL

(1−S) ∂HB

∂qC

iR
E0




=

[
0 1−S

−(1−S) 0

][ ∂HB

∂qC
∂HB

∂φL

][
1 0

0 1

][
iR
E0

]
(3.7)

which is a port Hamiltonian system with outputs

y =

[
1 0

0 1

]T
[

∂HB

∂qC
∂HB

∂φL

]
=

[
vC

iL

]
=

[
vR

i0

]
(3.8)

Finally, we may terminate the resistive port using

iR = −vR

R
= −vC

R
= − 1

R

∂HB

∂qC

and get our final port Hamiltonian representation of the boost converter with resis-

tive load

d

dt

[
qC

φL

]
=

{[
0 1−S

−(1−S) 0

]
−
[

1/R 0

0 0

]}[ ∂HB

∂qC
∂HB

∂φL

]
+

[
0

1

]
E0 (3.9)

with natural output

y =

[
0

1

]T
[

∂HB

∂qC
∂HB

∂φL

]
= iL = i0. (3.10)
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Fig. 3.2 A generalized elec-

tromechanical system. eM

fM

eE

fE

(λ ,x)

Notice that the interconnection structure J is modulated by the boolean variable S.

Designing a control for this system means choosing S as a function of the state

variables.

3.1.2 Electromechanical energy conversion in the

port-Hamiltonian framework

As explained Sect. 1.9.3, and in particular in Example 1.1, electrical domain systems

with constitutive relations depending on geometric parameters develop additional

mechanical ports through which power can flow and be exchanged with the elec-

trical ports. Here we will cast the expressions for the constitutive laws of the ports

into a Hamiltonian form. Consider the system displayed in Fig. 3.2. There are nE

generalized electrical ports (eE , fE) and nM generalized mechanical ones (eM, fM),
and the state variables are denoted by λ ∈ R

nE , x ∈ R
nM . Note that here we use

a magnetic and translation mechanics notation, although the ports can be of any

nature.

The equations of motion and the constitutive relations of the ports of this system,

namely λ̇ = eE , ẋ = fM , fE = ∂HE

∂λ , eM = ∂HE

∂x
, where HE = HE(λ ,x) is the energy

function, can be expressed in explicit port-Hamiltonian form as:

[
λ̇
ẋ

]
=

[
eE

fM

]
(3.11)

[
fE

eM

]
=

[
∂HE

∂λ
∂HE

∂x

]
(3.12)

This is just the purely electromagnetic part of an electromechanical system. In fact,

the electromechanical system always contains some mechanical inertia, indepen-

dently of whether the port is connected to other systems or not. To model this,

consider a generalized mechanical element with nI ports (eI , fI) and state variables

p ∈ R
nI . The dynamical equations of the element, ṗ = eI , fI = I−1 p, are written in

port-Hamiltonian form as

ṗ = eI (3.13)

fI =
∂HI

∂ p
(3.14)

with HI(p) = pTI−1 p.
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Fig. 3.3 Bond graph of a

generalized electromechani-

cal system with mechanical

inertia included.
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This purely mechanic part can be coupled to the electromagnetic part and to the

rest of the system (if any), by means of

eI = −BIMeM +FI (3.15)

fM = BT
IM fI (3.16)

fI = vI (3.17)

where the mechanical ports of the inertia element have been split into one contri-

bution from the electromagnetic part, (eM, fM), and the connection to other subsys-

tems, (FI ,vI), with FI ,vI ∈ R
nI . The matrix BIM takes into account the fact that the

mechanical ports may be connected to the electromagnetic part in a nontrivial way

(or the fact that nI 6= nM), and the minus sign in (3.15) reflects Newton’s third law

(eM is the force on the electromagnetic part, so a minus sign must be introduced

to get the force on the mechanical element). Notice that the above relations define

a Dirac structure in R
nM+2nI ×R

nM+2nI with coordinates (eM,− fM,−eI , fI ,FI ,vI),
since the nM +2nI equations are clearly independent and can be written as




I 0 0

0 I 0

0 0 I




︸ ︷︷ ︸
F



− fM

−eI

vI


+




0 BT
IM 0

−BIM 0 I

0 −I 0




︸ ︷︷ ︸
E




eM

fI

FI


= 0

with EFT + FET = E + ET = 0. Notice that the two minus signs in − fM and −eI

correspond to power flowing into the mechanical port of the electromagnetic sub-

system and power flowing into the mechanical inertia, respectively, so that

FT
I vI = eT

I fI + eT
M fM

The bond graph corresponding to the whole system is displayed in Fig. 3.3, where

the power flow conventions can be clearly appreciated.

From (3.11), (3.12), (3.13), (3.14), (3.15), (3.16) and (3.17), one can express the

equations of motion for the state variables in terms of the external inputs (eE ,FI),
and obtain also the corresponding outputs ( fE ,vI). Indeed, eliminating the internal

port variables (eM, fM) and (eI , fI), one gets
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λ̇ = eE

ẋ = BT
IM

∂HI

∂ p

ṗ = −BIM

∂HE

∂x
+FI

fE =
∂HE

∂λ

vI =
∂HI

∂ p

This can be given a port-Hamiltonian form, with total Hamiltonian

HEM(λ ,x, p) = HE(λ ,x)+HI(p), (3.18)

and




λ̇
ẋ

ṗ


 =




0 0 0

0 0 BT
IM

0 −BIM 0







∂HEM

∂λ
∂HEM

∂x
∂HEM

∂ p


+




I 0

0 0

0 I



[

eE

FI

]
(3.19)

[
fE

vI

]
=

[
I 0 0

0 0 I

]



∂HEM

∂λ
∂HEM

∂x
∂HEM

∂ p


 (3.20)

Many electromechanical systems of interest admit this explicit port-Hamiltonian

form, including dc motors, levitating systems, elementary electromagnets (which

will be presented in detail next) or microelectromechanical devices (MEMS). Al-

ternating current machines can also be written in port-Hamiltonian form. However,

several coordinate transformations are used in the electrical engineering literature to

simplify the complex, geometry dependent constitutive relations involved in most of

the cases. It turns out that, after carrying out those transformations, the system is still

in port-Hamiltonian form, although with nontrivial, state dependent interconnection

matrices. We will not pursue this here, but the interested reader is referred, for in-

stance, to [16].

3.1.3 Elementary electromagnet

Fig. 3.4 shows an elementary electromagnet, a magnetic system with a moving part

so that the flux linkage λ through the coil depends on a geometry variable, the

“air gap” x. This can be written in the general form of electromechanical systems

described above, with nE = 1 and nM = nI = 1, BIM = 1, vI = v, FI = F , eE = E,

fE = i, and HI(p) = p2/(2m). We just have to specify HE(λ ,x), which we will

deduce next from first principles, under suitable simplifications.
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Fig. 3.4 An elementary elec-

tromagnet: a magnetic system

with a moving part.
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The flux linkage λ can be computed from the number of turns, N, and the mag-

netic induction flux, Φ , as

λ = NΦ .

In turn, Φ has a leakage, Φl , and a magnetizing, Φm, parts, Φ = Φl + Φm, which

can be computed in terms of the reluctance of the respective paths:

Φl =
Ni

Rl

Φm =
Ni

Rm

.

The reluctance of the magnetizing path has a fixed contribution, the part of the iron

path, and a variable one, the part of the air gap:

Rm =
li

µriµ0Ai

+
2x

µ0Ag

,

where µri, the relative magnetic permeability of the iron core, is of the order of 103.

Assuming that the sections of the iron and air gap paths are the same, Ai = Ag = A,

one gets

Rm =
1

µ0A

(
li

µri

+2x

)
.

The relation between the current and the flux linkage can finally be written as

λ =

(
N2

Rl

+
N2

Rm

)
i = (Ll +Lm)i

with

Lm =
N2

Rm

=
N2µ0A
li

µri
+2x

≡ b

c+2x
.

Assembling these results, we can obtain the constitutive relation at the electrical

port

i(λ ,x) =

(
a+

b

c+2x

)−1

λ , (3.21)
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where a = Ll = N2/Rl . As explained elsewhere in this book, the constitutive laws

of a multi-port must obey Maxwell’s reciprocity relations, which in this case read

∂F

∂λ
=

∂ i

∂x
. (3.22)

One gets then from (3.21)

∂F

∂λ
=

2b

(2ax+ac+b)2
λ ,

from which

F(λ ,x) =
bλ 2

(2ax+ac+b)2
. (3.23)

Finally, HE(λ ,x) can be computed from

HE(λ ,x) =
∫ (λ ,x)

(0,0)

(
i(λ̃ , x̃)dλ̃ +F(λ̃ , x̃)dx̃

)
,

or just using the result for linear magnetic materials. Either way, one gets

HE(λ ,x) =
1

2

c+2x

2ax+ac+b
λ 2. (3.24)

The port-Hamiltonian structure is thus




λ̇
ẋ

ṗ


=




0 0 0

0 0 1

0 −1 0







∂HEM

∂λ
∂HEM

∂x
∂HEM

∂ p


+




1 0

0 0

0 1



[

E

F

]

[
i

v

]
=

[
1 0 0

0 0 1

]



∂HEM

∂λ
∂HEM

∂x
∂HEM

∂ p




(3.25)

where

HEM(λ ,x, p) =
1

2

c+2x

2ax+ac+b
λ 2 +

1

2m
p2.

Notice that, just replacing F with a constant gravitational force and expressing it as

a gradient of the gravitational energy, which can then be added to HEM , one obtains

the model of the magnetically levitating ball of Example 2.2, albeit without the

dissipation term.
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Fig. 3.5 Coupling of the

boost and the electromagnet.
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3.1.4 Coupling of the boost converter and the electromagnet

As a final example, we connect the boost converter, without the resistive termination,

to the electromagnet, inserting a resistor r in series connection between them, as

shown in Fig. 3.5, where we have renamed the boost variables to (q,φ). The series

resistor obeys (we adopt an input power convention for this one)

vr = rir (3.26)

and where the interconnecting Dirac structure is provided by Kirchhoff’s laws

iR = ir ir = −i E = vR + vr

From the first output relation of the boost subsystem, vR = ∂HB

∂q
, and the first one

of the electromagnet, i = ∂HEM

∂λ , together with (3.26) and Kirchhoff’s laws, one can

express the internal port variables as

E = vR + vr =
∂HB

∂q
+ rir =

∂HB

∂q
− ri =

∂HB

∂q
− r

∂HEM

∂λ

iR = −i = −∂HEM

∂λ

Substituting these into (3.7) and (3.25), if H(q,φ ,λ ,x, p) = HB(q,φ)+HEM(λ ,x, p)
one gets:




q̇

φ̇

λ̇
ẋ

ṗ




=




0 1−S 0 0 0

−1+S 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −1 0







∂H
∂q
∂H
∂φ
∂H
∂λ
∂H
∂x
∂H
∂ p




+




− ∂H
∂λ

E0
∂H
∂q

− r ∂H
∂λ

0

F




This can be rewritten in explicit port-Hamiltonian form, with inputs E0 and F and

outputs i0 and v, as
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


q̇

φ̇

λ̇
ẋ

ṗ




=




0 1−S −1 0 0

−1+S 0 0 0 0

1 0 −r 0 0

0 0 0 0 1

0 0 0 −1 0







∂H
∂q
∂H
∂φ
∂H
∂λ
∂H
∂x
∂H
∂ p




+




0 0

1 0

0 0

0 0

0 1




[
E0

F

]
(3.27)

y =

[
0 1 0 0 0

0 0 0 0 1

]




∂H
∂q
∂H
∂φ
∂H
∂λ
∂H
∂x
∂H
∂ p




(3.28)

3.1.5 Variable structure systems

Assume a VSS system such that the change in the state variables is small over the

time length of an structure change, or such that one is not interested about the fine

details of the variation. Then one may try to formulate a dynamical system for the

time average of the state variables (state space averaging, or SSA)

〈x〉(t) =
1

T

∫ t

t−T
x(τ) dτ, (3.29)

where T is the period, assumed constant, of a cycle of structure variations. Let our

VSS system be described in explicit port Hamiltonian form

ẋ = [J(S,x)−R(S,x)]
∂H

∂x
(x)+g(S,x)u, (3.30)

where S is a (multi)-index, with values on a finite, discrete set, enumerating the

different structure topologies. For notational simplicity, we will assume from now

on that we have a single index (corresponding to a single switch, or a set of switches

with a single degree of freedom) and that S ∈ {0,1}. Hence, we have two possible

dynamics, which we denote as

S = 0 ⇒ ẋ =
[
J0(x)−R0(x)

]∂H

∂x
(x)+g0(x)u,

S = 1 ⇒ ẋ =
[
J1(x)−R1(x)

]∂H

∂x
(x)+g1(x)u.

(3.31)

Note that controlling the system means choosing the value of S as a function of the

state variables, and that u is, in most cases, just a constant external input. Moreover,

from (3.29) we have
d

dt
〈x〉(t) =

x(t)− x(t −T )

T
. (3.32)
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Now the central assumption of the SSA approximation method is that for a given

structure we can substitute x(t) by 〈x〉(t) in the right-hand side of the dynamical

equations, so that (3.31) become

S = 0 ⇒ ẋ ≈
[
J0(〈x〉)−R0(〈x〉)

]∂H

∂x
(〈x〉)+g0(〈x〉)u,

S = 1 ⇒ ẋ ≈
[
J1(〈x〉)−R1(〈x〉))

]∂H

∂x
(〈x〉)+g1(〈x〉)u.

(3.33)

The rationale behind this approximation is that 〈x〉 does not have time to change too

much during a cycle of structure changes. We assume also that the length of time

in a given cycle when the system is in a given topology is determined by a function

of the state variables or, in our approximation, a function of the averages, t0(〈x〉),
t1(〈x〉), with t0 + t1 = T . Since we are considering the right-hand sides in (3.33)

constant over the time scale of T , we can integrate the equations to get2:

x(t) = x(t −T ) + t0(〈x〉)
[[

J0(〈x〉)−R0(〈x〉)
]∂H

∂x
(〈x〉)+g0(〈x〉)u

]

+ t1(〈x〉)
[[

J1(〈x〉)−R1(〈x〉)
]∂H

∂x
(〈x〉)+g1(〈x〉)u

]
.

Using (3.32) we get the SSA equations for the variable 〈x〉 (which we rewrite again

as x to simplify the notation):

ẋ = d0(x)

[[
J0(〈x〉)−R0(〈x〉)

]∂H

∂x
(〈x〉)+g0(〈x〉)u

]
+

+d1(x)

[[
J1(〈x〉)−R1(〈x〉)

]∂H

∂x
(〈x〉)+g1(〈x〉)u

]

=
{[

d0(x)J0(x)+d1(x)J1(x)
]
−
[
d0(x)R0(x)+d1(x)R1(x)

]}∂H

∂x
(x)+

+
[
d0(x)g0(x)+d1(x)g1(x)

]
u,

(3.34)

where

d0,1(〈x〉) =
t0,1(〈x〉)

T
, (3.35)

with d0 + d1 = 1. In the power converter literature d1 (or d0, depending on the

switch configuration) is referred to as the duty cycle. Equation (3.34) is again a

port-Hamiltonian system, with interconnection, dissipation and port matrices given

by combinations of the individual topology matrices. Notice that this is a smooth

system, whose numerical implementation is much easier than the original VSS. Dis-

cussion of these kind of averaged systems in the bond graph formalism can be found

in [63]. In fact, this analysis can be extended to the case when higher order harmon-

ics, and not just the zeroth order one considered here, are introduced; the result, as

shown in [17], is again a system in port-Hamiltonian form.

2 We also assume that u does not vary over this time scale; in fact u is constant in many applications.
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Fig. 3.6 The bond graph of

the boost converter.
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Fig. 3.7a Causality assignments of the

switching structure of the boost converter: S2

closed and S1 open.

Fig. 3.7b Causality assignments of the

switching structure of the boost converter: S2

open and S1 closed.

As an example, we can retake the boost converter discussed previously. In the

above notation, for the case of an open load port, one has

J0 =

[
0 1

−1 0

]
J1 =

[
0 0

0 0

]
g0 = g1 =

[
1 0

0 1

]

and no dissipation, i.e. R0 = R1 = 0. Putting this into (3.34) and denoting µ =
t0(x)/T , one gets

d

dt

[
qC

φL

]
=

[
0 µ
−µ 0

][ ∂HB
qC

∂HB
φL

]
+

[
1 0

0 1

][
ciR
E0

]
(3.36)

This has exactly the same form that the exact, non-smooth model (3.7), with µ =
1− S, except for the fact that all the state variables are averages, and µ can take

values in the continuum [0,1]. It is instructive to derive these results from a bond

graph approach. Indeed, the bond graph of the boost converter, Fig. 3.1, considering

the two switches as open ports, is displayed in Fig. 3.6. The interior bonds of the

switching structure have no causality assignment, because it depends on the state of

the switches. In fact, there are two possibilities, as shown in Figures 3.7a and 3.7b.

Notice that the two possible interior assignments have the same output causality.

In the first case represented in Fig. 3.7a, one has v2 = 0 and i1 = 0, since S2 acts

a zero voltage source while S1 is a zero current source; the situation is reversed in

the second case, illustrated in Fig. 3.7b. Writing down the bond graph equations for

both cases, one arrives at the input/output relations

ea = µeb fb = µ fa

with µ = 0 in the first case, and µ = 1 in the second one. This corresponds to

the relations of an ideal transformer, and the associated bond graph is displayed in
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Fig. 3.8 The bond graph of

the boost converter with a

transformer instead of the two

switches.
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Fig. 3.10 Load voltage wave-

form for the VSS and aver-

aged models.
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Fig. 3.8. If one writes the equations associated to this bond graph, the same form

as in (3.36) is obtained. From the point of view of the bond graph, µ could be a

boolean variable µ ∈ {0,1} or a continuous one µ ∈ [0,1]. However, if the later op-

tion is taken the averaged model is recovered. Fig. 3.9 shows the 20-sim schemes for

both models, with the same system parameters, and Fig. 3.10 shows the load volt-

age for the corresponding simulations, for system parameters C = 0.002, L = 0.002,

E0 = 20, and R = 10 (in SI units). For the variable structure model, a square pe-

riodic signal with T = 0.0004 s and duty-cycle µ = 0.6 is injected into the MTF,

while for the averaged model the parameter transformer is µ = 0.6. The averaged

model yields, indeed, the averages of the state variables of the VSS model; on closer

inspection it can be seen that the later has, however, a small ripple due to the commu-

tation, not present in the averaged model simulation. Notice that, in both cases, the

asymptotic output voltage is E0/(1−µ) = 50 V, as expected for a boost converter.
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3.2 Modeling of mechanical systems

3.2.1 Short introduction and motivations

In Chapter 1, we have introduced the basic notions of port-Hamiltonian systems.

In this part we will show how it possible to use these techniques for the structured

modeling of robotics mechanisms. If we would just start modeling the motion of a

point mass, due to the geometry of the space it moves in, this could be done by just

considering usual coordinates. The port variables would then be the usual vector

forces and velocities and no extra structure would be necessary. To be more spe-

cific, a particle mass is easy to describe because its configuration can be associated

to a point of the three-dimensional Euclidean space. After having chosen coordi-

nates, each point can be associated to a triple of real numbers in R
3; but the most

important thing is that the algebraic and topological properties of R
3 correspond to

real physical properties of the motion of the particle: forces can be added; velocity

vectors too; magnitudes of vectors correspond to magnitudes of forces and veloci-

ties; “orthogonality” of a force and velocity vectors gives zero power; the velocity

and acceleration vectors are the time derivatives of the points position vector; New-

ton’s Laws link a three-dimensional force vector to a three-dimensional acceleration

vector, through the apparently scalar quantity “mass”, for point masses, as well as

spherically-symmetric rigid bodies such as planets and canon balls.

In contrast to the simplicity of the point mass motion properties, the motion and

the dynamics of a rigid body are much more complex. A rigid body is composed of

an infinite number of point masses, which are constrained not to move with respect

to each other. It turns out that the dimension of the space necessary to describe the

configuration of a rigid body is six: three dimensions for orientation, and three for

translation. The force-acceleration relation is now a full six-by-six matrix, and not a

scalar anymore. Moreover, the acceleration involved in this dynamic relation is not

just the second-order time derivative of the position/orientation vector of the rigid

body.

Even the short overview above should make clear that it is wrong to treat the

six position/orientation coordinates of a rigid body in the same way as one treats

the three position coordinates of a point: the geometrical properties of rigid bod-

ies are fundamentally different from the geometrical properties of point masses.

For example, if one continuously increases one of these six numbers (i.e., one that

corresponds to orientation representation), the rigid body arrives at the same con-

figuration after every rotation over 360 degrees. This “curvature” property does not

occur when one indefinitely increases any of the three coordinates of a point config-

uration. Locally (i.e., in the neighborhood of a specific configuration) it is possible

to describe a configuration using six real numbers, but this description is not an in-

trinsic property of the motion. (An intuitive definition of an “intrinsic property” is:

any property that does not change if one changes the coordinate representation.)

A lot of powerful tools are available which allow to describe the motion of rigid

bodies in a geometrical and global way. These methods are related to the geometry
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of lines and screws and to the differential geometric concept of a Lie group (see

Sect. B.1.4). Furthermore, the concept of a Lie group is the key structure which will

allow to describe interconnection of rigid bodies by expressing common variables

on which the interconnection is based. In a nutshell: it’s not because one can use n

numbers as coordinates on a given space, that the objects in that space have exactly

the same properties as the n-tuples in R
n!

3.2.2 Configuration and twist of a rigid body

We will now start introducing the concepts which are needed to handle multi-body

systems.

3.2.2.1 Describing configurations

In case of a point mass moving in the Euclidean space E, once an orthonormal

reference frame Ψ has been chosen, we can associate with a bijective relation three

numbers to it: (x,y,z) ∈ R
3. Velocities with respect to an observer not moving with

respect to Ψ and expressed in the same reference frame will be simply equal to

(ẋ, ẏ, ż) ∈ R
3.

For rigid bodies this will be more complicated. In principle, a rigid body config-

uration is a six dimensional space (three translation and three rotations), but due to

the topology of the space of rotations, there does not exist six global coordinates. In

what follows, we will associate the configuration of a rigid body to a matrix which

is called a homogeneous matrix once a reference has been chosen. First, for reasons

based on projective geometry which can be further read in [196], it is convenient

to describe the coordinate of a point using a four dimensional vector in which the

first three components are the usual ones and the last is the scalar 1. For a point p

expressed in an orthonormal frame Ψi, its coordinates will then be a vector of the

following form:

Pi =
[
xi yi zi 1

]T
(3.37)

If we consider a second orthonormal reference frame Ψj, the same point will have a

similar representation with different numbers if Ψi and Ψj do not coincide. It would

be possible to see that the change of coordinates would be given by

P j = H
j

i Pi (3.38)

with

H
j

i =

[
R

j
i p

j
i

03 1

]
(3.39)

where R
j
i ∈ SO(3) is an orthonormal matrix, i.e. with determinant equal to 1 and

such that RT = R−1, and p
j
i ∈ R

3.
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If we now consider Ψi fixed to a body I and Ψj fixed to a body J, it is possible to

describe their relative configuration by the relative configuration of the two frames

which is represented by H
j

i using their change of coordinates. It could also easily

be seen that H
j

i beside representing the change of coordinates of the same physical

point from frame Ψi to frame Ψj, it also coincides with the physical motion which

brings Ψj to Ψi for points expressed in either of the two frames; note that the inverse

direction of the indices is not a typo. To be more precise, if we consider that a rigid

body motion would bring frame Ψj to Ψi and this motion would also bring a point p

to a point q, we would have that qi = H
j

i pi and q j = H
j

i q j. For what it will follow

later, it is important to notice that (H j
i )−1 = H i

j.

3.2.2.2 Relative instantaneous motions and twists

If a representation of a velocity of a point mass would be just the time derivative

of its coordinate, we could consider as velocity of a rigid body the time derivative

of the matrix H representing the relative configuration of the body with respect to

another frame, the observer. This is in principle correct, but there are a number of

problems related to this approach:

1. Ḣ has many more elements than necessary to express the six dimensional in-

finitesimal motion;

2. From the information of Ḣ would not be possible to have an idea of the relative

motion without knowing H;

3. If we wanted to interconnect two bodies A and B using port variables, the velocity

Ḣ could not be used since each of the bodies would have a different configuration

H and a different Ḣ. This would correspond to two vectors belonging to two dif-

ferent tangent spaces in a differential geometric context and therefore no natural

operation can be performed among these vectors.

The solution to all the previous problems can be achieved by using the intrinsic

structure of what is called a Lie group for the group of motions represented by the

matrices H ∈ SE(3). Properly speaking, the Lie Group SE(3) is more general than

a Lie group of matrices, but for what it will presented it is didactically sensible to

describe what follows using matrix Lie groups. A Lie group is both a manifold,

smooth nonlinear structure locally bijective to R
n, and a group, it has a special point

called the identity and an operation which allows to compose elements of the mani-

fold, satisfying associativity and having for each element an inverse. This structure

allows to associate to each element (H, Ḣ) ∈ T SE(3) belonging to the vector space

THSE(3) tangent to the manifold SE(3) at the point H ∈ SE(3) two unique vectors

in the tangent space se(3) := TISE(3) at the identity of the group, which in our case

corresponds to the 4 identity matrix I ∈ SE(3). These two vectors have a clear geo-

metrical interpretation and they are called the left and right translation of (H, Ḣ) to

the Lie algebra se(3).
Such a structure allows to naturally find unique representatives of velocities in

a common space called a Lie algebra, allowing circumventing all previously de-
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scribed problems. This is a generalization of what is done for rotations in which

the angular velocity vector can be easily and effectively used to describe rotational

motions in a coordinate free, body independent way; the role of angular velocity

for general rigid motions will be a twist. It could be shown that, following the no-

tation previously introduced we can indicate with H
j

i (t) ∈ SE(3) the smoothly time

varying homogeneous matrix which can be used to change the homogeneous coor-

dinates of a point P from its representation in the two relatively moving frames Ψi

to Ψj. After we introduce a third frame Ψk, we could also consider the changes of

coordinate between any of these frames and it could be proven that kT̃
j

i := Hk
j Ḣ

j
i H i

k

has always the following form:

kT̃
j

i :=

[
ω̃ v

03 0

]
(3.40)

where for any three dimensional vector ω , ω̃ is the unique skew-symmetric matrix

such that for each x, ω × x = ω̃x. In case k = j, the corresponding matrix is called

the right translation to the Lie algebra and in case k = i the left translation to the

Lie algebra for reasons which can be found in any reference on Lie groups3. It can

be seen that in (3.40), only the six scalars of ω and v are independent, and therefore

we can also define the equivalent six dimensional vector representation

kT
j

i =
[
ωT vT

]T

This vector, which is called a twist, is a real geometrical object which describes the

relative instantaneous motion of the body rigidly connected to frame Ψi with respect

to the body rigidly connected to frame Ψj expressed numerically as a vector in the

frame Ψk.

It is possible to see that we can change coordinates of a twist using what is called

the Adjoint representation of the group which is represented by a 6×6 matrix:

kT
j

i = AdHk
l

lT
j

i (3.41)

where

AdHk
l

=

[
Rk

l 0

p̃k
l Rk

l Rk
l

]
(3.42)

Rk
l is the rotation sub-matrix of Hk

l and p̃k
l is the skew-symmetric representation of

the position sub-vector of Hk
l .

For rotations, we can associate a vector called the angular velocity, which geo-

metrically completely expresses the instantaneous rotation of a body independently

of its pose at a certain instant of time. the direction of the angular rotation vector,

represents the instantaneous axis of rotation and direction (clockwise or anticlock-

3 In Lie group theory, kT̃
j

i is introduced as the Adjoint transformation of the left or right translation,

for example kT̃
j

i = Ad
Hk

j

(
RH i

j
(H j

i , Ḣ j
i )
)

where RH−1 indicated the right translation of the vector

(H, Ḣ) to the Lie algebra se(3).
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wise around the axis) and its magnitude the angular velocity. In the same way, as

shown by the Mozzi theorem [150], a twist is represented by a geometrical object

which is called a screw since it is represented by an axis, a pitch, a direction and a

magnitude. Mozzi’s theorem says that we can always write a twist as:

[
ω
v

]
= ||ω||

[
ω̂

r∧ ω̂

]

︸ ︷︷ ︸
rotation

+α

[
0

ω̂

]

︸︷︷︸
translation

(3.43)

where ω and v are three dimensional vectors numerically expressed in k. The vector

[
ω̂

r∧ ω̂

]

represents a geometrical line passing through the point r and directed along ω . This

line representation called Plücker coordinates has many advantages with respect

to others like the fact that its representation has numerically a one to one relation

to lines in the projective 3-space. The scalar coefficient α is called the pitch. The

theorem basically says that each motion instantaneously can be seen as a screw

motion: an instantaneous rotation around an axis, represented as just described, and

an infinitesimal translation along this axis. The ratio of these two motions is given

by the pitch coefficient α .

An essential feature of twists is that they are independent of the pose of a body

and can therefore be used to describe relative motions of any body and are the key to

define power ports in rigid multi-body mechanical systems. Twists play the role of

flows and once we introduced the dual efforts, we will have the essential components

to define a power port for rigid multi-body systems.

3.2.2.3 The dual of twists: wrenches

Since the space se(3) of twists is a vector space, we can directly define the dual

space se∗(3) which will be a dual Lie algebra whose elements are called wrenches.

Clearly, dimensionally, these elements are of the same size of twists (six dimen-

sional) and the dual product of wrenches and twists will be a scalar representing

the power exchanged by the wrench (generalization of the force) with the relative

motion represented by the twist. A wrench in vector form can be indicated with

kW
j

i =
[
τT f T

]T

and represents the wrench applied by i on j as a vector expressed in frame Ψk. Some-

times the presence of the index i may not be necessary. As a direct consequence of

(3.41) and the dual nature of a wrench with respect to a twist, the change of coordi-

nates of a wrench is expressed by:
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(
kW

j
i

)t

= Adt

H l
k

(
lT

j
i

)t

(3.44)

To understand why such a quantity can be seen as the generalization of a force,

the theorem of Pointsot can be used. This theorem states that any system of forces

applied to a rigid body, can be simplified as the resultant of one force along a specific

line in space and a torque oriented in the same direction. Similarly to (3.43), this dual

theorem can be expressed as:

[
τ
f

]
= || f ||

[
r∧ f

f

]

︸ ︷︷ ︸
force

+α

[
f

0

]

︸︷︷︸
torque

(3.45)

where the first vector indicates the linear force along the line oriented along f and

passing through the point r and the second vector indicate the torque oriented in

the same direction of f , but such that its application point does not matter being a

torque. The ratio of these two magnitudes is expressed by the scalar pitch α .

3.2.2.4 Screw power ports

It is now possible to introduce the coordinate-free concept of a screw power-port. A

screw power port is the pair of a twist and a wrench

(
kT

j
i , kW i

�

)
∈ se(3)× se∗(3)

and can be used as a mean to interconnect multi-body systems as we will see in

more details later.

3.2.3 Rigid body dynamics

Using the concept of screws and Lie groups, we can introduce the inertia tensor

which represents the complete inertial properties of a rigid body. The inertia tensor

is a metric, positive definite quadratic form, which associates the kinetic co-energy

to a certain twist of a rigid body:

H∗( kT 0
i ) =

1

2

(
kT 0

i

)t
kIi kT 0

i (3.46)

where kIi represents the inertia tensor of body i expressed in frame k and it is a 6×6

matrix corresponding to a quadratic form in se(3). Using the inertia tensor we can

also define what is called the screw-momenta which is a co-vector (belonging to

se∗(3)) representing the 6-dimensional momenta of a rigid body:
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(
kMi
)t

:=kIi kT 0
i (3.47)

where kMi indicates the screw-momenta of body i expressed in frame k. Using the

expression of momenta we can now also write an expression for the kinetic energy

as a quadratic form on se∗(3):

H(kMi) =
1

2
kMi

(
kIi
)−1(

kMi
)t

(3.48)

Newton’s law for a point mass says that in an inertial frame the time change of

momenta of a point mass is equal to the total force applied to it, i.e. ṗ0 = F0. It could

be shown that integrating this equation for a complete rigid body, it generalizes to:

0Ṁi = 0W i
� (3.49)

where 0Mi is the momenta of body i expressed numerically in the inertial frame Ψ0

and 0W i
� the total wrench applied to body i expressed in frame Ψ0.

Since the time derivative of the momenta is equal to a wrench, both terms of

the equation transform identically with changes of coordinates and this is why the

wrench is a co-vector. If we write the previous equation as an equality of column

vectors, we have (
0Ṁi
)t

=
(

0W i
�

)t
,

It can be seen that by changing the coordinates to a frame Ψk rigid with the body,

the previous expression becomes:

(kṀi)t = adT
kT 0

i
(kMi)t +( kW i

� )
t . (3.50)

where

adT
kT 0

i
=

[
−ω̃ −ṽ

0 −ω̃

]

and ω and v are the vectors composing kT 0
i and introduced in (3.40). After some

calculations, it could be seen that

adT
iT 0

i
(iMi)t = (iMi∧) iT 0

i (3.51)

where

(iMi∧):=

[
˜iMi

ω
˜iMi

v

˜iMi
v 0

]
(3.52)

and ˜iMi
ω and ˜iMi

v are the skew-symmetric form of three-vectors corresponding to

respectively the first and last three components of iMi.

By looking closer at (3.50) it can be seen that the configuration of the rigid body

does not appear in the equation at all. The equation is useful because in body fix

coordinates the expression of the inertia tensor which we will need in order to cal-

culate kMi is a constant matrix which can be easily calculated. The equation (3.50)
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is only dependent on the momenta and the effect of an applied wrench on it. This

equation is all we need if we want to study a single rigid body independently. On the

other hand, if we want to calculate dynamics of interconnected mechanisms, each

of the quantities, like applied wrenches between bodies, will have to be described

in the same coordinate systems. We need therefore a common reference frame in

which we can take operations among tensors. Furthermore, if we want to consider

gravity, its direction and effect will change in body coordinates and therefore it is

necessary to keep track of the pose of a rigid body. We can tackle all these prob-

lems by considering in the open model of a rigid body a potential energy function

of the configuration of the rigid body with respect to a common, inertial coordinate

system.

3.2.3.1 Potential energy

The configuration of a rigid body is homeomorphic to SE(3) and can be associ-

ated to a homogeneous matrix H0
i ∈ SE(3) as seen previously. This means that any

potential energy function of a rigid body will be expressed by a function of the form:

V : SE(3) → R (3.53)

Normally, we would calculate the corresponding force field of a potential energy by

taking the differential of the function, but in the case of a rigid body this is not direct

since the argument of the function is a matrix of a specific form: the arguments are

a set of variables on which constraints hold. A way to tackle this would be to find a

minimal parametrization of SE(3) which would then allow to take the differential in

the usual way. This approach would be strictly local and not general. A much more

elegant and effective approach is instead the usage of exponential coordinates of the

group SE(3) which, for matrix Lie groups, corresponds to the matrix exponential:

φ 0
i 7→ H0

i = eφ̃0
i (3.54)

where the tilde operation in the argument of the exponential corresponds to the same

tilde operation as for twists. The entity φ 0
i is geometrically also belonging to se(3)

and it corresponds to what is called the finite twist (rather than infinitesimal). By

means of the exponential map, we can express a potential function using a minimal

set of coordinates. In this way we could write a corresponding potential function to

(3.53) as Vφ : se(3) → R, with

φ 0
i 7→V (log(φ 0

i )) (3.55)

where log is a periodic function which can be calculated easily with the techniques

presented in [213].

For what follows, it is necessary to know the map which relates the time deriva-

tives of the exponential coordinates φ 0
i to the instantaneous twist iT 0

i in the follow-

ing way:



3.2 Modeling of mechanical systems 153

iT 0
i = K(φ 0

i )φ̇ 0
i (3.56)

where could be proven that

K(φ 0
i ) =

∞

∑
k=0

(−1)k

(k +1)!
adk

φ0
i

(3.57)

and can be calculated easily using the techniques introduced in [213]. From (3.56),

the adjoint relation follows directly:

γ = Kt(φ 0
i ) iW i

� (3.58)

where γ is a dual of the time derivative of the exponential coordinates like is the

case for
∂Vφ

∂φ 0
i

∈ se∗(3)

We can therefore calculate the wrench which the potential energy Vφ generates as:

W = K−t(φ 0
1 )

∂Vφ

∂φ 0
i

∈ se∗(3) (3.59)

We can now finally give a port-Hamiltonian expression of the dynamics of a rigid

body. The Hamiltonian will be a sum of the kinetic and potential energy and will be:

H(kMi,φ 0
i ) =

1

2
kMi

(
kIi
)−1(

kMi
)t

+Vφ (φ 0
i ) (3.60)

and the port Hamiltonian equation become:

[
φ̇ 0

i(
kṀi
)t

]
=

[
0 K−1(φ 0

i )
−K−t(φ 0

i ) (iMi∧)

][ ∂H

∂φ0
i

∂H

∂ kMi

]
+

[
0

I

]
iW i

� (3.61)

iT 0
i =

[
0 I
]
[

∂H

∂φ0
i

∂H

∂ kMi

]
(3.62)

or expliciting all ports, a single matrix representing the interconnection structure

and changing the coordinates of the interconnection port we obtain:




φ̇ 0
i(

kṀi
)t

− 0T 0
i


=




0 K−1(φ 0
i ) 0

−K−t(φ 0
i ) iMi∧ Adt

e
φ0

i

0 −Ad
e

φ0
i

0







∂H

∂φ0
i

∂H

∂ kMi

0W i
�


 (3.63)

In the previous equation, the matrix represents the Dirac structure composed of three

ports: (
φ̇ 0

i ,
∂H

∂φ 0
i

)
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corresponding to the flow of potential energy,

(
kṀi,

∂H

∂ kMi

)

corresponding to the flow of kinetic energy and

(
0T 0

i , 0W i
�

)

to the power port which can be used to interconnect and interact with the rigid body.

3.2.4 Rigid mechanisms: interconnections of rigid bodies

We will now discuss the topology of a mechanism and describe how to represent that

in an elegant and effective way using the network structure represented by a Dirac

structure. We will start looking at the constraints between pairs of rigid bodies.

3.2.4.1 Kinematic pairs

Consider now two rigid bodies whose relative motion is constraint. If we call these

bodies i and j, we can describe the allowed motions by a subspace of se(3) to which

the twist 0T
j

i should belong. Let’s call this subspace TA. This subspace will in gen-

eral be function of the relative configuration H
j

i and possibly of time even if we will

not specifically show that in the following equations for the sake of clarity. Suppose

that this subspace is of dimension n < 6. In this case there will be n linear inde-

pendent vectors whose span will coincide with TA. We will indicate these twists as

T 1
A , T 2

A , . . . , T n
A . Due to these degrees of freedom, there will also be n linear inde-

pendent wrenches which can be applied between the two bodies which can transfer

energy to the relative motion. We will indicate these wrenches W 1
A , W 2

A , . . . , W n
A and

the subspace they span with WA. It is very important to realize that we cannot in

general define WA uniquely once TA is known or the other way around due to the

absence of a unique metric in se(3). Nevertheless, we could use bi-invariant forms

for this purpose like the hyperbolic form.

What we can do in a unique way is to define the dual 6− n dimensional spaces

WC:=T ⊥
A corresponding to the constraint wrenches (any of these wrenches will

not transfer power W i
CT

j
A = 0 ∀i, j) and TF :=W ⊥

A corresponding to the forbidden

motions (any applied wrench will not transfer energy to these directions W i
AT

j
F =

0 ∀i, j ). We can then define the non-singular 6×6 matrix

W T:=
[
W 1

A . . . W n
A W 1

C . . . W 6−n
C

]
(3.64)

It is now possible to consider for a kinematic pair k
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Wk = W

[
τ
λ

]
(3.65)

and dually [
q̇

v

]
= W tTk (3.66)

where τ indicates the free torques which can be applied by external motors or ac-

tuators on the kinematic pair in order to generate or control motion in q̇ and λ are

indicating the Lagrangian multipliers which should be such to keep v = 0.

We can finally write (3.65) and (3.66) together to show the Dirac structure

causally: 


Wk

q̇

v



[

0 W

−W t 0

]


Tk

τ
λ


 (3.67)

where the port (Tk,Wk) can be used to interconnect with the mechanism as it will

be seen later, the port (q̇,τ) can be used to drive and control the kinematic pair and

therefore to supply or subtract energy to and from the mechanism and finally (v,λ )
will be a port through which no power should be transferred since λ should be such

that v would always be equal to 0.

3.2.4.2 Mechanism topology

Given a mechanism composed of rigid bodies, it is possible to find a network de-

scription of the mechanism similarly with what happens with electrical circuits, but

now with complex six dimensional motions and time varying constraints. Suppose

to have a mechanism composed of m rigid bodies indexed from 0 to m−1 and such

that the body 0 corresponds to a inertial base. Suppose that among those bodies we

have n nodic elements that constraint relative motions of pair of bodies. We can

describe this topology with a graph GP = (VP,EP) called primary graph in which

VP is the set of m rigid bodies and EP the set of n edges corresponding to the pair

constraints. We can define an incidence matrix B ∈R
m×n in which each column cor-

responding to an edge has a 1 in the row corresponding to the body to which the edge

points and a −1 in the row corresponding to the body from which the edge stems

from and zero everywhere else. We can then define a second graph GL = (VL,EL)
called the Lagrangian tree which is composed of m−1 edges stemming from each

of the bodies which are not the inertial frames and all going toward the vertex 0.

The graph which is obtained combining the primary and Lagrangian graph is called

the port connection graph.

We can then define the fundamental n× (m+n) loop matrix

C:=
[
BT In×n

]
(3.68)

Each of the rows of this matrix represents a loop of the port connection graph which

can be obtained considering an edge of EP and two edges of EL which close the
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edge of EP via the body 0. To understand what this actually means we can see that

the following equation holds:

C




0T 0
1

...
0T 0

m

T1

...

Tn




= 0 (3.69)

where Ti indicates the relative twist corresponding to the i-th kinematic pair. This is

therefore a kind of Kirchhoff law which sums the relative twist around a loop to zero

as it is done in electrical circuits for the sum of relative potentials around a mesh.

Dually we can introduce the fundamental m× (n+m) cut-set matrix

Q:=
[
Im×m −B

]
(3.70)

Each row i of this matrix represents a cut-set corresponding to the sum of wrenches

on a body i. Such a cut-set has always one edge corresponding to the Lagrangian

tree which will represent the total wrench which will change the momenta of body

i and a number of other edges belonging to GP corresponding to all wrenches the

kinematic pairs can apply to body i. This is similar to the Kirchhoff current law at

a node in an electrical circuit with the difference that in mechanics the non-nodicity

of inertial elements requires explicitly the presence of the Lagrangian tree. With the

usage of the fundamental cut-set tree, we obtain:

Q




0W 1
T

...
0W m

T

W1

...

Wn




= 0 (3.71)

where 0W i
T indicates the total wrench applied at body i and expressed in frame 0.

It can be easily seen that CQt = 0 and this actually corresponds to the Teleggen

theorem well known in electrical networks. In order to see that, a vector of twists

satisfying CT̄ = 0 can be also expressed using a image representation instead than a

kernel representation:

T̄ = CTα ∀α

along a similar line of reasoning, any wrench set satisfying the network constrains

can be expressed using an image representation with

W̄ = QTγ ∀γ
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If we now want to calculate the net power going into the network, we can just get

the dual product of W̄ and T̄ :

P = T̄ tW = α t CQt

︸︷︷︸
=0

γ = 0 (3.72)

which indeed proves zero net power flow for any independent choices of T̄ and W̄

as known in Tellegen’s theorem. We can also rearrange equations (3.71) and (3.69)

to get to a general causal expression of the Dirac structure:




0W 1
T

...
0W m

T

−T1

...

−Tn




=

[
0 B

−BT 0

]




0T 0
1

...
0T 0

m

W1

...

Wn




(3.73)

It would then finally be possible to couple all ports ( 0T 0
1 , 0W i

T ) to the interconnec-

tion port of the rigid body model (3.63) and to connect the ports corresponding to

each (Tk,Wk) to the corresponding port of a kinematic pair using the expression in

(3.67).

In this way we obtain a model of the dynamics of the complete mechanism as the

interconnection of various Dirac structures and port-Hamiltonian subsystem. This

way of modeling is structured and very suitable for computer support. Furthermore,

the usage of coordinate-free concepts ensures that the analysis is global and singu-

larity free.

3.2.5 Flexible mechanisms

The modeling techniques presented in the previous sections can be generalized in

order to define a systematic procedure, based on port concepts, for modeling and

simulating mechanical systems with rigid and flexible links. The mathematical de-

scription of the whole mechanical system results from the interconnection of simpler

components (e.g. rigid bodies, flexible links and kinematic pairs). Using the nonlin-

ear model of a flexible link in distributed port-Hamiltonian form presented in [128]

and, briefly, in Sect. 4.3.2, it is not necessary, in the definition of the dynamic model,

to simplify the elastic and nonlinear effects present in the flexible parts, and there-

fore also mechanism with large deflections can be easily handled. This approach

differs from what is illustrated in the next section, in which a more rigorous way for

describing elastic systems is discussed. Moreover, the modularity of the approach

can also be exploited for simplifying the simulation of such dynamical systems, even

for control applications. In fact, if an object-oriented software package for model-
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ing physical system is adopted, beside the mathematical derivation of the model

also the numerical simulation of complex mechanisms can be carried out simply by

port interconnection, thus leaving the solution of the causality of each sub-system

to the simulation package. Among these software packages, one can mention the

implementations of the Modelica language [78,146] as Dymola [70] or Open Mod-

elica [204], or the 20-sim package.

This is something completely different from what can be found in literature,

where several methodological approaches for the definition of dynamic models of

multi-body mechanical systems, taking possibly into account both rigid and flexible

links, [9, 18, 26, 61, 62, 152, 190, 191, 199, 205] can be found. Moreover, a num-

ber of software packages, e.g. [4, 20, 50, 108, 194, 203] are also currently avail-

able for their numerical simulation. In case of flexible systems, these modeling

approaches usually relay on finite dimensional approximations of the flexible link

dynamics (e.g. modal expansion, finite elements or floating frame of reference) or

on a simplification of the (nonlinear) elastic behavior of flexible links (Timoshenko

or Euler-Bernoulli theory), and therefore they do not easily allow the description

of mechanisms characterized by large deformations. Moreover, even if the simu-

lation package is able to deal with large deformations and nonlinear effects (e.g.

ABAQUS [194], ANSYS Multiphysics [4], or COMSOL Multiphysics [50]), in gen-

eral it is not a trivial task to include the presence of state-feedback controllers. In

fact, this requires the development of proper spatial discretization techniques for the

elastic dynamics that are able to deal with time-varying boundary conditions, such

as the torques applied at the extremities of each flexible link. These limitation are

not present within the port Hamiltonian framework. Refer to [124, 128] for further

information.

3.3 Modeling of simple elastic systems

3.3.1 Introduction

Simple elastic structures like strings, beams or membranes and plates are basic el-

ements for many engineering fields. Roughly spoken, their mathematical models

are approximations of certain equations of linearized elasticity. The mathematical

models of elasticity, like other model in physics consist of two types of equations.

The balance and/or conservation equations express that certain physical quantities

or their sum are preserved. Typical representatives are the conservation of mass,

charge, linear momentum, etc. The constitutive relations describe the behavior of

the materials, typical representatives are Hook’s law or friction relations. Within

this setting one assumes that balance equations are never violated, whereas consti-

tutive relations are often approximately known only.

Mathematical models of elastic structures are based on the conservation of

mass and the balance of linear momentum and momentum of momentum, see
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[133, 210, 221]. To simplify this complicated set of partial differential equations,

one makes the strong constitutive assumption of the symmetry of the stress. This

relation guarantees that balance of momentum of momentum is fulfilled, and we

have to take conservation of mass and balance of linear momentum into account

only. Additionally in simple elasticity, one assumes the existence of the stored en-

ergy function to express certain constitutive relations. If this function exists and the

symmetry of stress is met, then the derived mathematical models have the structure

of a Lagrangian or Hamiltonian system for a certain choice of the coordinates. The

Lagrangian or Hamiltonian structure of these models is preserved by their lineariza-

tion.

The models of structures, like beams or plates etc., with a small extension in one

direction compared to the others, can be approximated by reduced models with less

spatial variables. This way, the models of beams, plates, etc. are derived by the re-

duction of the linearized equations of simple elasticity. Of course, if the reduction

process preserves the Hamiltonian or Lagrangian structure, then the resulting mod-

els will have this structure, too. Proceeding this way we show in an exemplary fash-

ion how the Lagrangian or Hamiltonian formulation of the Euler Bernoulli beam can

be derived in a straightforward manner. Furthermore, we use the simple example of

the motion of a planar rigid body to illustrate the presented methods and ideas. But

it is worth to mention that the presented methods can be applied to other mechanical

structures like the Timoshenko beam (see [206] and Sect. 4.3.1), the Kirchhoff or

Midline plate [123, 147], shell or membranes in an analogous manner.

3.3.2 Simple elasticity

The geometry of the general equations of elasticity are far beyond this contribution.

Therefore, we confine ourselves to the case of simple elasticity, where the existence

of the so called stored energy function is assumed. Furthermore, we describe the mo-

tion in an inertial frame with Euclidean coordinates and trivial metric. This choice is

essential, since the following considerations are valid only in these coordinates. The

Lagrangian and the Eulerian description are the most popular ones in continuum

mechanics. Since we consider elastic bodies, we choose the Lagrangian description,

which allows us to take into account the constitutive relations, which describe the

behavior of material. Furthermore, we confine ourselves to the time invariant case,

but we permit inputs like force or stress fields.

From now on, we use the standard tensor notation to keep formulas as short as

possible and apply Einstein’s convention for sums. Whenever the range of an index

i = 1, . . . ,n is clear, we us the abbreviation

aibi =
n

∑
i=1

aibi
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Furhtermore, to avoid mathematical subleties we assume that all functions are suf-

ficiently often continously differentiable, and that all regions for the integration are

sufficiently nice.

We will consider functions, which depend on the time t and on the spatial coor-

dinates X I , I = 1, . . . , p. Let xi, i = 1, . . . ,q denote the dependent coordinates, then

xi = xi(t,X) assigns the functions xi(t,X) to the coordinate xi. Where no confusion

occurs, we use the same symbol for the coordinate xi and for the assigned func-

tion xi = xi(t,X). Since we will deal with several higher order derivatives of these

functions, we use the abbreviations

∂I =
∂

∂X I
∂t =

∂

∂ t
∂IJ = ∂I∂J ∂tI = ∂t∂I

etc. We need also the derivative coordinates of first order xi
t ,x

i
I and higher order

xi
M··· with the unordered multi index M = m1, . . . ,mk, . . . ,mr, mk ∈ {t}∪{1, . . . , p},

where #M = r is the order of the derivative. This notation is motivated by the assign-

ment xi
M = ∂Mxi(t,X), ∂M = ∂m1

· · ·∂mr . We will also use the conventions xi
M = xi,

∂Mxi(t,X) = xi(t,X) for #M = 0.

Let us consider a function f (t,X ,xM), 0 ≤ #M ≤ m. We say that the total deriva-

tive (dI f )(t,X ,xN), 0 ≤ #N ≤ m+1 of f in the direction of I is the unique function

(dI f ), which meets

∂I f (t,X ,∂Mx(t,X)) = (dI f )(t,X ,∂Nx(t,X)) (3.74)

Obviously, the differential operator dI or the total derivative into the direction of I

is given by

dI = ∂I + xi
M,I∂

M
i = ∂I + ∑

#M≥0

xi
M,I∂

M
i ∂ M

i =
∂

∂xi
M

with I ∈ {t}∪{1, . . . , p}.

3.3.2.1 Motion and coordinates

In general we need three coordinate systems for the modeling of an elastic body,

the configuration space C , where physics takes place, the reference space R, where

we do bookkeeping, and the more abstract space G , which is used to parameterize

maps from R to C by its generalized coordinates. Here, we choose C = R
n, R = R

n

and assume that C , R are equipped with the Euclidean coordinates (xi), (X I), wit

i, I = 1, . . . ,n4. In addition C is an inertial space. The position of a mass point is

given by X ∈ B ⊂ R, where B denotes the set of all mass points of the elastic

body. A motion is a map

4 Of course, values of n ∈ {1,2,3} are of physical interest only. Since the following considerations

are indpendent of choice of p, the value of p is unspecified.
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Fig. 3.11 Motion of a planar

rigid body.

xi = φ i (t,X) i = 1, . . . ,n (3.75)

which assigns the position x of a mass point X at time t. We assume that we can

invert φ such that X = φ−1(t,x) is met. Fig. 3.11 illustrates the configuration and

reference space C = R
2, R = R

2 together with map (3.75) for the example of a

planar rigid body.

Throughout this contribution we equip the Euclidean space C with the trivial

metric. Let (vi), (wi) be two elements of the tangent space TC of C , then their

product is given by

(v,w) = vigi jw
j (3.76)

with

gi j = δi j

being δi j with the Kronecker symbol. The choice of the trivial metric is essential to

simplify the following. Before we can proceed with the balance laws, we introduce

the spatial velocity V and the velocity vector field v,

V i = ∂tφ
i (t,X) vi = V i ◦φ−1 (t,x) (3.77)

In addition we derive from (3.75) the so called deformation gradient

[
Ji

I

]
=
[
∂Iφ

i
]

(3.78)

The inverse of [Ji
I ] is denoted by [J̄I

i ].

To parameterize the map (3.75) we choose further coordinates X̃ Ĩ and x̄ī, with

Ĩ = 1, . . . ,n and ī = 1, . . . ,m, and assume that the functions x̄ī(t, X̄) depend on t and

X̄ Ī = X̃ Ī only, with Ī = 1, . . . , n̄, or equivalently they are independent of X̂ Î = X̃ Î ,

with Î = n̄ + 1, . . . ,n. A parameterization of (3.75) is given by the 2n functions ψ i

and ϕ I , i.e.:

xi = ψ i (X , x̄M) #M̄ ≥ 0

X I = ϕ I
(
X̃
)

(3.79)

such that the map ϕ is invertible and

φ i (t,X) = ψ i (X ,∂M̄ x̄(t, X̄))
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is met for x̄ī = x̄ī(t, X̄). Therefore, we choose the coordinates (X̄ Ī , x̄i) for G and add

the required derivative coordinates x̄i
M̄

.

Let us take a look at the parametrization of the motion of the planar rigid body

of Fig. 3.11. With X Î = X̂ Î , with Î = 1,2, x̄î = rî, with î = 1,2, and x̄3 = α one

possibility is given by the well known relations

xi = Ri
Î
(α) X̂ Î +δ i

ī
rī R =

[
cos(α) −sin(α)
sin(α) cos(α)

]
(3.80)

for i = 1,2 with the rotary matrix R and the Kronecker symbol δ . Obviously, the

coordinates (r,α) describe locally R
2 ×SO2 with the one dimensional rotary group

SO2.

3.3.2.2 Conservation of mass and balance of momentum

Let ρ(t,x) denote the mass density in C and let D be an arbitrary subset D ⊂ B
such that we can integrate over D . With the total time derivative dt , and the volume

forms dx = dx1 · · ·dxn, dX = dX1 · · ·dXn on C and R we derive the identity

dt

∫

φ(t,D)
ρ (t,x)dx = dt

∫

D
ρ (t,φ (t,X)) |J (t,X)|dX =

∫

D
∂tρR (t,X)dX

with

ρR (t,X) = ρ (t,φ (t,X)) |J (t,X)|
where |J(t,X)| denotes the determinant of J. Obviously, conservation of mass im-

plies ∫

D
∂tρR (t,X)dX = 0 (3.81)

To proceed with the balance of linear momentum, we make the strong constitutive

assumption of the symmetry of the Cauchy stress tensor σ(t,x), see [133]. This

assumption implies that the balance of momentum of momentum is met. Let ∂D
denote the boundary of D and

∂i⌋dx = (−1)(i−1)
dx1 · · · d̂xi · · ·dxn

where the term d̂xi is omitted, be the ith surface element, then balance of linear

momentum is given by

dt

∫

φ(t,D)
vi (t,x)ρ (t,x)dx =

∫

φ(t,D)
f i (t,x)dx+

∫

φ(t,∂D)
σ i j (t,x)∂ j⌋dx

=
∫

φ(t,D)

(
f i (t,x)+∂ jσ

i j (t,x)
)

dx

with the body forces f . Using (3.81) we get
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dt

∫

φ(t,D)
vi (t,x)ρ (t,x)dx =

∫

D
ρR (X)∂tV

i (t,X)dX

and derive in a similar manner the force field F in Lagrangian description and the

first Piola Kirchoff stress tensor P, see [133]:

F i (t,X) = f i (t,φ (t,X)) |J (t,X)|
PiJ (t,X) = σ i j (t,φ (t,X)) J̄J

j (t,X) |J (t,X)|

such that the relations
∫

φ(t,D)
f i (t,x)dx =

∫

D
F i (t,X)dX

∫

φ(t,∂D)
σ i j (t,x)∂ j⌋dx =

∫

∂D
PiJ (t,X)∂J⌋dX (3.82)

are met. Summarizing, we may write the balance of linear momentum in Lagrangian

description in the form

∫

D
ρR (X)∂tV

i (t,X)dX =

∫

D

(
F i (t,X)+∂IP

iI (t,X)
)

dX (3.83)

3.3.2.3 Equations of motion

The equations (3.81), (3.83) are incomplete, since the constitutive relations are miss-

ing. To overcome this problem, we have to parameterize the map (3.75) by general-

ized coordinates. The simplest choice is X̄ I = X I , with I = 1, . . . ,n for the indepen-

dent, and x̄i = xi, with i = 1, . . . ,n for the dependent spatial coordinates. Since the

generalized coordinates X̄ and x̄ conincide with the coordinates X and x of C and

R we suppress the accent here. If (3.83) holds for every “nice” subset D ⊂B, then

we may conclude that

ρRxi
tt =

(
F i +dIP

iI
)

(3.84)

is met. For the present we allow that PiI and F i may depend on t, X and xM , with

#M ≥ 0. Therefore, we have to use the total derivative dI , see (3.74), instead of

the partial derivative ∂I , like in (3.83). Multiplication of (3.84) with (x j
t gi j) and

integration over D leads to

∫

D
ρRx

j
t gi jx

i
ttdX =

∫

D

(
x

j
t gi jF

i + x
j
t gi jdIP

iI
)

dX

∫

D

(
ρRx

j
t gi jx

i
tt +dI

(
x

j
t gi j

)
PiI
)

dX =
∫

D

(
x

j
t gi jF

i +dI

(
x

j
t gi jP

iI
))

dX

or
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∫

D

(
dt

(ρR

2
xi

tgi jx
j
t

)
+

1

2
dt

(
xi

Igi jx
j
J

)
SIJ

)
dX =

=

∫

D

(
dt

(ρR

2
xi

tgi jx
j
t

)
+

1

2
dt (CIJ)SIJ

)
dX =

=

∫

D
xi

tgi jF
jdX +

∫

∂D
xi

tgi jP
jI∂I⌋dX

with

CIJ = xi
Igi jx

j
J PiJ = xi

IS
IJ (3.85)

The Cauchy Green deformation tensor C, see [133], is symmetric by construction,

whereas the symmetry of the second Piola Kirchhoff tensor S, see [133], is a con-

sequence of the symmetry of the Cauchy stress tensor σ . In simple elasticity one

assumes SIJ = SIJ(X ,C) and the existence of the stored energy function eE(X ,C)
such that

2
∂

∂CIJ

eE (X ,C) = SIJ (X ,C) (3.86)

is met. This is possible only, if S is symmetric. In this case the balance of energy is

given by ∫

D
dt (eK + eE)dX =

∫

D
xi

tgi jF
jdX +

∫

∂D
xi

tgi jP
jI∂I⌋dX (3.87)

with the kinetic energy density

eK (X ,xt) =
ρR

2
xi

tgi jx
j
t (3.88)

Obviously, the coordinates (t,X I ,xi
M), with M = m1, . . . ,mr, mk ∈ {t}∪ {1, . . . ,n}

and 0 ≤ #M ≤ 2, are necessary to model a simple elastic system, and the equations

of motion (3.84) are partial differential equations of second order. In addition, a

simple elastic body allows two types of ports defined by the pairs ((xt ,F),(xt ,P))
distributed over B and ∂B. It is worth mentioning that ((xi

t),(gi jF
j)) are ele-

ments of two linear spaces dual to each other. The analogous property is met by

((xi
t),(gi jP

jI)). One can use these ports to connect the body to other systems in

a power preserving manner. If sliding of the ports is permitted then the relations

xi
t = x̃i

t , F i =−F̃ i and xi
t = x̃i

t , PiI =−P̃iI must be met, where ·̃ refers to the second

system.

3.3.3 The Hamiltonian and Lagrangian picture

To show that the equations (3.84) are of the Lagrangian type, it is sufficient to find

a Lagrangian density l(X ,xi
M), with 0 ≤ #M ≤ 1 such that the equations

δil +gi jF
j = 0 (3.89)
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with the variational derivative

δi = ∑
#M≥0

(−1)#M
dM∂ M

i (3.90)

coincide with the equations (3.84), where dM = dm1
· · ·dmr . Obviously, the choice

l = eK − eE

with the kinetic energy of (3.88) and the stored energy function of (3.86) solves this

problem because of

δil = −dt∂
t
i eK +dI

(
1

2
SJK∂ I

i CJK

)
= −ρRxi

tt +dI

(
2xi

K

1

2
SIK

)

Furthermore, if the force field F meets the condition δi jF
j = −∂ieF(X ,x), then it

can be included in the Lagrangian by l = eK − eE − eF .

The Lagrangian equations (3.89) are implicit equations in general. Furthermore

time and spatial variables are handled on the same footing, their different nature is

expressed in the boundary conditions only. In the Hamiltonian picture the equations

are explicit equations solved with respect to the time derivatives of the dependent

variables. To derive them, we introduce the generalized momenta pi by the Legendre

transformation

pi = ∂ t
i l = ρRgi jx

j
t (3.91)

and proceed with the coordinates (t,X I ,xi, pi,x
i
t , pi,t ,x

i
M̄

), where we have that M =
m1, . . . ,mk, . . . ,mr, mk ∈ {1, . . . ,n} and 1 ≤ #M ≤ 2. The Hamiltonian density h is

given by

h
(
X ,xi, pi,x

i
M

)
=
(

pi∂ t
i l − l

)
= eK

(
X ,gi j p j/ρR

)
+ eE (3.92)

with gikgk j = δ i
j, and the Hamiltonian equations take the form

xi
t = δ̄ ih pi,t = −δ̄ih+gi jF

j (3.93)

with the variational derivatives

δ̄ i = ∂ i =
∂

∂ pi

δ̄i = ∑
#M≥0

(−1)#M
dM∂ M

i

in the new coordinates. Again, the Hamiltonian equations are partial differential

equations of second order with respect to the spatial derivatives, but of first order

only with respect to the time derivatives. The boundary conditions for both, the La-

grangian or Hamiltonian equations, follow from the same consideration like above.
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3.3.4 The linearized scenario

To find the linearized equations of simple elasticity, we have to consider the relations

(3.84), (3.86). Let us consider the equation (3.84) first. Now it is appropriate to

introduce the Lagrangian strain tensor E:

2EIJ = CIJ +δIJ

and displacement coordinates, see [133, 210, 221], by

xi = δ i
I X I +ui

In the case of small strain one replaces E by the linearized small strain tensor ε:

2εIJ = ui
Igi jδ

j
J +δ i

I gi ju
j
J (3.94)

Furthermore, we set PiJ ≈ δ i
I SIJ(X ,ε). In this case the equations (3.84) simplify to

ρRui
tt =

(
F i +dIδ

i
JSJI

)
(3.95)

It is worth mentioning that nonlinear constitutive equations are still possible pro-

vided the strain remains small. Often one assumes that the stored energy function

eE takes the quadratic form

eE (X ,ε) =
1

2
εIJEIJKL (X)εKL (3.96)

with E = EJIKL = EIJLK = EKLIJ then (3.86) simplifies to

SIJ = ∂εIJ
eE = EIJKL (X)εKL (3.97)

which is nothing else than Hook’s law. Following these considerations and the previ-

ous section, it is straightforward to derive the Lagrangian or Hamiltonian equations

for the linearized scenario.

3.3.5 Reduction

Often the equations (3.84) can be approximated by simpler ones. Examples are

beams or plates, where the extension of the structure in a certain direction differs

significantly from the ones in the others. The reduction under consideration here

is based on the Lagrangian (3.89) or the Hamiltonian (3.91) description of (3.84).

The main idea is quite simple. With the parameterization (3.79) one determines the

Lagrangian l̄ or Hamiltonian density h̄ in the generalized coordinates and gets the

equations of motion from this functions.
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Let us discuss the reduction based on the Lagrangian equations first. Given (3.79)

we extend these relations to the derivative coordinates by

xi
t = dt̄ψ

i xi
I = dĨψ

iDĨ
I (3.98)

where D̄ = [D̄Ĩ
I ] denotes the inverse of the Jacobian D = [∂Ĩϕ

I ]. The total derivatives

dĨ in the new coordinates (t,X
Ī
, x̄i

M̄
) are given by

dt̄ = ∂t + x̄ī
M̄,t∂

M̄
ī

dĪ = dĨ = ∂Ī + x̄ī
M̄,Ī∂

M̄
ī

Ī = 1, . . . , n̄

dĨ = ∂Î Î = n̄+1, . . .n

Proceeding with (3.98) in an analogous manner we derive the relations for higher

order relatives. Now the simplified Lagrangian density l̄ follows as

l̄ (t, X̄ , x̄M̄) =
∫

X̂ (X̄)
l (t,X ,xM) |D|dX̂ n̂+1 · · ·dX̂n (3.99)

where we have to plug in the functions for X and xM according to (3.79) and (3.98),

and the relations for the higher order derivatives. The domain X̂ (X̄) of integration

meets B = X̂ (X ) as well as X̄a 6= X̄b implies X̂ (X̄a)∩X̂ (X̄b) = /0. To derive the

force field F̄
ī

from (3.89) we need the tangent map of (3.79) given by

ẋi = ∂ M̄
ī

ψ i ˙̄xī
M̄

= ∂ M̄
ī

ψ idM̄
˙̄xī (3.100)

The functions F̄
ī
, also called generalized forces, follow from the relation

∫

X

(∫

X̂ (X̄)
∂ M̄

ī
ψ i
(

dM̄
˙̄xī
)

gi jF
j |D|dX̂ − ˙̄xīF̄

ī

)
dX = 0 (3.101)

which is supposed to hold for arbitrary ˙̄xī = ˙̄xī(t, X̄), which vanishes on the boundary

∂X̄ . It is worth mentioning that (3.100) contains the differential operators dM̄ . This

is just the point, where the boundary conditions come into the play. Because of the

complexity of this problem, we will consider special cases in the examples only.

Finally, the Lagrangian equations follow as

δī l̄ +Fī = 0 (3.102)

To derive the reduced equations in the Hamiltonian picture, one can apply the

Legendre transformation to (3.99). Provided this transformation exists and is a point

transformation. Then one derives the Hamiltonian equations in a straightforward

manner. Annother way is to look for relations for the generalized momenta p̄ī. We

require that ∫

X

(∫

X̂ (X̄)
piẋ

i |Dϕ|dX̂ − p̄ī
˙̄xī

)
dX = 0 (3.103)



168 3 Port-Based Modeling in Different Domains

is met for pi from (3.91), ẋi from (3.100) and arbitrary functions for ˙̄xī, which vanish

on the boundary ∂X . If it is possible to determine the generalized momenta, then

one can apply reduction procedure to the Hamiltonian density (3.92) analogously

to the one for the Lagrangian density described above. To complete this section,

we have to show, how the boundary conditions for the reduced model are derived.

Because of the complexity of this problem we will discuss this in the example of

Sect. 3.3.6 only.

3.3.5.1 The rigid body

Let us consider again the planar rigid body of Fig. 3.11, which is influenced by a

force field F now. From (3.80), (3.98) we derive the relations

xi
t = Ri

Î
Ω Î

Ĵ
αt X̂

Ĵ +δ i
ī
rī

t Ω =

[
0 −1

1 0

]

Now it is well known, that the Lagrangian L takes the simple form

L(r,α,rt ,αt) =
1

2

∫

B

(
Ri

Î
Ω Î

Ĵ
αt X̂

Ĵ +δ i
ī
rī

t

)
gi j

(
R

j

K̂
Ω K̂

L̂
αt X̂

L̂ +δ j

j̄
r

j̄
t

)
ρRdX̂

=
1

2

(
θ (αt)

2 +Mrī
tδī j̄r

j̄
t

)

with the rotational inertia θ , and mass M,

θ =
∫

B
X IδIJXJρRdX̂ M =

∫

B
ρRdX̂ (3.104)

provided the point X̂ I = 0 is the center of gravity such that

∫

B
X̂ ÎρRdX̂ = 0

is met. With the tangent map, see (3.100)

ẋi = Ri
Î
Ω Î

Ĵ
α̇X̂ Ĵ +δ i

ī
ṙī

and from, see (3.101):

∫

B

((
Ri

Î
Ω Î

Ĵ
α̇X̂ Ĵ +δ i

ī
ṙī
)

gi jF
j − α̇T̄ − F̄īṙ

ī
)

dX̂ = 0

we derive the generalized forces F̄ī, T̄ as

F̄ī =
∫

B
δ i

ī
gi jF

jdX̂ T̄ =
∫

B
Ri

Î
Ω Î

Ĵ
X̂ Ĵgi jF

jdX̂

and finally the equations of motion
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Fig. 3.12 Euler Bernoulli

beam.

θαtt = T̄ Mδī j̄r
j̄
tt = F̄ī

Since the derivation of the Hamiltonian counterpart to these equations is straightfor-

ward, it will be omitted here.

3.3.6 The Euler-Bernoulli beam

Beams are examples of two dimensional structures with different extensions in X1

and X2 directions. We choose a simple elastic material with the stored energy func-

tion, see (3.94) and (3.96):

eE =
1

2

(
a
(
(ε11)

2 +(ε22)
2
)

+2bε11ε22 + c(ε12)
2
)

with a,c ∈ R
+, b ∈ R, a > b. Now, we apply the reduction, see (3.79) and [221]:

X1 = X̄ X2 = X̂ u1 = ū1 − X̂ ū2
1̄

u2 = ū2 (3.105)

according to the assumptions for the Euler-Bernoulli beam, see also Fig. 3.12.

Following the consideration from above we derive the additional relations

u1
t = ū1

t − X̂ ū2
t1̄

u2
t = ū2

t

ε11 = u1
1 = ū1

1̄
− X̂ ū2

1̄1̄
2ε12 = u1

2 +u2
1 = 0 ε22 = u2

2 = 0

The Lagragian density l̄ = l̄(X̄ , ū1
t , ū

2
t , ū

1
1̄
, ū2

1̄1̄
, ū2

t1̄
) follows according to (3.99) as

l̄ =
1

2

∫ h/2

h/2

(
ρR

((
ū1

t − ū2
t1̄

X̂
)2

+
(
ū2

t

)2
)
−a
(
ū1

1̄
− X̂ ū2

1̄1̄

)2
)

dX̂

=
h

2


ρR



(
ū1

t

)2
+

h2

12

(
ū2

t1̄

)2

︸ ︷︷ ︸
≈0

+
(
ū2

t

)2


−a

((
ū1

1̄

)1
+

h2

12

(
ū2

1̄1̄

)2
)

 (3.106)
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Now we use (3.101) to derive the reduced field F̄ . From the relations

∫ L

0

(∫ h/2

−h/2

(
F1
(

˙̄u1 − X̂ ˙̄u2
1̄

)
+F2 ˙̄u2

)
dX̂ − F̄ī

˙̄uī

)
dX̄ = 0

∫ L

0

(
˙̄u1
∫ h/2

−h/2
F1dX̂ + ˙̄u2

∫ h/2

−h/2

(
d1̄F1X̂ +F2

)
dX̂ − F̄ī

˙̄uī

)
dX̄ = ˙̄u2

∫ h/2

−h/2
F1X̂dX̂

∣∣∣∣
L

0︸ ︷︷ ︸
=0

and the Lagrangian (3.106) one gets the inhomogenous wave equation

h
(
ρR ū1

tt −aū1
1̄1̄

)
= F̄1 =

∫ h/2

−h/2
F1dX̂ (3.107)

for ū1 and the well known beam equation

h


ρR


ū2

tt −
h2

12
ū2

tt1̄1̄
︸ ︷︷ ︸

≈0


+a

h2

12
ū2

1̄1̄1̄1̄


= F̄2 =

∫ h/2

−h/2

(
d1̄F1X̂ +F2

)
dX̂ (3.108)

for ū2, provided the underbraced term is neglected in (3.106) and (3.108).

Finally, the evaluation of the boundary term of the energy relation (3.87) for

X̄ ∈ {0,L} with the lenght L of the beam to

∫ h/2

−h/2

(
ū1

t S11 + ū2
t S21

)
dX̂ = ū1

t ū1
1̄

∫ h/2

−h/2
adX̂ − ū2

t ū2
1̄1̄

∫ h/2

−h/2
aX̂dX̂

=

(
ū1

t

(
ahū1

1̄

)
− ū2

t

(
ū2

1̄1̄

ah2

2

))

Therefore, we may introduce two ports at eauch boundary build up by the pairs

(ū1
t ,ahū1

1̄
) and (ū2

t , ū
2
1̄1̄

ah2/2), wich can be used to connect the Euler Bernoulli beam

to other structures.

Let us now take the Hamiltonian point of view. We determine the generalized

momenta p̄1 and p̄2. According to (3.103), from

∫ L

0

(∫ h/2

−h/2

((
ū1

t − X̂ ū2
t1̄

)(
˙̄u1 − X̂ ˙̄u2

1̄

)
+ ū2

t
˙̄u2
)

ρRdX̂ − p̄ī
˙̄uī

)
dX̄ = 0

∫ L

0

((
ū1

t
˙̄u1 +

h2

12
ū2

t1̄
˙̄u2
1̄
+ ū2

t
˙̄u2

)
ρRdX̂ − p̄ī

˙̄uī

)
dX̄ = 0

∫ L

0

((
ū1

t
˙̄u1 +

(
ū2

t −
h2

12
ū2

t1̄1̄

)
˙̄u2

)
ρRdX̂ − p̄ī

˙̄uī

)
dX̄ = − h2

12
ū2

t1̄
˙̄u2

∣∣∣∣
L

0︸ ︷︷ ︸
=0

the relations
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p̄1 = ρRhū1
t p̄2 = ρRh

(
ū2

t −
h2

12
ū2

t1̄1̄

)

Obviously, it is straightforward to derive p̄2 as a function of ū2
t and its derivatives.

But the determination of the inverse map requires the solution of a differential equa-

tion. Therefore the Legendre trasformation fails to be a point transformation. There-

fore, we stop here and consider the simplified Lagrangian (3.106). Now, the deter-

mination of the generalized momenta p̄1, p̄2 is straightforward and the Hamiltonian

density is given by

h̄ = p̄1ū1
t + p̄2ū2

t − l̄ =
1

2hρR

(
(p̄1)

2 +(p̄2)
2
)

+
h

2
a

((
ū1

1̄

)2
+

h2

12

(
ū2

1̄1̄

)2
)

With the variational derivatives, see also (3.93), one derives the Hamiltonian equa-

tions as

ū1
t = δ 1̄h̄ =

1

hρR
p̄1 p̄1,t = −δ1̄h̄ = ahū1̄

1̄

ū2
t = δ 2̄h̄ =

1

hρR
p̄2 p̄2,t = −δ2̄h̄ = −ahū2

1̄1̄1̄1̄

Of course, one can start with the Hamiltonian (3.92) and apply the reduction proce-

dure. If one neglects the terms ≈ h2 in kinetic energy, then one derives the same set

of equations.

3.3.7 Summary

The mathematical modeling of elastic structures can be significantly simplified by

the use of differential geometric methods. Starting with the fundamental conserva-

tion and balance principles, one has to parameterize certain maps to bring the con-

stitutive equations into the play. If one assumes the existence of the stored energy

function in the presented manner, then one deals with simple elasticity. A further

consequence of this assumption is, that one can rewrite the equations of motion in a

Hamiltonian or Lagrangian manner. This fact is often used to derive simpler models,

where the simplification is archived by adding holonomic constraints. Of course, one

can also linearize the equations of motion. Exemplarily, these approaches has been

presented for the rigid body and for the Euler Bernoulli beam such that the sim-

plified equations of motion are derived by a systematic reduction procedure from

the general ones. Since one can apply the presented methods to other mechanical

structures like the Timoshenko beam (see [206] and Sect. 4.3.1), the Kirchhoff or

Mindlin plate [123,147], shell or membranes in an analogous manner, it is obvious,

how their Lagrangian or Hamiltonian description can be achieved.
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3.4 Port-based modelling and irreversible thermodynamics

Aim of this section is to express models of physico-chemical systems involving

momentum, heat and mass transfer as well as chemical reactions in the port-based

formalism. To this end, the entropy balance and the associated source terms will

be systematically written in accordance with the principle of irreversible thermo-

dynamics. Some insights will been given concerning the constitutive equations and

models allowing to calculate transport and thermodynamic properties. These port-

based models can be translated into bond-graph models, in the case of distributed as

well as lumped parameter systems. Examples of this are reported in the concluding

part of the section. The meaning of all the symbols appearing in this section has

been reported in Appendix C.

3.4.1 Basic concepts

A thermodynamic system is a piece of matter containing a sufficiently high number

of elementary particles (atoms, molecules, ions etc) so that macroscopic variables

like pressure P, temperature T , mass density ρ , mass concentrations ρi can make

sense. The energy of such a thermodynamic system is defined as the internal energy

U . The other thermodynamic functions like enthalpy H, Gibbs free energy G are

defined with respect to U as Legendre transforms (see Appendix B, Sect. B.2.6).

Some of the thermodynamic variables correspond to quantities subject to balance

equations. These variables are extensive variables in the sense that they are depen-

dent on the size of the system under consideration. For such variables, one defines

specific mass or molar variables as well as fluxes, these concepts being necessary to

derive balance equations. Some of them will lead to the definition of flow variables

as they are defined in the port-based approach. As far as specific mass or molar vari-

ables are concerned, they can be considered as intensive variables in the sense that

they are independent of the size of the system under consideration. Other intensive

variables are not defined as specific variables. They will prove to be effort variables

allowing the description of equilibrium situations (see Appendix B, Sect. B.2.2).

As far as only chemical reactions are considered, the total mass is conservative.

This means that mass is neither destroyed nor created during the processes under

consideration. In the case of distributed parameter systems, the total mass balance

is as follows:
∂ρ

∂ t
= −∇ ·ρv (3.109)

where ρ is the mass density and v the fluid velocity.

When balances are established for distributed parameter systems, the conserva-

tion equations can be written under two forms [21]. If Y is a scalar quantity and y

the corresponding quantity per unit mass, the partial derivative
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∂y

∂ t

is the time variation of y at a given point. In a frame moving according to the fluid

velocity v,
Dy

Dt

is the time derivative of y “following the motion” [21]. The relation between the two

is obtained by applying the chain rule of derivation:

Dy

Dt
=

∂y

∂ t
+v ·∇y (3.110)

From that point, two forms of balance equations can be derived.

In a fixed frame, the balance of Y takes the general form:

∂ρy

∂ t
= −∇ · fy +σy (3.111)

where fy is the flux of Y per unit of surface area and σy a possible volumetric source

term. This source term can be either the result of a true destruction or creation of Y

or the expression of a transfer with the surrounding that is expressed as a quantity

by time and volume unit. In a frame moving according to v, the total mass balance

(3.109) being given, the Y balance becomes:

ρ
Dy

Dt
= −∇ · (fy −ρvy)+σy = −∇ · fR

y +σy (3.112)

The source term is supposed to remain unchanged but the flux of Y is now a relative

flux with respect to the convected one fR
y = fy−ρvy. The total mass balance can also

be given in a frame following the fluid motion:

Dρ

Dt
= −ρ∇ ·v (3.113)

or by using the specific volume v = 1
ρ :

ρ
Dv

Dt
= ∇ ·v (3.114)

If y is one of the components of a vector, equations (3.111) and (3.112) have their

counterparts for the vector y. In a fixed frame, the balance equation is:

∂ρy

∂ t
= −∇ ·Φy +σ y (3.115)

while in a frame moving according to v:

ρ
Dy

Dt
= −∇ · (Φy −ρvy)+σ y = −∇ ·ΦR

y +σ y (3.116)
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where Φy and ΦR
y are tensors of order 2 representing respectively the absolute and

relative flux of the y quantity and σ y a vectorial source term per unit of volume.

3.4.2 Distributed parameter systems

In order to calculate output variables that can be measured like pressure, tempera-

ture and composition, the classical approach consists in deriving a balance equation

for the internal energy. The internal energy balance equation has to be coupled to

other balance equations (material and momentum). As far the port-based approach

is concerned, the internal energy balance is replaced by the entropy balance.

3.4.2.1 Balance equations

The following material can be found in many textbooks (see for example, [21]). We

restrict ourselves to an homogeneous fluid (in the sense that it is under the form of

only one phase) subject to simultaneous mass, momentum and heat transfer. Chem-

ical reactions are also supposed to occur in the system. The derivation of the equa-

tions is performed on a mass basis.

Two forms of energy have to be considered. The energy of the matter as a

whole and the energy of the matter as a collection of elementary particles (atoms,

molecules, ions ...). The total energy per mass unit is then given by:

h̄ =
v2

2
+u (3.117)

that one can differentiate:

dh̄ = v ·dp+du (3.118)

where p is the momentum per mass unit. If one assumes that h̄ is a conserved quan-

tity, in the sense that it is never destroyed nor produced but only transformed from

one form to another, it is possible to derive a balance equation for the internal en-

ergy. To this end, equation (3.118) is assumed to be valid for the substantial time

derivatives:
Dh̄

Dt
= v · Dp

Dt
+

Du

Dt
(3.119)

so that

ρ
Dh̄

Dt
= ρv · Dp

Dt
+ρ

Du

Dt
= ρ

D

Dt

(
v2

2

)
+ρ

Du

Dt
(3.120)

is also valid.

Let us denote ρi as the mass concentration of component i in a mixture containing

N species and ωi = ρi

ρ its mass fraction. If one or more chemical reactions occur in

the system, they will produce or consume component i: σi is the corresponding

net source term expressed in mass of component i per unit of volume and time.
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According to equation (3.111), the mass balance of component i is as follows:

∂ρωi

∂ t
= −∇ · fi +σi i = 1, . . . ,N (3.121)

where fi = ρivi is the mass flux of component i per unit of surface area defined with

respect to a fixed frame. If R chemical reactions occur in the system, σi is given by:

σi =
R

∑
k=1

M̄iν
k
i rk (3.122)

where νk
i is the stoechiometric coefficient of component i when it is involved in the

kth reaction. It is more convenient to express rk, the rate of the kth reaction per unit

of volume, on a molar basis so that M̄i, the molar mass of component i, has been

included in equation (3.122) to express σi. As far as the total mass is conservative, by

summing equation (3.121) over all components, one recovers the total mass balance

(3.109). v, which turns to be the mass average velocity in the fixed frame, is defined

by: (
N

∑
i=1

ρi

)
v = ρv =

N

∑
i=1

ρivi (3.123)

In a moving frame defined with respect to v, according to (3.112), the component i

mass balance becomes:

ρ
Dωi

Dt
= −∇ · (fi −ρvωi)+σi = −∇ · fR

i +σi (3.124)

The relative flux fR
i per unit of surface area is the mass diffusion flux defined with

respect to the mass average velocity v.

Since p is the momentum per mass unit, it is clear that p ≡ v but, contrary to the

classical presentation, we distinguish here the velocity as an effort variable from the

momentum as a flow variable. In a fixed frame, the momentum balance equation is

as follows:
∂ρp

∂ t
= −∇ ·Φ p +σ p (3.125)

The source term σ p = ∑N
i=1 ρigi is due to the action of the external body force gi

exerted per mass unit on component i. σp is then an exchange of momentum with

the surrounding. Φ p is a second order tensor allowing to represent the momentum

flux per unit of surface area. The same momentum balance can be considered in the

moving frame according to (3.116):

ρ
Dp

Dt
= −∇ · (Φ p −ρvp)+σ p = −∇ ·ΦR

p +σ p (3.126)

where ρvp is the convected momentum, while ΦR
p = Φ p −ρvp is the momentum

flux defined with respect to the moving frame. This tensor can be split into two

terms:
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ΦR
p = PI+ τ (3.127)

where P is the pressure and τ the viscous part of the momentum flux (or shear

stress tensor). In (3.127), we have assumed that the fluid under consideration is a

non-elastic one [60].

3.4.2.2 The classical approach based on the internal energy balance

According to the first principle of thermodynamic, the total energy of the system

being considered as a conserved quantity, the source term that will appear in its

balance will necessary be only due to the action of external body forces – i.e. an

exchange of energy with the surrounding:

∂ρ h̄

∂ t
= −∇ · fh̄ +σh̄ = −∇ · fh̄ +

N

∑
i=1

fi ·gi (3.128)

and in the moving frame according to v:

ρ
Dh̄

Dt
= −∇ · (fh̄ −ρvh̄)+σh̄ = −∇ · fR

h̄ +
N

∑
i=1

fi ·gi (3.129)

By combining (3.119), (3.126) and (3.129), one obtain:

−∇ · fR
h̄ +

N

∑
i=1

fi ·gi = −v ·
[
∇ ·ΦR

p

]
+

N

∑
i=1

v ·ρigi +ρ
Du

Dt
(3.130)

According to the following relations:

N

∑
i=1

(fi −v ·ρi) ·gi =
N

∑
i=1

(fi −ρv ·ωi) ·gi =
N

∑
i=1

fR
i ·gi (3.131)

v ·
[
∇ ·ΦR

p

]
= ∇ ·

[
ΦR

p ·v
]
−ΦR

p : ∇v (3.132)

(3.130) can be regarded as follows:

ρ
Du

Dt
= −∇ ·

(
fR
h̄ −
[
ΦR

p ·v
])

−ΦR
p : ∇v+

N

∑
i=1

fR
i ·gi (3.133)

according to the general form (3.112):

ρ
Du

Dt
= −∇ · fR

u +σu (3.134)

with
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



fR
h̄ = fR

u +
[
ΦR

p ·v
]

σu = −ΦR
p : ∇v+

N

∑
i=1

fR
i ·gi = −P∇ ·v− τ : ∇v+

N

∑
i=1

fR
i ·gi

(3.135)

The internal energy is not a conserved quantity since the source term σu contains

the positive term −τ : ∇v due to viscous dissipation. It is the expression of the

transformation of mechanical energy into internal energy.

3.4.2.3 The port-based approach for modelling

The port-based approach formulates the entropy balance instead of the energy bal-

ance: it is based on the thermodynamic of irreversible processes concepts [60]. The

main goal of this derivation is to obtain the expression of a source term since, ac-

cording to the second principle of thermodynamic, the entropy is non-conservative.

The initial form of the Gibbs equation is concerned with macroscopic systems

assumed to be at equilibrium [173]. As far as the internal energy of a macroscopic

system U is considered as a function of its entropy S, its volume V and of the mass

of each component Mi, the Gibbs equation gives the differential of U :





dU = T dS−PdV +
N

∑
i=1

µidMi

µi =

(
∂U

∂Mi

)

S,V,Mk 6=i

=

(
∂G

∂Mi

)

P,T,Mk 6=i

=

(
∂H

∂Mi

)

P,T,Mk 6=i

−T

(
∂S

∂Mi

)

P,T,Mk 6=i

= hi −T si

(3.136)

where µi is the chemical potential of component i and G = U +PV −T S = H −T S

the Gibbs free energy (cf. Appendix B, Sect. B.2.6); si and hi are respectively the

partial entropy and enthalpy per mass unit. It can be seen that a fundamental as-

sumption has been made in (3.136). Energy-conjugated variables associated to heat,

space and mass transfer have been postulated for systems at equilibrium, respec-

tively (T,S), (−P,V ) and (µi,Mi). As far as distributed parameter systems are con-

cerned, a local version of (3.136) has to be derived.

According to the definitions of the quantities per mass unit u = U
M

, v = V
M

, s = S
M

and the mass fraction ωi =
Mi
M

, with M = ∑N
i=1 Mi, (3.136) can be written as follows:

d(Mu) = T d(Ms)−Pd(Mv)+
N

∑
i=1

µid(Mωi) (3.137)

After differentiation of each term, (3.137) becomes:

Mdu = M

(
T ds−Pdv+

N

∑
i=1

µidωi

)
+dM

(
N

∑
i=1

µiωi − (u+Pv−Ts)

)
(3.138)
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According to the definition of G and to (3.136), one can easily derive the differential

of G:

dG = V dP−SdT +
N

∑
i=1

µidMi (3.139)

where G is a function P, T and it is a first order homogenous function with respect

to Mi (cf. Appendix B, Sect. B.2.1) so that Euler theorem can be applied [173]:

G =
N

∑
i=1

Mi

(
∂G

∂Mi

)

P,T,Mk 6=i

=
N

∑
i=1

Miµi = U +PV −T S (3.140)

A similar equation can be written with the specific quantities by dividing (3.140) by

M:

g =
G

M
=

N

∑
i=1

ωiµi = u+Pv−T s (3.141)

By combining (3.138) and (3.141), the local form of the Gibbs equation is as fol-

lows:

du = T ds−Pdv+
N

∑
i=1

µidωi (3.142)

If now one considers (3.118) and (3.142), a set of specific energy-conjugated

variables (v,p), (T,s), (−P,v) and (µi,ωi) can be defined for a thermodynamic

system at equilibrium and subject to heat, mass, momentum transfer and chemical

reactions:

dh̄ = v ·dp+T ds−Pdv+
N

∑
i=1

µidωi (3.143)

This set of energy-conjugated variables is associated to the total energy of the sys-

tem. As far as one is now interested in deriving a balance equation for the entropy,

the balance equation for the internal energy as it has been derived above can be used.

When a system in not at equilibrium, its state variables vary with space and time.

Irreversible phenomena and entropy production are partly due to these spatial vari-

ations. However, one can consider that at a sufficiently small scale, equilibrium is

reached at each time. Balances are then considered in the frame following the fluid

motion and the substantial times derivatives Du
Dt

, Dv
Dt

, Dωi
Dt

and Ds
Dt

are assumed to

satisfy the local form of the Gibbs equation (3.142):

ρ
Ds

Dt
= ρ

(
Du

Dt
+P

Dv

Dt
−

N

∑
i=1

µi

Dωi

Dt

)
1

T
(3.144)

Once the expression of ρ Ds
Dt

is derived by using (3.144), the volumetric entropy

production as well as the relative entropy flux fR
s = fs −ρvs are obtained by identi-

fication to the general form of a balance equation (3.112).

Let us recall the internal energy balance, the mass balance of component i as well

as the total mass balance as they have been already derived in the moving frame:
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



ρ
Du

Dt
= −∇ · (fu −ρvu)+σu = −∇ · fR

u +σu

ρ
Dωi

Dt
= −∇ · (fi −ρvωi)+σi = −∇ · fR

i +σi

ρ
Dv

Dt
= −∇ ·v

(3.145)

By combining (3.144) and (3.145), the entropy balance expression with respect to

the moving frame is as follows:

ρ
Ds

Dt
= − 1

T
∇ · fR

u +
1

T
σu +

P

T
∇ ·v+

N

∑
i=1

µi

T
∇ · fR

i −
N

∑
i=1

µiσi

T
(3.146)

To transform (3.146) into an equation having the general form of a balance equation,

we use the following relations:





∇ ·
(

fR
u

T

)
=

1

T
∇ · fR

u + fR
u ·∇

(
1

T

)

∇ ·
(

µif
R
i

T

)
=

µi

T
∇ · fR

i + fR
i ·∇

(µi

T

) (3.147)

According to the expression of σu (see (3.135):

σu = −P∇ ·v− τ : ∇v+
N

∑
i=1

fR
i ·gi (3.148)

the entropy balance becomes:

ρ
Ds

Dt
= −∇ ·




fR
u −

N

∑
i=1

µif
R
i

T


−

N

∑
i=1

fR
i ·∇

(µi

T

)
−

N

∑
i=1

µiσi

T

+ fR
u ·∇

(
1

T

)
− τ : ∇v

T
+

N

∑
i=1

fR
i ·gi

T

(3.149)

The relative entropy flux per unit of surface area and the volumetric entropy pro-

duction are then as follows:
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



fR
s =

fR
u −

N

∑
i=1

µif
R
i

T

σs = fR
u ·∇

(
1

T

)
− 1

T

N

∑
i=1

fR
i ·
[
T ∇
(µi

T

)
−gi

]
−

−
N

∑
i=1

µiσi

T
− τ : ∇v

T
≥ 0

(3.150)

The relative flux of entropy is given by

fR
s =

fq

T
+

N

∑
i=1

fR
i si

where fq is the heat flux per unit of surface area by conduction. Then, according

to the definition of the chemical potential (see (3.136)), the relative internal energy

flux per unit of surface area can be expressed as follows:

fR
u = fq +

N

∑
i=1

fR
i hi (3.151)

According to the relation ∂
∂T

( µi

T

)
= − hi

T 2 [173],

∇
(µi

T

)
=

(∇µi)T

T
− hi

T 2
∇T

so that the volumetric entropy production can also be expressed as follows:

σs = − fq

T 2
·∇T − 1

T

N

∑
i=1

fR
i · [(∇µi)T −gi]−

N

∑
i=1

µiσi

T
− τ : ∇v

T
≥ 0 (3.152)

According to the second principle of thermodynamic, the source term σs correspond

to a true creation of entropy. The first term is the entropy production due to heat

conduction, the second one the entropy production due to diffusion and external

body forces, the third one the entropy production due to chemical reactions and the

fourth one the entropy production due to viscous effects.

The absolute temperature T is the power conjugated variable associated to σs

since T σs is a volumetric power. It represents the power that is locally dissipated

due to irreversible processes. Another expression of this quantity can be derived

from (3.150) by using the equality ∇
( µi

T

)
= 1

T
∇µi +µi∇

(
1
T

)
. The dissipated power

is then as follows:

T σs = −fR
s ·∇T −

N

∑
i=1

fR
i · (∇µi −gi)−

N

∑
i=1

µiσi − τ : ∇v ≥ 0 (3.153)



3.4 Port-based modelling and irreversible thermodynamics 181

Fig. 3.13 Micro Carnot en-

gine.

The significance of this dissipated power is more general then the ordinary dissi-

pation due to friction or viscous effects. To understand this significance, we only

consider the first term of the dissipated power fR
s ·∇T , and we assume that the en-

tropy flux is only due to heat transfer by conduction, i.e. fR
s =

fq

T
.

Let us consider a piece of matter of volume dV at temperature T surrounded by a

piece of matter at T +dT (see Fig. 3.13) and denote with dA the area of the contact

surface between the two pieces. Let us imagine that a “micro Carnot engine” can

be placed between the two pieces of matter. The power δW Rev that this engine can

produce reversibly is given by

δW Rev = dfR
s (T +dT −T ) = dfR

s dT = fR
s dAdT

and by unit of volume

δwRev = fR
s dT

dA

dV
∝ fR

s

dT

dl

If now the “micro Carnot engine” is removed, δwRev ∝ fR
s

dT
dl

is lost and one can see

that δwRev ∝ fR
s

dT
dl

and T σs =−fR
s ·∇T are similar. The minus sign of the expression

of T σs is due to the fact that fR
s and ∇T are in the opposite direction. Finally, the

dissipated power is a power that should have been produced reversibly by using

appropriate systems.

Once the entropy production has been derived, one can reformulate the general

equations according to the port-based approach. The flow variables balances are as

follows in a fixed frame:





∂ρp

∂ t
= −∇ ·Φ p +σ p

∂ρωi

∂ t
= −∇ · fi +σi

∂ρs

∂ t
= −∇ ·

(
fq

T
+

N

∑
i=1

fisi

)
+σs

(3.154)

According to the fact that ∑N
i=1 σi = 0, the total mass balance is implicitly satisfied:

∂ρ

∂ t
= −∇ ·ρv (3.155)

Similarly, according to the expressions of σi, σs and σ p, the total energy balance is

also satisfied by using (3.143):
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∂ρ h̄

∂ t
= −∇ · fh̄ +

N

∑
i=1

fi ·gi (3.156)

The flux of h̄ per unit of surface area is then as follows:

fh̄ = ρv

(
v2

2
+u

)
+ fq +Pv+ τ ·v+

N

∑
i=1

fR
i hi (3.157)

This expression can be rearranged in order to exhibit the enthalpy per mass unit

h = u+Pv = u+ P
ρ :

fh̄ = ρv

(
v2

2
+h

)
+ fq + τ ·v+

N

∑
i=1

fR
i hi = ρv

v2

2
+

N

∑
i=1

fihi + fq + τ ·v (3.158)

The two first terms of (3.158)) represent the energy transported by the matter while

the two last ones the energy flux due to heat conduction and to the work exerted by

the shear stress tensor.

If the forces per mass unit gi can be derived from a time independent potential Ψi

so that: 



gi = −∇Ψi

∂Ψi

∂ t
= 0

(3.159)

the total energy h̄′ of the system (see (3.143)) is modified according to the following

equation:





h̄′ =
v2

2
+u+

N

∑
i=1

ωiΨi =
v2

2
+u+Ψ

dh̄ = v ·dp+T ds−Pdv+
N

∑
i=1

µidωi +
N

∑
i=1

Ψidωi +
N

∑
i=1

ωidΨi

(3.160)

A new set of energy-conjugated variables (v,p), (T,s), (−P,v), (µi,ωi), (Ψi,ωi) and

(ωi,Ψi) is defined while the total energy balance is given by:

ρ
Dh̄′

Dt
= −∇ · fR

h̄′ (3.161)

The source term has disappeared since the exchange energy is now expressed as the

variation of a potential energy. As far as a balance equation for the quantity

ρ
D

Dt

(
v2

2
+Ψ

)
= ρ

(
v · Dp

Dt
+

N

∑
i=1

Ψi

Dωi

Dt
+

N

∑
i=1

ωi

DΨi

Dt

)

can be derived by using the component i balance (see (3.124)), an internal energy

balance equation similar to (3.134) and (3.135) can be obtained:
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ρ
Du

Dt
= −∇ · fR

u +σu (3.162)

with





fR
h̄′ = fR

u +
[
ΦR

p ·v
]
+

N

∑
i=1

fR
i Ψi

σu = −ΦR
p : ∇v+

N

∑
i=1

fR
i ·gi = −P∇ ·v− τ : ∇v+

N

∑
i=1

fR
i ·gi

(3.163)

In this derivation, it has been assumed that:

• according to (3.159), the substantial time derivative of Ψi is reduced to

DΨi

Dt
= v ·∇Ψi = −v ·gi

• the chemical reactions do not modify the potential energy, i.e. ∑N
i=1Ψiσi = 0.

Neither σu nor the entropy balance are modified and the system represented by

(3.160) can be seen as a port-based one in the same manner then previously.

3.4.3 Lumped parameter systems

In many circumstances, the derivation of models is based on the definition of a

network of lumped parameter sub-systems (cf. Chapter 1). The state variables are

supposed to be spatially uniform in each element of the network. In chemical en-

gineering, a very famous element of such a network is the so-called CSTR (Con-

tinuous Stirred Tank Reactor) that is highly used for the modelling of chemical

reactors [115]. Once the network is spatially defined, the balance equations are es-

tablished for each element of the network. The total energy that is generally consid-

ered is reduced to the internal energy as far as the effects due to viscous dissipation

are generally negligible with respect to those due to heat transfer or chemical reac-

tions. A noticeable exception is the case of highly viscous fluids like polymers for

example where the viscous dissipation has to be taken into account (see for exam-

ple [48]). As in the case of distributed parameter systems, the objective of a model

is to calculate the output variables P, T and the composition and the two approaches

can be used to define state variables. The classical one consists in manipulating ma-

terial and energy balances while the port-based one is based on material and entropy

balances.
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3.4.3.1 The classical approach

We will establish the balances on a molar basis so that h̄i is the molar partial enthalpy

of component i while h̄ is the molar enthalpy of the mixture. Let us consider one

lumped parameter system as an element of a network of compartments. This element

may exchange matter and energy with its neighbours through links designated by the

l index. It contains Ni mole of component i and its internal energy is U . The energy

and component i balances are written as follows:

dU

dt
= Fq +Fw +∑

l

Fl h̄l = Fq +Fw +∑
i, l

Fil h̄il (3.164)

dNi

dt
= ∑

l

Fl χil +σiV = ∑
l

Fil +σiV (3.165)

where Fq and Fw are respectively the total heat flux and the total power that are

exchanged by the system through its boundary, while Fil and χil are respectively the

molar flow rate and the molar fraction of component i through the link l, while Fl is

the corresponding total molar flow rate.

3.4.3.2 The port-based approach

The Gibbs equation (3.136) is supposed to be valid for the system at uniform pres-

sure, temperature and composition so that one can derive the entropy balance from

(3.136), (3.164) and (3.165):

dS

dt
=

1

T

[
Fq +Fw +∑

i, l

Fil h̄il −∑
i

µ̄i

(

∑
l

Fil +σiV

)]
+

P

T

dV

dt
(3.166)

According to the definition of the chemical potential per mole unit µ̄i = h̄i − T s̄i,

(3.166) can be rearranged in order to exhibit a source term and exchanged terms:

dS

dt
= ∑

i, l

Fil s̄il +
Fq +Fw

T
+

P

T

dV

dt
+∑

i, l

Fil

(
h̄il −T s̄il

T
− µ̄i

T

)
−

N

∑
i=1

µ̄iσiV (3.167)

Let us consider for example that the heat flux is exchanged with a heat source at

Text and that the volume V varies in contact with a pressure source at Pext with

Fw = −Pext
dV
dt

. Equation (3.167) can be given under the following form:
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



dS

dt
= ∑

i, l

Fil s̄il +
Fq

Text
+σsV

σs =
1

V

[(
Fq

T
− Fq

Text

)
+

P−Pext

T

dV

dt
+

+∑
i, l

Fil

(
h̄il −T s̄il

T
− µ̄i

T

)
−

N

∑
i=1

µ̄iσiV

]
(3.168)

The first term in the entropy production is due irreversible heat transfer, the second

one is due to mechanical friction, the third one to the irreversible mixing of the inlet

fluxes of matter with the matter contained in the system and finally the fourth one is

due to chemical reactions.

3.4.4 Constitutive equations

A model only based on balance equations cannot be used if constitutive equations

are not available (cf. Appendix B, Sect. B.2.8). These relations constitute a model

for the matter properties – i.e. transport, thermodynamic properties (see for exam-

ple [167]) and chemical reaction rates. In order to calculate these properties of

the matter, a great number of models are available, more or less complicated ac-

cording to the situation. Classical textbooks or references are devoted to this ques-

tion, which is probably the most important and difficult one in chemical engineer-

ing [167, 173, 209].

3.4.4.1 Thermodynamic properties

One has to relate the specific internal energy, entropy, enthalpy of the system to P,

T and the composition. As far as the total mass balance is involved, one has also

to relate the specific volume or the mass or molar density to the same variables. A

thermodynamic model is a set of relations allowing to calculate all these proper-

ties (see for example [173, 209]. These relations have been derived by considering

equilibrium situations. According to the principle of local equilibrium, they are also

assumed to apply at a point, even if the system under consideration is not at equilib-

rium as a whole. According to the classical way to proceed, we present very briefly

this question by separating the case of pure components from the case of mixtures.

Equations of state are generally used to model the specific volume v of a fluid.

They are given under the general form ϕ(P,v,T,θ1,θ2, . . .) = 0, where θ1, θ2, . . .
are parameters. Some of these equations of state can be applied for both liquid and

gaseous phases while others are devoted to only one phase. All the properties are

calculated by using equation of states. As far as u is concerned, the following ex-

pression is derived where u is primarily considered as a function of v and T :
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du = cv(v,T )dT +

(
T

∂P

∂T
−P

)
dv (3.169)

where cv(v,T ) is the heat capacity at constant volume. In many applications, it is

better to consider P and T as the output variables so that the enthalpy h = u+Pv is

more convenient. The following relation is then derived:

dh = cP(P,T )dT +

(
v−T

∂v

∂T

)
dP (3.170)

where cP(P,T ) is the heat capacity at constant pressure. If the port-based approach

is used, the specific entropy s can be expressed by using the following relations:





ds =
cv(v,T )

T
dT +

∂P

∂T
dv

ds =
cp(P,T )

T
dT − ∂v

∂T
dP

(3.171)

Equations (3.169), (3.170) and (3.171) have to be integrated along calculations

paths. To do so, an arbitrary origin has to be defined for u or h and s.

Equations of state can also be used for mixtures. They are given under the general

form ϕ(P,v,T,θ1m,θ2m, . . .) = 0, where the parameters θ1m, θ2m, ... depend on the

composition. As far as the other properties are concerned, in order to be able to

define an arbitrary origin for them, one has to consider each component separately

and define its contribution to a given property. Let us for example consider the case

of the enthalpy H. H is primarily considered as a function of P, T and Ni, the number

of mole of component i. As it is a first order homogenous function with respect to

Ni, Euler theorem can be applied [173] (cf. Appendix B, Sect. B.2.1):





H(P,T,Ni) = ∑
i

Nih̄i(P,T,χi)

χi =
Ni

∑N
i=1 Ni

(3.172)

By definition, h̄i =
(

∂H
∂Ni

)
P,T,Nk 6=i

is the partial molar enthalpy. Within the framework

of the port-based approach, it is also better to consider S as a function of P, T and

Ni so that Euler theorem can also be applied:

S(P,T,Ni) =
N

∑
i=1

Nis̄i(P,T,χi) (3.173)

with s̄i =
(

∂S
∂Ni

)
P,T,Nk 6=i

the partial molar entropy.

Another way to model a mixture is to model the excess Gibbs molar free energy

∆ge(P,T,χi). This quantity is the difference between g, the Gibbs molar free energy
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of a mixture and gid, the Gibbs molar free energy of the same mixture considered as

an ideal solution [173, 209].

As far as reactive systems are concerned, the origin for the calculation of h̄i is

the so-called standard enthalpy of formation. This quantity has been chosen to be 0

for atoms or simple components under their more stable state at ambient conditions

(H2, O2 for example).

3.4.4.2 Transport properties and chemical reaction rates

These properties allow expressing the fluxes as functions of the effort variables ac-

cording to the expression of the total entropy production (see (3.152)). The main

properties that are required are viscosity, thermal conductivity and diffusion coeffi-

cients. These coefficients allow to relate respectively the shear stress tensor to the

velocity gradient, the heat flux by conduction to the temperature gradient and the

fluxes of component i to the chemical potential gradient. Furthermore, source terms

in the material balances are given by the rates of chemical reactions. Finally, one

has also to consider coupled phenomena if necessary. Let us first consider the way

such coupling may occur.

According to the Curie symmetry principle applied to isotropic systems, all the

fluxes are not functions of all the effort variables but only of those having the same

tensorial order [60]. The total entropy production can be split into three terms, each

of them being positive. In order to express the entropy production according to these

three terms, one has to consider the entropy production associated to viscous effects.

The quantity τ : ∇v can be expressed as follows provided that τ is symmetric [60]:

τ : ∇v = τ̃ :
(
∇̃v
)s

+
1

3
Tr(τ)∇ ·v (3.174)

To derive (3.174), τ has been decomposed as follows:

τ = τ̃ +
1

3
Tr(τ)I, with Tr(τ̃) = 0 (3.175)

Similarly, ∇v has been decomposed according to:

∇v =
(
∇̃v
)
+

1

3
Tr(∇v)I =

(
∇̃v
)s

+
(
∇̃v
)a

+
1

3
(∇ ·v)I, with Tr(∇̃v) = 0 (3.176)

where
(
∇̃v
)s

and
(
∇̃v
)a

are respectively the symmetric and anti-symmetric parts of

∇̃v. By combining (3.152) and (3.174), the entropy production can be expressed as

follows:
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σs =−
N

∑
i=1

µiσi

T
−

1
3
Tr(τ)∇ ·v

T
︸ ︷︷ ︸

σSc
s

− fq

T 2
∇T − 1

T

N

∑
i=1

fR
i ((∇µi)T −gi)

︸ ︷︷ ︸
σVect

s

− τ̃ :
(
∇̃v
)s

T︸ ︷︷ ︸
σTens

s

≥ 0

(3.177)

where σSc
s , σVect

s and σTens
s are respectively the scalar, vectorial and tensorial contri-

butions to the entropy production. Coupling between phenomena occurs only within

these three sets of phenomena.

Within the so-called “Linear thermodynamics of irreversible processes”, the re-

lations between the flow and effort variables are expressed linearly. This does not

mean that the resulting models are linear. They are generally non-linear firstly be-

cause thermodynamic and transport properties are functions of the state variables as

well as the chemical rates [60] and secondly because of the coupling between the

phenomena.

As far as we know, coupling between chemical reactions and scalar viscous ef-

fects are generally not considered [21] so that we express separately Tr(τ) as a

function of ∇ ·v on the one hand and σi as functions of µi on the other hand.

The flow variable 1
3
Tr(τ) is assumed to be a function of the effort variable ∇ ·v

only. If the system is not to far from equilibrium, a linear relation can be postulated:

1

3
Tr(τ) = −κ (∇ ·v) (3.178)

where κ is the dilatational or volume viscosity, which is independent of ∇ ·v within

the framework of linear irreversible thermodynamic. This situation corresponds to

the so-called Newtonian fluid but κ depends on P, T and the composition of the

fluid.

Beyond the linear thermodynamics of irreversible processes, the case of non-

linear chemical kinetics has to be carefully considered. As a matter of fact, the

definition of effort and flow variables as well as the relation between them is not

evident. For the sake of simplicity, we restrict ourselves to the case of thermally

activated chemical reactions. When a mixture is subject to chemical reactions, some

species are consumed, some others are produced. Global or apparent chemical reac-

tion rates can be fitted to experimental results but such an approach is empirical. A

deep understanding of a global chemical transformation is based on a decomposi-

tion of such a global chemical process into independent elementary processes [176].

It is assumed that for an elementary process, the species are really brought into con-

tact one with the others in order the atoms initially present in the reactants can be

redistributed in the products. Such elementary processes are assumed to involve a

low number of reactants, mainly, one, two or three (mono-, bi- or tri-molecular pro-

cesses) and their orders are assumed to be equal to the stoechiometric coefficients.
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Let us consider the entropy production due to chemical reactions, i.e. σReac
s =

−∑N
i=1

µiσi

T
. We assume that the overall chemical process has been decomposed ac-

cording to a set of R independent elementary processes so that σi is expressed by

(3.122). Then, σReac
s can be expressed as follows:

σReac
s = − 1

T

N

∑
i=1

R

∑
k=1

(
νk

i µiM̄i

)
rk =

1

T

R

∑
k=1

Akrk (3.179)

where

Ak = −
N

∑
i=1

νk
i µ̄i = −∆rGk (3.180)

where Ak is the affinity or the opposite of the Gibbs free energy ∆rGk of the k-th

chemical reaction and µ̄i = µiM̄i the chemical potential per mole unit. In (3.179)

and (3.180), the stoechiometric coefficients νk
i are considered to be positive for a

product and negative for a reactant. As pointed out in [11, 163] the rate of a chem-

ical reaction, and particularly the rate of an elementary process, is a function of

the concentrations. Consequently, it can be given as a function of the affinity, as

it is suggested by (3.179), only for an equilibrated reaction and near the equilib-

rium position [60]. In this case, the overall chemical process is described within the

framework of the linear thermodynamic of irreversible processes. Otherwise, one

has to consider separately the forward and reverse directions (see also [114]). In or-

der to illustrate this point, let us consider the case of an elementary chemical process

described by the following stoechiometric equation:

N

∑
i=1

ν f
i Rei ↔

B

∑
i=1

νr
i Pri (3.181)

This process is supposed to lead to a possible equilibrium. In order to split more

easily a chemical process into forward and the reverse directions, we have defined

positive stoechiometric coefficients ν f
i and νr

i respectively for those directions. As

far as the process (3.181) is assumed to be an elementary one, its rate can be ex-

pressed as follows:

r = r f − ri = k f

N

∏
i=1

C
ν

f
i

i − kr

N

∏
i=1

C
νr

i
i (3.182)

where k f and kr are the rate constants that are commonly considered as functions of

the temperature according to the Arrhenius relation:

k f = k0
f e−

E f
RT kr = k0

r e−
Er
RT (3.183)

In order to express the rate of the process as a function of the chemical potentials,

one has to invert the relation between µ̄i and Ci. A thermodynamic model is then

necessary. The rather simple but frequently case considered in chemical kinetics has

been treated in [11, 163] by assuming the case of an ideal solution. These authors

have considered a less usual reference for the expression of µ̄i (the component i at



190 3 Port-Based Modeling in Different Domains

unit concentration) then the one ordinary used in thermodynamic. However, their

approach can be used and generalized to non-ideal solutions. As a matter of fact, a

more usual but not unique way to derive a calculation path for the chemical potential

is to consider µ̄∗
i (P,T ), the chemical potential of the pure component i in the same

physical conditions as the reference [173]. The chemical potential is then expressed

as follows:





µ̄i(P,T,χ1, . . . ,χN−1) = µ̄∗
i (P,T )+RT ln(ai)

= µ̄∗
i (P,T )+RT ln(γi (P,T,χ1, . . . ,χN−1)χi)

χi =
Ci

C

(3.184)

where C is the total molar concentration, ai the activity of i with respect to the

state of pure component and γi the activity coefficient. γi has to be calculated from

a thermodynamic excess model. The simplest model is the ideal solution where

γ id
i = 1. By combining (3.182) and (3.184), one can find that:

r = r f − rr =
k fC

∑N
i=1 ν

f
i e−

A∗
f

RT e
A f
RT

N

∏
i=1

(γi)
ν

f
i

− krC
∑N

i=1 νr
i e−

A∗r
RT e

Ar
RT

N

∏
i=1

(γi)
νr

i

(3.185)

where

A f =
N

∑
i=1

ν f
i µ̄i A∗

f =
N

∑
i=1

ν f
i µ̄∗

i Ar =
N

∑
i=1

νr
i µ̄i A∗

r =
N

∑
i=1

νr
i µ̄∗

i (3.186)

A f and Ar are respectively the forward and reverse affinities while A∗
f and A∗

r are the

corresponding quantities calculated at the reference state. The same flow variable r

is associated to the two effort variables A f and Ar so that the entropy production due

the elementary process (3.181) is given by:

σReac
s =

A f r−Arr

T
=

Ar

T
(3.187)

Let us notice that, as far as the process (3.181) can lead to an equilibrium, the latter

can be predicted directly from thermodynamic by using the condition:

Aeq = −
N

∑
i=1

νk
i µ̄i = A

eq
f −Aeq

r = 0 (3.188)

This equilibrium condition also corresponds to the fact that:

req = r
eq
f − req

r = 0 (3.189)

Consequently, k f and kr must satisfy a condition that can be derived by combining

(3.184), (3.185), (3.188) and (3.189):
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k f

(Ceq)∑N
i=1 ν

f
i e−

A∗
f

RT

N

∏
i=1

(
γ

eq
i

)ν
f

i

= kr

(Ceq)∑N
i=1 νr

i e−
A∗r
RT

N

∏
i=1

(
γ

eq
i

)νr
i

= κeq (3.190)

Finally, if the process is considered to be close to the equilibrium conditions, one

can linearise (3.185) by evaluating

k f

C∑N
i=1 ν

f
i e−

A∗
f

RT

N

∏
i=1

(γi)
ν

f
i

and kr

C∑N
i=1 νr

i e−
A∗r
RT

N

∏
i=1

(γi)
νr

i

at the equilibrium conditions according to (3.190) and by linearizing the results with

respect to A f and Ar. The linearized rate expression of the process (3.181) is then

given by:

r = req + r̃ = r̃ = κeq e
A

eq
f

RT

RT
A (3.191)

according to the linear thermodynamic of irreversible processes.

As far as elementary processes are concerned, a model has been derived by

[11, 84] to explain the dependence of chemical reaction rate constants with tem-

perature as given by the Arrhenius relation: this model is based on the concept of

activated complex. We give a very simplified presentation of this model since it

involves highly detailed calculations based on molecular theories. To this end, we

consider the case of an elementary bi-molecular process in the forward direction:

A+B → Pr (3.192)

If such a process is elementary, it is assumed that the atoms composing A and B are

really brought into contact: this elementary amount of matter is called the activated

complex and is noted (AB)∓. This activated complex is considered to be an ordinary

molecule possessing usual thermodynamic properties. However, at the molecular

level, one direction of vibration leads to the decomposition of the activated complex

proportionally to its concentration so that the activated complex is “treated as a

molecule with one degree of vibrational freedom less than normal” (cf. [84], p. 402).

In order to derive the rate of the elementary process (3.192), the activated complex

(AB)∓ is considered as if it were in equilibrium with the reactants, according to the

following equivalent process:

(a) A+B ↔ (AB)∓ (b) (AB)∓ → Pr (3.193)

The rate r f of the process [84, 109] is given by the decomposition rate of (AB)∓

since the quasi-stationary state principle is applied to this entity. From statistical

thermodynamic arguments, it is shown that r f is given by:
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r f =
k̄T

h̄
C(AB)∓ (3.194)

where k̄ and h̄ are respectively the Boltzmann and Planck constants. The derivation

of (3.194) is based on the assumption that the rate of decomposition of the activated

complex is related the frequency of one vibrational degree of freedom inside this

complex. If now the activated complex and the reactants A and B are assumed as

if they were at equilibrium, one can expresse C(AB)∓ as a function of CA and CB. If

µ̄A, µ̄B and µ̄(AB)∓ are respectively the chemical potential per mole unit of A, B and

(AB)∓, the chemical equilibrium condition:

µ̄(AB)∓ = µ̄A + µ̄B (3.195)

can be used to derive the equilibrium constant of the process (3.193)(a) K∓, which

is defined by:

RT ln

(
a(AB)∓

aAaB

)
= RT lnK∓ = −

(
µ̄0

(AB)∓ −
(
µ̄0

A + µ̄0
B

))
= −∆G0

∓ (3.196)

As far as K∓ is a function of the mixture composition, the rate equation (3.194) can

be formally expressed as a function of K∓ through its dependence on C(AB)∓ . The

way this dependency will be expressed depends on the thermodynamic model that

is used to represent the mixture. As far as the chemical rates are functions of the

molar concentrations:

r f = k fCACB (3.197)

by combining (3.194), (3.196) and (3.197), the rate constant can be expressed as

follows:

k f =
k̄T

h̄
K∓

C(AB)∓

a(AB)∓

CA

aA

CB

aB

=
k̄T

h̄

C(AB)∓

CACB

aAaB

a(AB)∓
e
−∆G0

∓
RT (3.198)

After some tedious calculations [57], it can be shown that the entropy production

due to vectorial phenomena can be expressed as follows:

σVect
s = − fq

T
·∇ ln(T )− 1

T

N

∑
i=1

fR
i · ei (3.199)

The effort variables ei per unit of mass are given by the following relation:

ei =
CRT

ρi

di = T ∇
(µi

T

)
+hi∇ ln(T )− ∇P

ρ
−gi +

N

∑
j=1

ρ jg j

ρ
(3.200)

According to their definitions, ei and fR
i are not independent since:
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N

∑
i=1

fR
i = 0

N

∑
i=1

di = 0 (3.201)

Within the framework of linear irreversible thermodynamic, the flow variables fR
i

and fq are linearly expressed as functions of the effort variables ei and ∇ ln(T ).
The relation between fq and ∇ ln(T ) is analogous to the Fourier relation while the

relations between fR
i and ei is related to classical isothermal diffusion. However,

coupling phenomena can exist. The thermal effort ∇ ln(T ) can generate mass fluxes:

this is the Soret effect. The Dufour effect is the generation of a heat flux fq due

to the diffusive effort variables. As far as the flow variables fR
i are concerned, the

Maxwell-Stefan approach consisting in expressing the effort variables as function of

the fluxes [201] is more and more used in chemical engineering. The advantage of

this approach is that the physical interpretation of the diffusion coefficients is easiest

since they are analogous to drag or friction coefficients. Since coupling between

∇ ln(T ) and fR
i is considered, the so-called generalized Maxwell-Stefan equations

are derived as follows.

For the sake of simplicity, let us first consider the case of isothermal systems and

let us consider the forces acting on component i. A driving force ei is assumed to

compensate exactly a drag force that is due to the presence of the other components

j. This drag force is proportional to the relative velocity of component i with respect

to component j. It is usual to express this momentum balance by using di instead of

ei as follows:





di = ∑
j 6=i

χiχ j

Di j

(v j −vi) = ∑
j 6=i

χiχ j

Di j

((v j −v)− (vi −v))

= ∑ j 6=i
χiχ j

Di j

(
fR

j

ρ j
− fR

i
ρi

)

Di j = D ji

(3.202)

If now the Soret effect is included, one define DT
j as the thermal diffusion coeffi-

cient for component j, a modified relative velocity is introduced so that the force

equilibrium becomes:





di = ∑
j 6=i

χiχ j

Di j

[(
fR

j

ρ j

+
DT

j

ρ j

∇ ln(T )

)
−
(

fR
i

ρi

+
DT

i

ρi

∇ ln(T )

)]

N

∑
j=1

DT
j = 0

(3.203)

Equation (3.203) is an implicit relation between the effort and the flow variables that

has to be inverted in order to express the flow variables as functions of the effort

variables [201]. As far the heat flux is concerned, its expression is as follows [57]:
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fq = −
[

λ0 +
N

∑
i=1

N

∑
j=1

CRT

ρi

DT
i

χiχ j

Di j

(
DT

j

ρ j

− DT
i

ρi

)]
∇ ln(T )

−
N

∑
i=1

N

∑
j=1

CRT

ρi

DT
i

χiχ j

Di j

(
fR

j

ρ j

− fR
i

ρi

)
(3.204)

The quantity

λ0 +
N

∑
i=1

N

∑
j=1

CRT

ρi

DT
i

χiχ j

Di j

(
DT

j

ρ j

− DT
i

ρi

)

is commonly related to the thermal conductivity λ as it has been introduced by

Fourier [21]:

λ =

λ0 +
N

∑
i=1

N

∑
j=1

CRT

ρi

DT
i

χiχ j

Di j

(
DT

j

ρ j

− DT
i

ρi

)

T
(3.205)

As far as tensorial irreversible processes are concerned, there is only one process

described here so that no coupling has to be considered. The flow variable τ̃ is only

function of the effort variable
(
∇̃v
)s

. A linear relation can approximate this function

if the system is not to far from equilibrium:

τ̃ = −2η
(
∇̃v
)s

(3.206)

where τ̃ is assumed to be a symmetric tensor. η is the viscosity of the fluid only

depending on P, T and the composition for a Newtonian fluid. One can find for

example in [167] the way to calculate η for fluids in many situations.

3.4.5 Port-based modelling examples

Many approaches of computer aided modelling in process engineering are based on

the formulation of balance equations (including energy balance), constitutive equa-

tions and constraint equations due to the environment. Such approaches have been

used to develop structured modelling methodologies for distributed parameter sys-

tems such as [83,132]. Even if these structured modelling approaches can be viewed

as classical ones in process (and chemical) engineering, we will rather apply here on

two examples the port-based methodology previously developed in Chapter 1. The

two chosen examples, a batch gas phase chemical reactor and an adsorption column,

will highlight the advantages of the approach. In both cases, the port-based approach

is applied, starting from Gibbs equation, using internal energy, material and entropy

balance equations, deriving constitutive equations in terms of port variables from

classical thermodynamic assumptions, in order to obtain a port-based model of the

processes in the form of a generalized Bond Graph.
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Fig. 3.14 A closed constant

volume chemical reactor.

Heat Flux Fq

i

In the reactor example, physical variables are considered as spatially uniformly

distributed. As a consequence, a lumped port-based model is derived. It is shown

that in this model, two irreversible processes are sources of entropy production: the

heat transfer and the chemical reaction.

In the adsorption column case, an isothermal model is considered. The model

focuses on mass transfer phenomena (adsorption and diffusion). It follows that a

distributed parameters model is derived which points up these transport phenomena

are the sources of entropy production. These phenomena (adsorption, diffusion and

dispersion) occur at three different scales. Therefore, the model of the adsorption

column also provides a nice example of an application of the port-based methodol-

ogy to multi-scale modelling.

In both examples, the port-based models and their bond graph formulations ap-

pear to be easy to re-use and to connect to other process sub-models. This prop-

erty comes from the use of port variables and is obvious for the lumped parame-

ter model. However, in the adsorption column example, the model is stated inde-

pendently of the chosen boundary conditions for describing the environment. This

“free-boundary” formulation allows to connect the model of the adsorption col-

umn to other plant sub-models, if any. This property is a critical advantage of the

port-based model on classical partial differential balance equations models. Further

readings about modelling and about method of spatial discretization associated to

this port based approach can be found in [12–15, 52, 71].

3.4.5.1 Modelling of a batch gas phase chemical reactor

The topic of chemical reactors modelling is very important in chemical engineering

(see for example the classical textbook [115]). The situations are very numerous

and complex and we give here a rather simple example to illustrate the question of

classical - versus port-based approach of their modelling. More complex situations

have been described elsewhere ( [53]). Let us consider a closed constant volume gas

phase chemical reactor as represented on Fig. 3.14. Such a system is a batch reactor

because the production is not continuous.
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We assume that the system is perfectly mixed: this means that the state variables

are uniform. The reactor is initially fed with the reactants and only one reaction is

supposed to occur. This reaction is defined by the stoichiometric equation:

N

∑
i=1

νiBi = 0 (3.207)

where Bi are considered chemical species, N their number and νi the stoichiometric

coefficients with νi > 0 for a product and νi < 0 for a reactant. During the reaction

progress, the reactor is in thermal contact with the surrounding at Text .

The model is based on components i and internal energy balances (see for exam-

ple [131]):

• Component i balance:

dNi

dt
= νirV ∀i ∈ {1, . . . ,N} (3.208)

where Ni are the numbers of moles of component i in the mixture, V is the total

reactor volume and r the reaction rate. Let us notice that, due to the fact that

there is only one reaction, the state of the system is completely defined by only

one variable. One can choose the number of moles of one reactant or product. It

is also common to define the extent χ(t) such that

Ni(t) = Ni(0)+νiχ(t) (3.209)

so that the equations (3.208) become:

dχ

dt
= rV (3.210)

• Internal energy balance:
dU

dt
= Fq (3.211)

where U is the total internal energy and Fq the total heat flux.

One is interested in calculating the evolution of the number of moles Ni as well

as the temperature and the pressure. The question of properties then arises. At first,

one has to choose a thermodynamic model for the mixture in order to express U and

P as functions of P, T and Ni. To calculate the reaction progress, an expression of

the chemical rate has to be known as well as an expression of the heat flux Fq. The

model will then take the following form:
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d

dt

(
N

∑
i=1

Niūi(P,T,χi)

)
= Fq = αA(Text −T )

dχ

dt
= rV

Ni(t) = Ni(0)+νiχ(t)

ϕ (P,V,T,Ni) = 0

(3.212)

where ūi denotes the component i specific internal energy, α a heat transfer coeffi-

cient (per surface unit) and A the surface area for the conduction. The map ϕ is given

as a thermodynamic state equation for the mixture (see previously). For instance, if

the gas can be assumed to be an ideal gas mixture, the thermodynamic model is very

simple:

ūi(P,T,xi) = ū
ig
i (T )

dū
ig
i = c̄

ig
v,i(T ) dT

PV =

(
N

∑
i=1

Ni

)
RT

(3.213)

where the superscript ig stands for ideal gas and where c̄
ig
v,i(T ) is the constant volume

specific heat capacity for component i. The model can then be expressed according

to the time variation of the temperature:

(
N

∑
i=1

Nic̄
ig
v,i(T )

)
dT

dt
= αA(Text −T )−

(
N

∑
i=1

νiū
ig
i (T )

)
rV

dχ

dt
= rV

Ni(t) = Ni(0)+νiχ(t)

PV =

(
N

∑
i=1

Ni

)
RT

(3.214)

where ∆rU := ∑N
i=1 νiū

ig
i (T ) is called the internal energy of reaction.

The Gibbs equation (cf. Sect. 3.4.2.3) applied to the mixture on a molar basis in

the case of a constant volume system gives:

dU = T dS +
N

∑
i=1

µ̄idNi (3.215)

where µ̄i is the chemical potential for the component i in the mixture. In order to

derive the entropy balance, one combines the internal energy balance (3.211), the

Gibbs equation (3.215), the material balances (3.208) and the entropy balance:
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dS

dt
=

Fq

Text︸︷︷︸
fheat

+Σs (3.216)

where Σs denotes the entropy production per volume unit. Doing so, one finds the

entropy production:

Σs = Fq

(
1

T
− 1

Text

)
− ∑N

i=1 νiµ̄i

T
rV (3.217)

Two irreversible processes are sources of entropy production:

• The entropy production due to heat transfer:

Σheat = Fq

(
1

T
− 1

Text

)

• The entropy production due to the chemical reaction:

Σreac = −

N

∑
i=1

νiµ̄i

T
rV

The port-based model is then in its final form:

dS

dt
=

αA(Text −T )

T
− ∑N

i=1 νiµ̄i

T
rV

dχ

dt
= rV

Ni(t) = Ni(0)+νiχ(t)

dU

dt
= T

dS

dt
+

N

∑
i=1

µ̄i

dNi

dt

(3.218)

In order to compute the pressure and the temperature, one has to relate these vari-

ables to the entropy and the number of moles which is unusual because according

to the Gibbs equation, one should use relations of the following form:

T = T (S,V,Ni)
P = P(S,V,Ni)
µ̄i = µ̄i(S,V,Ni)

(3.219)

If such relations were available, the model (3.218) could be expressed in an integral

causality form. In fact, the thermodynamic models are generally available in the

literature under the following form:
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Fig. 3.15 Bond graph repre-

sentation of the batch reactor.
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S(P,T,Ni) =
N

∑
i=1

Nis̄i(P,T,χi)

µ̄i = µ̄i(P,T,χi)

ϕ(P,V,T,χi) = 0

(3.220)

where s̄i denotes the specific molar entropy of component i. For instance, in the case

of an ideal gas mixture, this model reduces to

Sig(P,T,Ni) =
N

∑
i=1

Nis̄
ig
i (P,T,χi)

µ̄i(P,T,χi) = µ̄ ig∗
i (P,T )+RT ln χi

PV =

(
N

∑
i=1

Ni

)
RT

(3.221)

with s̄
ig
i (P,T,xi) = s̄

ig∗
i (P,T )−R ln χi and where the exponent ∗ stands for properties

of the pure gas.

Finally when dealing with chemical reactions and nonequilibrium thermodynam-

ics, the vector of thermodynamic affinities Ã naturally shows up instead of chem-

ical potentials. For thermodynamic equilibrium affinity A is defined as follows:

−∑n
i=1 νiµ̄i. In the case of nonequilibrium thermodynamics, in order to obtain struc-

tured model we have to split affinity in two components: the first one corresponds

to reactants and the other one to products.

The power conjugate flux associated to Ã is

R =

[
rV

−rV

]

The bond graph model of the batch reactor is given Fig. 3.15.
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Fig. 3.16 Schematic repre-

sentation of an adsorption

column.

 

Pellet Crystal  

Column

+BA B

microporemacroporous

medium

a)

b) c)

3.4.5.2 Bond graph modelling of an adsorption column

The aim of this example is to present a port-based distributed parameter model of

the mass transfer phenomena in an adsorption column. This model is built using

Bond Graph language. The main phenomena occurring in the column (dispersion,

diffusion) are represented by a dissipative part and an instantaneous power conserv-

ing structure named Stokes-Dirac structure. This structure is the basis of the infinite

dimensional port Hamiltonian models formulation proposed in Chapter 4. These

models represent reversible systems such as the lossless transmission line, the vi-

brating string or the eulerian fluid problem. They are hamiltonian with respect to

this geometric power conserving structure which is based on Stokes’ theorem. This

structure then represents a canonical interdomain coupling between two physical

domains for reversible systems.

We shall show, in an analogous way, that the port-based model of an adsorption

process may be decomposed into a Dirac structure associated with the balance equa-

tions and some closure relations applied to some ports of the Dirac structure. These

closure equations are the constitutive equations representing storage with the ther-

modynamical properties or dissipation of energy with the phenomenological model

of diffusion. We suggest the reader refer to [12–15, 52, 71] for further details about

the port based model.

The adsorption is the phenomenon of deposit of molecules from fluid phase onto

solid surface. The adsorption process is based on the ability of a solid to preferen-

tially adsorb constituents present in a fluid phase in order to separate them. This

separation is essentially based on the difference of properties that rules the behavior

of each constituent in the fluid mixture. For instance, consider a binary gas mixture

where one constituent, say A, is adsorbed faster than the other one, say B. Then,

when this mixture is supplied at the inlet of the column, component A is adsorbed

and the outlet gas is enriched with component B during some transition time.

The central part of a plant associated with the separation process by adsorption

is constituted by columns packed with adsorbent pellets, themselves constituted by

crystals of solid (Fig. 3.16) (see [96, 172]). In our case, zeolite is used as adsorbent

medium, so the description of the mass transfer phenomena may be decomposed

considering three scales: namely the column scale, the pellet scale and the crystal

scale (respectively called extragranular, macroporous and microporous scale), as it
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is represented in Fig. 3.16. This is a classical approach in Chemical Engineering,

justified by the physical sizes of crystals, pellets and the column. For instance ac-

cording to [58], the radius of a crystal is of an order of magnitude of 1 µm and

the radius of a pellet approximately 0.8 mm for 13X CECA zeolite. This difference

in the size of crystals, pellets and the column gives rise to several levels of porosity

and so different resistance to the mass transfer in the adsorption column. This is why

the adsorption process is a multi scale process. The complexity of modeling such

process is that the mass transfer is modeled by partial differential equations in each

level.

As already mentioned in Sect. 3.4.1, the system variables are divided into exten-

sive and intensive variables, depending on whether their values depend on the “size”

of the system or not. In analogy with mechanical systems, the thermodynamic force

is always an intensive variable and the displacement is always an extensive vari-

able, yielding an extensive energy transfer. The internal energy of a system is then

expressed in terms of products of pairs of conjugate variables such as (pressure P,

volume V ), (temperature T , entropy S) and (chemical potential µi, mole number

ni (for species i)). In fact all thermodynamic potentials are expressed in terms of

pairings of conjugate variables [53]. In the framework of nonequilibrium thermo-

dynamics, let us consider the simple open one phase system with p species. The

internal energy U of this system is a function of the extensive variables V , S and

ni. The coupling of the energy with these extensive variables and the expression of

the intensive one can be given by the differential of the fundamental equation also

called Gibbs equation (3.136), here reported for clarity:

dU = T dS−PdV +
p

∑
i=1

µidni (3.222)

with T = ∂U
∂S

, P = − ∂U
∂V

and µi = ∂U
∂ni

. The internal energy corresponds to the total

energy of the physical system under consideration and is subject to a conservation

law.

When systems are considered at constant pressure and temperature, it is common

to deal with the Gibbs free energy G = U + PV − T S which is function of mole

numbers, T and P. Since the two variables T and P are constant, only the material

domain can be represented. So only the pair of power conjugate variables
(

µi,
∂ni

∂ t

)

are considered.

In the context of distributed parameter systems with three-dimensional spatial

domain, it leads to express the time variation of the Gibbs free energy G over a sub-

volume Ω of the spatial domain as: G =
∫

Ω ∑i µici where ci is the molar density

of the species i (mol/m3). The variables µi and ci are energy conjugated since their

product over the spatial domain yields the energy over the spatial domain.

According to the concepts presented in Chapter 4 (e.g., see Definition 4.3), we

have to distinguish between the differential forms of different degrees defined on the

spatial domain. The state variables are the molar densities (mol/m3). They are 3-forms

on the considered spatial domain, as well as the molar density time derivative. Their
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evaluation over any sub-volume gives a mole number or mol/s. The effort variables,

intensive ones, are the chemical potentials (J/mol) that are 0-forms. On the other

hand, the port variables at the spatial boundary of the domain are the molar flux

(mol/m2·s), which are 2-forms, and the chemical potential. We define the molar flux

as a 2-form that can be evaluated on any surface of the boundary of the considered

domain and the chemical potential as a function that can be evaluated on any point

of this boundary. These two latter variables are power conjugated.

Remark 3.1. In the sequel, for simplicity, we shall consider an isothermal isobaric

model of the adsorption column. We shall assume that the mixture injected at the

inlet of the column is composed of an inert gas and of one adsorbable gas (pen-

etrating the crystals). The mixture is supposed to behave like an ideal gas in the

extragranular and macroporous scales. The well known Langmuir model is used

for the adsorption equilibrium. Moreover we shall consider the port-based model

in spherical coordinates in the microporous and macroporous scales and we shall

use the assumption of spherical symmetry for reducing the spatial domains from R
3

to R. z and x will denote the radial coordinate in the microporous scale and in the

macroporous scale respectively. In the extra-granular scale, we shall use cylindrical

coordinates (r,θ , l). We shall suppose a symmetry about l and an homogeneity with

respect to r. This will reduce the spatial domain to R in this scale.

It is now necessary to give the constitutive equations representing the dissipative

phenomena in each scale of the adsorption column model. These closure equations

are presented in appropriate coordinates for each scale. These expressions link the

physical molar flux to the driving forces (the gradient of chemical potential). More-

over as we previously noticed, these variables are power conjugate through the inte-

gral over the considered volume. But since symmetry assumption are made and the

coordinate systems are reduced, they are linked through the integral over the con-

sidered interval. The integral over the two other variables are implicitly included in

the molar flux. It corresponds to taking as the natural pairing of conjugate variables

the 0-form representing the linear molar flux and the gradient of chemical potential

that are 1-forms. In a same way, it can be seen that the state variable is then a linear

density (mol/m) that is a 1-form. In what follows the index i can take two values: 1

will refer to the inert gas and 2 to the adsorbable gas.

In the crystal scale, the assumptions reduce the spatial domain to Z = [0,Rc] ⊂
R where Rc is the mean radius of crystals and z is the coordinate. The Maxwell-

Stefan’s model [201], which expresses the diffusion of p species by setting that the

driving force is the chemical potential gradient
∂ µads

i

∂ z
, is used to model the diffusion

in the crystal scale. We assume that each molecule which lies in the microporous

scale is adsorbed. This means that in the adsorbed phase, there is no possibility of

two different molecules undergoing counter-exchange at an adsorption site [201]. In

our case, the Maxwell-Stefan’s equation is given by:

N̂ads
2 = 4πz2Nads

2 = − q̂2
ads Ds

2

RT

∂ µads
i

∂ z
(3.223)
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for the adsorbable species. q̂2
ads = 4πz2qads

2 is the linear molar density (mol/m) and

qads
2 the molar density (mol/m3), respectively. Ds

2 is the Maxwell-Stefan diffusivity

between the adsorbable species 2 and the solid, R is the ideal gas constant and T the

temperature. The constitutive relation (3.223) characterizes the dissipation element

which relates the pairing of conjugate variables

(
N̂ads

2 ,
∂ µads

2

∂ z

)

as previously defined.

Considering spherical coordinates in the pellet scale and spherical symmetry lead

to consider the spatial domain as X = [0,Rp] ⊂ R where Rp is the mean radius of

pellets and x is the coordinate. We also use Maxwell-Stefan’s law for modelling

the diffusion in the macroporous scale. In the pellet, we consider only the friction

between the gas molecules, the Maxwell-Stefan constitutive relations of diffusion

are written as:

− ĉmac
1

RT

∂ µmac
1

∂x
=

y2N̂mac
1 − y1N̂mac

2

D1,2

− ĉmac
2

RT

∂ µmac
2

∂x
=

y1N̂mac
2 − y2N̂mac

1

D1,2
(3.224)

where yi =
ĉmac

i
ĉmac

T
is the molar fraction of species i in the macroporous scale, ĉmac

T is

the total linear density, N̂mac
i is the molar flux of species i. ĉmac

i is the linear molar

concentration of species i (mol/m) with ĉmac
i = 4πx2cmac

i . D1,2 is the Maxwell-Stefan

diffusivity between 1 and 2 (m2/s). This is the classical diffusion equation [21,201].

It is important to notice that, contrary to the case in the microporous medium, this

equation does not express explicitly the molar flux as a function of the chemical

potential gradient. We obtain an implicit relation to describe the dissipative element.

At the extragranular scale, the spatial domain is reduced to L = [0,L] ⊂ R with

L the length of the column. l is the coordinate at this scale. The mass transfer phe-

nomenon is slightly different from the two first scales. The mass transfer in this

scale is governed by convection and dispersion. The convective flux is given by:

N̂ext
i conv = πR2

clc
ext
i v = ĉext

i v for i = 1,2 (3.225)

with v is the mean fluid velocity, cext
i is the molar density of species i (mol/m3), ĉext

i

is the linear concentration of species i (mol/m) where ĉext
i = πR2

clc
ext
i and Rcl is the

radius of the column section.

The dispersion is due to flow inhomogeneity. It is represented by means of an

axial dispersion parameter Dax and its corresponding flux expression is analogous

to the Fick’s relation [21]. The constitutive relation that gives the dispersive flux

as function of the gradient of the chemical potential, at constant temperature and

pressure, is given by:
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N̂ext
i disp = − ĉext

T Dax

RT
e

µext
i

−µ0
i
(T,P)

RT
∂ µext

i

∂ l
(3.226)

where µ0
i (T,P0) is the reference chemical potential and ĉext

T the total linear molar

density.

To complete the model of adsorption in each scale we shall add the constitutive

equations defining the thermodynamic properties of the mixture in each scale. These

closure properties define the energy storing elements C. This leads to express inten-

sive variables (the chemical potential at each scale) as functions of the extensive

variables.

In the adsorbed phase at microporous scale, we assume that only the component

indexed by 2 is diffusing at the micropores. Moreover we use the Langmuir model to

describe the adsorption equilibria. We obtain the following closure equation defining

the thermodynamic properties of the mixture in the microporous medium.

µads
2 = µ0

2 (T,P)+RT ln

(
1

P k

q̂ads
2

q̂ads
s − q̂ads

2

)
(3.227)

This closure equation expresses the chemical potential µads
2 , in the adsorbed phase,

of the components 2 at some temperature T and pressure P. µ0
2 (T,P) denotes the

chemical potential of pure component 2 at standard state and k is a function of the

temperature T and the Langmuir coefficient b given by k = b
RT

. q̂ads
s represents the

linear saturation concentration.

In the macroporous and the extragranular media the mixture is a gaseous phase

assumed to be an ideal gas. The constitutive equations defining the thermodynamical

properties in the two scales is the classical expression of the chemical potential for

an ideal gas. So in the macroporous medium (respectively in the extragranular) we

have:

µmac
i = µ0

i (T,P)+RT ln

(
ĉmac

i

ĉmac
T

)
µext

i = µ0
i (T,P)+RT ln

(
ĉext

i

ĉext
T

)
(3.228)

In the remaining part of this section, we shall propose the port-based model de-

scribing the mass transfer in the three scales identified in the adsorption column

previously described. We shall show that the port-based model at each scale of the

adsorption process may be decomposed into a Dirac structure associated with the

conservation laws and some constitutive equations coupled to some ports of the

Dirac structure. Each one of these constitutive equations represents an energetic

phenomenon and the Stokes-Dirac structure represents the coupling between these

energetic phenomena and also with the external environment (the boundaries of

each scale). These port-based models shall also be represented in the bond graph

language [53, 98] admitting a slight extension as their port variables are now differ-

ential forms. Also the interconnections between the microporous-macroporous and

the macroporous-extragranular scales are formulated as power conserving intercon-

nection structures.
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Fig. 3.17 Bond Graph repre-

sentation of the mass balance

in the Extragranular scale.
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In the column scale, the model variables are defined on the spatial domain L ∈
R = [0,L]. The dynamic model in the column scale is then given by the mass balance

equation including a distributed source term [21]:

∂ ĉext
i

∂ t
= −div(N̂ext

i )+ f̂ ext
i (3.229)

where N̂ext
i = N̂ext

i conv + N̂ext
i disp and f̂ ext

i = πR2
cl f ext

i is the flow of species i per unit

of lenght. This is a distributed source accounting for the molar flow coming out

of a macroporous medium at a point l of the spatial domain L. In the bond graph,

this mass balance is represented by the 0-junction connected to the energy storing

element C as shown in Fig. 3.17.

The convection and the dispersion phenomena that generate the flux N̂ext
i in this

scale are represented in the Fig. 3.18. The Rdisp element represents the dispersion

phenomenon with the constitutive relation (3.226).

Let us briefly show how the Stoke-Dirac structure representing the interconnec-

tion structure between storage and dissipative part of our subsystems appears in this

model. The variation of the total Gibbs energy into the spatial domain is given by:

∫

L
dĝext =

∫

L

(
2

∑
i=1

d
(

N̂ext
i (t,z)µext

i (t,z)
))

ĝext , the Gibbs power flux on the boundary of the domain, is a 0-form and dĝext , the

linear power density, is a 1-form, on the spatial domain. Using integration by parts

this relation leads to the well known Stoke’s Theorem:
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Fig. 3.19 Bond Graph model in the Extragranular scale.

2

∑
i=1

(∫

L
µext

i (t,z)dN̂ext
i (t,z)+

∫

L
N̂ext

i (t,z)dµext
i (t,z)

)
=

=
2

∑
i=1

∫

∂L
N̂ext

i (t,z)µext
i (t,z) (3.230)

where ∑2
i=1

∫
∂L N̂ext

i (t,z)µext
i (t,z) is the total power flux at the boundary ∂L. Now

let us define two sets of power conjugate variables,

[
ei1

fi1

]
=

[
µext

i (t,z)

dN̂ext
i (t,z)

]
and

[
ei2

fi2

]
=

[
dµext

i (t,z)

N̂ext
i (t,z)

]

and the associated boundary conditions

[
µext

i |0
−N̂ext

i |0

]
and

[
µext

i |L
−N̂ext

i |L

]

Finally with the constitutive relation for the dispersion (3.226), the Dirac struc-

ture is finally obtained: [
ei2

fi1

]
=

[
0 d

d 0

][
ei1

fi2

]

and by the choice of the boundary conditions such that the variation of the internal

energy is only due to power flow at the boundary (cf. (3.230)).

The interconnection between the first part, representing the energy storage, and

the second part, representing the convection and the dispersion, and also the bound-

ary conditions is represented by the element DTF that symbolizes the Dirac struc-

ture. The complete bond graph model is then given in Fig. 3.19. We note that as

we consider a fluid moving with a constant velocity, so the Sf represents an energy

source coming from another energetic domain.

The mass transfer model in the pellet, macroporous scale, is similar to the model

of the adsorption process in the column scale. The variables are defined on the spa-

tial domain {l}×X = [0,Rp] ⊂ R. This means that the macroporous medium must

be indexed by the point of the spatial domain L = [0,L] ⊂ R. For the sake of clar-



3.4 Port-based modelling and irreversible thermodynamics 207

CcG
mac

i

mac
::)ˆ(

diffR

mac

i
..
d

mac

iN̂

x

N
mac

i
ˆmac

iĉ
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Fig. 3.20 Bond Graph model of the diffusion at the macroporous scale

ity, we will omit this index in the remaining of the section. The dynamic model of

diffusion process in the pellet is then given by the balance equation:

∂ ĉmac
i

∂ t
= −div(N̂mac

i )+ f̂ mac
i (3.231)

where N̂mac
i is the linear molar flux given by the constitutive equation for diffusion

(3.224) and f̂ mac
i is the flow of species i per unit of domain. This term is a distributed

source accounting for the molar flow coming out of a microporous medium at a point

x in the spatial domain X . The model is given in Fig. 3.20 where the dissipative

element Rdi f f is the diffusion model. Its constitutive equation is given in (3.224).

The C element represents the storage phenomenon, its constitutive equation is given

in the first part of (3.228). The DTF is the Stokes-Dirac structure associated with

this scale.

The model at the crystal microporous scale, is similar to the two previous scales.

The variables are defined on the spatial domain {l}× {x}× Z ⊂ L×X × Z. This

means that the microporous medium is indexed by the point of the macroporous

spatial domain X which it self indexed by a point in the spatial domain L. For

simplicity these indexes will be omitted. The dynamic model in the microporous

medium is then simply given by the mass balance equation:

∂ q̂ads
2

∂ t
= −div(N̂ads

2 ) (3.232)

and the bond graph model is represented in Fig. 3.21, where the Rads element is the

diffusion model that represents the dissipative phenomenon. Its constitutive equa-

tion is given in (3.223). The C element represents the storage phenomenon, its con-

stitutive equation is given in the second part of (3.228). The DTF is the Stokes-Dirac

structure related with this scale.

Before illustrating the interconnection structures between the three scales, we

start presenting the coupling between the macroporous and the extragranular scales.

The hypothesis of separation of the two scales amounts to the following assump-

tions: we assume that in a slice of fluid there is a sufficient number of pellets of
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Fig. 3.21 Bond Graph representation of the adsorption process at the microporous scale
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Fig. 3.22 The complete Bond Graph model of the adsorption column.

much smaller size so that a pellet is abstracted to a point. The concentration of

pellets in the extragranular fluid is denoted by cpellet(l) where l is in L the spatial

domain of the extragranular scale. At a point l0 ∈ L, is attached a spatial domain iso-

morphic to some domain X and indexed by l0. Thus the domain of the set of pellets

in the fluid is L×X .
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Furthermore we use two assumptions, to couple the macroporous and the extra-

granular scales by relating firstly the intensive variables consisting of the chemical

potential µmac
i (l,x)|x=Rp

of the macroporous scale restricted to the boundary x = Rp

of its domain, and the chemical potential µext
i (l) at the extragranular scale at the

point l ∈ L. Secondly a coupling relation is defined on the conjugated extensive

variables, the volumetric density flux variable at the extragranular scale f̂ ext
i (l) and

the flux variable of macroporous scale N̂mac
i (l,x)|x=Rp

restricted to the boundary of

its domain.

The coupling relation between the intensive variables is derived from the as-

sumption of local equilibrium at the interphase between the macroporous and the

extragranular fluid. This leads to the equation:

µmac
i (l,Rp) = µext

i (l) (3.233)

The coupling relation between the extensive variables expresses the continuity of

molar flux exchanged between between the two scales at the point l ∈ L:

f̂ ext
i (l)+ N̂mac

i (l,Rp) · cpellet(l) = 0 (3.234)

It can be shown that these relations define an interconnection power continuous

structure.

The coupling between the macroporous and microporous scales will be identical

as the coupling between the extragranular and the macroporous scales, so we have

the following equations that relates the intensive and extensive variables:

µads
i (x,Rc) = µmac

i (x) (3.235)

f̂ mac
i (x)+ N̂ads

i (x,Rc) · ccrystal(x) = 0 (3.236)

where ccrystal(x) is the concentration of crystals in the pellet.

The complete Bond graph model is represented in Fig. 3.22. In this model are rep-

resented the models of the three scales and the interconnection between the scales.
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