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Abstract Over the last decades, the concept of patient flow has received an increased
amount of attention. Healthcare professionals have become aware that in order to
analyze the performance of a single healthcare facility, its relationship with other
healthcare facilities should also be taken into account. A natural choice for analysis
of networks of healthcare facilities is queuing theory. With a queuing network a
fast and flexible analysis is provided that discovers bottlenecks and allows for the
evaluation of alternative set-ups of the network. In this chapter we describe how
queuing theory, and networks of queues in particular, can be invoked to model,
study, analyze and solve healthcare problems. We describe important theoretical
queuing results, give a review of the literature on the topic, discuss in detail two
examples of how a healthcare problem is analyzed using a queuing network, and
suggest directions for future research.

1 Introduction

With an aging population, the rising cost of new medical technologies, and a soci-
ety wanting higher quality care, the demand for healthcare is increasing annually.
In European countries, such as the Netherlands, healthcare expenditures consume
around 10% of the GDP. In the United States this percentage is even bigger at 16%
[45] (2008 data). Since the supply of healthcare is finite, policy makers have to ra-
tion care and make choices on how to distribute physical, human, and monetary
resources. Such choices also have to be made at the hospital level (e.g., which pa-
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tient groups will be treated in this hospital), and on a departmental level (e.g., who
gets which available bed).

An immediate consequence of rationing resources is the evolution of queues.
This brings us immediately to queuing theory, which is the mathematical theory
that studies queues. The methods available in this field can support healthcare pro-
fessionals in their decision making. Already in 1952, Bailey recognized that queu-
ing theory would be of value to make a trade-off between patient waiting time and
healthcare provider idle time: short waiting time means a low provider utilization
rate, while low provider idle time results in long waiting times [7]. With queuing
theory a balance between these two performance measures can be found. Another
example is calculating the required number of beds on a nursing ward that ensures
the patient rejection rate stays below a certain threshold [13]. Finally, consider an
example from the operating room (OR), where a queuing model can be used to find
the optimal amount of OR time to allocate to semi-urgent patients. A surplus of al-
located OR time results in an empty OR (a waste of resources), while a shortage will
result in elective patients that need to be canceled to accommodate the semi-urgent
patients. The challenge is to find a balance [62]. The book chapter by Linda Green
[29] provides an overview of queuing theory applications in healthcare.

1.1 Some General Queuing Concepts

A queue can generally be characterized by its arrival and service processes, the
number of servers, and the service discipline. The arrival process is specified by a
probability distribution that has an arrival rate associated with it, which is usually
the mean number of patients that arrives during a time unit (e.g., minutes, hours
or days). A common choice for the probabilistic arrival process is the Poisson pro-
cess, in which the inter-arrival times of patients are independent and exponentially
distributed.

The service process specifies the service requirements of patients, again using
a probability distribution with associated service rate. A common choice is the ex-
ponential distribution, which is convenient for obtaining analytical tractable results.
The number of servers in a healthcare setting may represent the number of doctors
at an outpatient clinic, the number of MRI scanners at a diagnostic department, and
so on. The service discipline specifies how incoming patients are served. The most
common discipline is First Come First Serve (FCFS), where patients are served in
order of arrival. Other examples are briefly addressed in Subsection 2.2.5. Some
patients may have priority over other patients (see Subsection 2.2.6). This can be
such that the service of a lower priority patient is interrupted when a higher priority
patient arrives (preemptive priority), or the service of the lower priority patient is
finished first (non-preemptive priority).

Typical measures for the performance of the system include the mean sojourn
time, E[W ], the mean time that a patient spends in the queue and in service. The
sojourn time is a random variable as it is determined by the stochastic arrival and
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Fig. 1: A simple queue

service processes. The mean waiting time, E[W q], gives the mean time a patient
spends in the queue waiting for service. How E[W ] and E[W q] are calculated de-
pends, among other things, on the choice for the arrival and service processes, and
is given for several basic queues in Subsection 2.2.

Kendall’s Notation

All queues in this chapter are described using the so-called Kendall notation:
A/B/s, where A denotes the arrival process, B denotes the service process, and
s is the number of servers. There are several extensions to this notation, see for
example [56]. Clearly, there are many distinctive cases of queues:

M/M/1: The single-server queue with Poisson arrivals and exponential ser-
vice times. The M stands for the Markovian or Memoryless property.
M/D/1: The single-server queue with Poisson arrivals and Deterministic ser-
vice times.
M/G/1: The single-server queue with Poisson arrivals and General (i.e., not
specified) service time distribution.

Other arrival processes may also apply: consider for example the D/M/1,
G/M/1 and G/G/1 queue. All of the forms above also exist in the case of
multiple servers (s > 1).

The load of the queue is defined as the mean utilization rate per server, which is
the amount of work that arrives on average per time unit, divided by the amount of
work the queue can handle on average per time unit. Suppose our server is a single
doctor in an outpatient clinic, then the load specifies the fraction of time the doctor
is working. The load, ρ , equals the amount of work brought to the system per time
unit, i.e. the patient arrival rate, λ , multiplied by the mean service time per patient,
E[S]:

ρ = λE[S]. (1)

The load is the fraction of time the server, working at unit rate, must work to handle
the arriving amount of work. It is required that ρ < 1 (in other words, the server
should work less than 100 percent of the time). If ρ > 1, then on average more work
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arrives at the queue than can be handled, which inevitably leads to a continuously
growing number of patients in the queue waiting for service, i.e., an unstable system.
Only when the arrival and service processes are deterministic (i.e., the inter-arrival
and service times have zero variance), the load may equal 1. The mean waiting time,
E[W q], increases with load ρ . As an illustration, consider a single-server queue with
Poisson arrivals and general service times (the so-called M/G/1 queue), with mean
E[S] and squared coefficient of variation (scv) c2

S, which is calculated by dividing
the variance by the squared mean. For this queue, the relationship between ρ and
E[W q] is characterized by the Pollaczek-Khinchine formula [21]:

E[W q] = E[S]
ρ

1−ρ

1+ c2
S

2
, (2)

In Figure 2 the relation is shown graphically for c2
S = 1. We see that the mean wait-
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Fig. 2: The relationship between load ρ and mean waiting time E[W q] for the M/M/1 queue with
Poisson arrivals and exponential service times

ing time increases with the load. When the load is low, a small increase therein has
a minimal effect on the mean waiting time. However, when the load is high, a small
increase has a tremendous effect on the mean waiting time. As an illustration, in-
creasing the load from 50% to 55% increases the waiting time by 10%, but increas-
ing the load from 90% to 95% increases the waiting time by 100%! This explains
why a minor change (for example a small increase in the number of patients) can
result in a major increase in waiting times as sometimes seen in outpatient clinics.
Formulas such as (2) allow for an exact and fast quantification of the relationships
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between (influencable) parameters and system outcomes. Queuing theory is a very
valuable tool to identify bottlenecks and to calculate the effect of removing them.

We conclude this subsection with a basic queuing network: the M/M/1 tandem
queue. In this network we have two queues with exponential service, which are
placed in series. Patients arrive at the first queue according to a Poisson process
with rate λ . When the service at the first queue is completed, the patient is routed
immediately to the second queue. Upon service completion at this queue, the patient
leaves the system. At both queues the service discipline is FCFS, and there is an
infinite waiting room (see Figure 3). It can be shown that the mean sojourn time in

Arrival process

Waiting room Waiting room
Service process Service process

Queue 1 Queue 2

Fig. 3: The M/M/1 tandem queue

the entire system, E[W ], is just the sum of the mean sojourn times in the individual
queues, E[Wj] for queue j:

E[W ] = E[W1]+E[W2], (3)

since the departure process from each queue has the same characteristics as its input
process. This remarkable result can be generalized to larger networks of queues, as
is shown in Subsection 2.3.2.

1.2 Queuing Networks in Healthcare

When patients share and use multiple resources, a queuing network usually arises.
Consider, for example, a patient that visits the Orthopedic outpatient clinic and then
needs to have an X-ray at Radiology; or the surgical patient who is operated in the
OR, then cared for at the Intensive Care Unit (ICU) and subsequently cared for in a
nursing ward. The formulation and analysis of these queuing network models is usu-
ally not straightforward. This likely explains why (discrete-event) simulation [41] is
a commonly used approach to analyze healthcare problems. Simulation models are
robust in terms of the setting they can represent, however they are very time con-
suming to develop and require a vast amount of data (-analysis). Also, the resulting
model is, with a few exceptions, not generic and thus not suitable to represent other
problems or organizations other than the one it was build for.
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In this chapter we describe how queuing theory, and networks of queues in par-
ticular, can be invoked to study, analyze and solve healthcare problems. In Section 2
we provide an introduction to the theory of queues and queuing networks. In Section
3 we give a review of the literature on the topic, and discuss in detail two examples
of how healthcare problems are analyzed using queuing networks. In the last section
we suggest directions for further research. Given the numerous modeling opportu-
nities of queuing networks, many difficult healthcare problems can, and hopefully
will, be solved in the future. The literature references on applications of queuing
theory in healthcare are included in the categorized ORchestra bibliography [46],
provided by research institute CHOIR from the University of Twente, Enschede, the
Netherlands.

2 Basic Queuing Networks

In this section we discuss several basic queuing networks. We start by introducing
the Poisson process, which is a basic element in many queuing systems. We then
proceed to the building blocks for the networks: the individual queues. We conclude
by describing various queuing networks.

2.1 The Poisson Process

As mentioned in Subsection 1.1, the Poisson process is commonly used to model the
arrival of customers to a queue, and in general to model independent arrivals from
a large population. As an example, consider patient arrivals at a hospital emergency
department (ED). They originate from a large population (the demographic area
surrounding the hospital) and usually arrive independently. The probability that an
arbitrary person has an urgent medical problem is very small. Then it can be shown
that the arrival process tends to a Poisson process [13].

The Poisson process is common in real world processes and has many inter-
esting and for analysis very useful properties. For example, the number of ticks a
Geiger counter records is a Poisson process. This example also indicates that merg-
ing or splitting Poisson processes independently results in Poisson processes, as this
corresponds to joining two lumps of radioactive material or breaking one lump into
parts. Or, for the population example, ED arrivals from a population subgroup (men,
women, children, . . .) are also Poisson.

For a Poisson process, the time between two successive arrivals is exponentially
distributed [57]. A very important property of the exponential distribution is that it
is memoryless: the probability that the inter-arrival time exceeds u+ t time units,
given that it already has exceeded u time units, equals the probability that the inter-
arrival time exceeds t time units. Mathematically, a random variable X that has an
exponential distribution satisfies:
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P(X > u+ t|X > u) = P(X > t) , ∀u, t ≥ 0. (4)

We may also rephrase this property as: what happens in the future is independent
of what happened in the past. Because of this Markovian or memoryless property,
the complexity of analyzing systems with this property significantly reduces, as we
show in the subsequent subsections.

2.2 Basic Queues

We introduce the most commonly used queues: single and multi-server queues with
Poisson arrivals and exponential or general service times. Unless mentioned other-
wise, we consider the FCFS service discipline and queues with infinite capacity for
waiting patients.

2.2.1 The M/M/1 Queue

In an M/M/1 queue, patients arrive according to a Poisson process with rate λ

and exponentially distributed service requirement with mean service time E[S]. The
service rate per unit time is µ = 1

E[S] , the number of patients that would be completed
per time unit when the system would continuously be serving patients. As denoted
in Section 1.1, the load of the queue is ρ = λE[S], where it is required that ρ < 1,
that is, the amount of work brought into the queue should be less than the rate of the
server. The number of patients present in the queue at time t, i.e., those waiting in
line and in service, is obtained from Markov chain analysis.

Let N(t) record the number of patients in the system at time t. Then N =
(N(t), t ≥ 0) is a Markov chain with state space N0 = {0,1,2, . . .}, arrival rate λ ,
which is the rate at which a transition occurs from a state with n patients to a state
with n+1 patients, and departure rate µ from state n to state n−1. We are interested

n -1 n n+10 1 2

λ λλλλλλ

µ µµµµµµ

Fig. 4: Transition rates in the M/M/1 queue

in the probability Pn that at an arbitrary point in time in statistical equilibrium the
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system contains n patients1:

Pn = lim
t→∞

P(N(t) = n). (5)

The probability Pn also reflects the fraction of time that the system contains n pa-
tients. The total probability may be seen as an amount of fluid of total volume 1 that
is distributed over the states of the Markov chain and flows from state to state ac-
cording to the transition rates (for the M/M/1 queue the arrival and departure rates).
The system is in statistical equilibrium when these flows out of state n balance the
flows into state n for each state n, n = 0,1,2, . . . (see Figure 4). Mathematically, this
is expressed as:

λP0 = µP1,

(λ +µ)P1 = λP0 +µP2,

(λ +µ)P2 = λP1 +µP3,

... (6)

and in general:

λP0 = µP1,

(λ +µ)Pn = λPn−1 +µPn+1 for n > 0. (7)

Since Pn is a probability, the summation of all probabilities Pn, n = 0,1, . . ., should
equal unity:

∞

∑
n=0

Pn = 1. (8)

Using equation (7) and this additional property, we derive the queue length distribu-
tion Pn:

P0 = 1−ρ,

Pn = (1−ρ)ρn for n > 0. (9)

Note that P0, also called the normalization constant, denotes the probability that
there are zero patients present, but also the fraction of time the queue is empty.
Further, ρ is the probability there are one or more patients present, and the fraction

1 We consider the system in statistical equilibrium only, as is customary in queuing theory. For
the M/M/1 queue, relaxation or convergence to equilibrium usually occurs fast. See [28] for a
discussion on the validity of equilibrium analysis.
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of time the queue is busy.

The PASTA Property

In a queuing system with Poisson arrivals, the probability that an arriving pa-
tient finds n patients in the queue is equal to the fraction of time the queue
contains n patients. This property is referred to as PASTA, or Poisson Arrivals
See Time Averages [57].

Usually, queuing systems with non-Poisson arrival processes do not conform
to this property. For example, consider the D/D/1 queue with deterministic
inter-arrival and service times. Time is equally distributed in slots of length
one, and the service time is half a slot. Suppose that at the start of each time
slot a patient arrives (so the inter-arrival time is one slot). Then the queue is
empty upon arrival for all patients, while half of the time the queue contains
one patient.

The mean number of patients in the queue, E[L], including those in service, is
given by:

E[L] =
∞

∑
n=0

nPn =
ρ

1−ρ
. (10)

Since ρ is the mean utilization rate of the server, the mean number of patients wait-
ing, E[Lq], equals:

E[Lq] =
ρ

1−ρ
−ρ =

ρ2

1−ρ
. (11)

Using a basic result in queuing theory, known as Little’s Law, the relationship be-
tween the mean number of patients in the queue, E[L], and the mean sojourn time,
E[W ], can be explicitly quantified as follows [43]:

E[L] = λE[W ]. (12)

This also holds for the relationship between the mean number of patients waiting
for service, E[Lq], and the mean waiting time in the queue, E[W q]:

E[Lq] = λE[W q]. (13)

Note that the equilibrium distribution and performance measures are characterized
by the single parameter ρ and can be calculated in a straightforward manner. As we
will see in the subsequent subsections, this is more involved for more complicated
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queuing systems.

Little’s Law

The simple relationship E[L] = λE[W ], presented in 1961 by J.D.C. Little [43],
is known as Little’s Law. It relates the mean number of patients in the queue,
E[L], the average arrival rate, λ , and the mean time the patient spends in the
queue, E[W ].

A common intuitive reasoning for obtaining Little’s Law is the following. Sup-
pose patients pay 1 Euro for each time unit they spend in the queue. On aver-
age, the queue receives E[L] Euro per time unit, since there are on average E[L]
patients present in the queue. Alternatively, if each patient would pay upon
entering the queue for its entire time spent in the queue, a patient would on
average have to pay E[W ] to finance the entire stay. Since each time unit on
average λ patients enter the queue, the amount received by the queue per time
unit then equals λE[W ]. Both methods of payment must result in the same ben-
efit for the queue, thus E[L] = λE[W ]. The formal proof actually follows the
lines of this reasoning. It is remarkable that Little’s Law requires only mild as-
sumptions on the system in equilibrium, and is valid irrespective of the number
of servers, distribution of the arrival and service processes, queuing and service
order. Thus Little’s Law applies to many types of queues.

2.2.2 The M/M/s Queue

The M/M/s queue is the multi-server variant of the M/M/1 queue. Patients arrive
with rate λ , each patient is served by one server and a patient waits in queue when
all servers are occupied. There are s servers so that the maximum service rate of the
queue is sµ , where µ is the service rate of the individual servers. If the number of
patients in the queue, n, is less than the number of servers, s, the service rate equals
nµ (see the transition rate diagram in Figure 5). Again it is required that the amount

s -1 s s+10 1 2

λ λλλλλλ

µ sµsµsµ(s-1)µ3µ2µ

Fig. 5: Transition rates in the M/M/s queue

of work that arrives per time unit (ρ) is less than the maximum service rate, i.e.,
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ρ = λE[S]< s. The equilibrium distribution is obtained from:

λP0 = µP1,
(λ +nµ)Pn = λPn−1 +(n+1)µPn+1 for n < s,
(λ + sµ)Pn = λPn−1 + sµPn+1 for n≥ s.

(14)

Thus
Pn =

ρn

m(n)
P0, (15)

where

m(n) =

{
n! for 0≤ n < s,
sn−ss! for n≥ s.

(16)

Invoking the normalization condition (8), we obtain:

P0 =

(
s−1

∑
n=0

ρn

n!
+

ρs

s!
s

s−ρ

)−1

. (17)

For s = 1, equations (15)–(17) reduce to the queue length distribution for the
M/M/1 queue (9). The probability Ps deserves special attention; this is the frac-
tion of time all servers are occupied, and because of the PASTA property, also the
fraction of arriving patients that find all servers occupied. Thus the probability that
a patient will be served immediately upon arrival is 1−∑

∞
n=s Pn = ∑

s−1
n=0 Pn, and the

probability that a patient has to wait is ∑
∞
n=s Pn. The latter probability can be calcu-

lated using the Erlang-C formula [31]:

Ps+ = P(n≥ s) =
ρs

s!
s

s−ρ
P0. (18)

There are several Erlang-C calculators available online to compute Ps+ , see e.g. [26]
and [54]. The mean number of patients waiting for service is:

E[Lq] =
∞

∑
n=s+1

(n− s)Pn =
ρ

s−ρ
Ps+ . (19)

By applying Little’s Law we find the mean waiting time:

E[W q] =
E[Lq]

λ
. (20)

The mean sojourn time is then obtained by adding the mean service time to the mean
waiting time:

E[W ] = E[S]+E[W q]. (21)
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The mean number of patients in the queue can be calculated by adding the mean
number of patients in service, ρ , to the mean number of patients waiting [31]:

E[L] = ρ +E[Lq]. (22)

2.2.3 The M/M/s/s Queue

The M/M/s/s queue, or Erlang loss queue, is different from the M/M/s queue
in that it has no waiting capacity. Thus when all servers are occupied, patients are
blocked and lost (i.e., they leave and do not come back). This type of queue is very
useful when modeling healthcare systems with limited capacity, where patients are
routed to another facility when all capacity is in use. Examples are nursing wards
and the ICU. Figure 6 gives the transition rates for this queue. We obtain:

s -1 s0 1 2

λ λλλλ

µ sµ(s-1)µ3µ2µ

Fig. 6: Transition rates in the M/M/s/s queue

λP0 = µP1
(λ +nµ)Pn = λPn−1 +(n+1)µPn+1 for 0 < n < s

λPs−1 = sµPs,

(23)

with solution:

Pn =
ρn/n!

∑
s
i=0 ρ i/i!

for 0≤ n≤ s, (24)

where ρ = λE[S]. Surprisingly, (24) also holds for general service times (the
M/G/s/s queue) and is thus insensitive to the service time distribution [31]. The
probability that all servers are occupied, is often called the blocking probability, and
is given by:

Ps =
ρs/s!

∑
s
i=0 ρ i/i!

. (25)

Formula (25) is often referred to as the Erlang loss formula, or Erlang-B [31]. For
large s, the direct calculation of Ps by using (25) often introduces numerical prob-
lems. The following stable recursion exists where these problems are avoided [60].
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Recursion for Erlang-B

Step 1.
Set X0 = 1.

Step 2.
For j = 1, . . . ,s compute

X j = 1+
jX j−1

ρ
. (26)

Step 3.
The blocking probability Ps is given by

Ps =
1
Xs

. (27)

Another option is to use one of the Erlang-B calculators available online, see e.g.
[48] and [54]. The performance measures are given by:

E[L] = ρ (1−Ps) , E[W ] = E[S].
(28)

As we have seen in this subsection, the computation of the blocking probabilities
can be quite involved. The infinite server, or M/M/∞ queue, is often used to ap-
proximate the M/M/s/s queue for a large number of servers. In this queue, upon
arrival each patient obtains his own server. The queue length has a Poisson distribu-
tion with parameter ρ , where ρ = λE[S], and is thus given by

P∞
n =

ρn

n!
P0, where

P∞
0 = e−ρ . (29)

The blocking probability for the system with s servers is approximated by [52]:

Ps ≈
∞

∑
n≥s

P∞
n . (30)

2.2.4 Queues with General Arrival and/or Service Processes

For the M/M/s queue a single parameter suffices to calculate the queue length dis-
tribution and related performance measures. However, assuming exponentiality of
the distributions involved in a queuing process is not always a valid choice. When
the coefficient of variation is not close to 1 (the value for the exponential distri-
bution) other probability distributions should be used to obtain reliable outcomes,
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since the variance of the inter-arrival and service times has strong influence on the
performance measures.

Results for non-exponential systems are scarce and are often characterized via
the scv, c2. In general, when the scv increases, the variability in the related queuing
system also increases. In this subsection we will focus on results for mean waiting
times. Additional results are given in the books [31], [52] and [57]. The software
package QtsPlus that accompanies [31] supports the calculation of many relevant
performance measures, is free available online [49] and implemented in MS Excel,
but also has an open source variant.

For the M/G/1 queue the Laplace-Stieltjes transform for the waiting time distri-
bution is known. From this result, we obtain the Pollaczek-Khinchine formula [21]
that characterizes the waiting time in the single-server queue with Poisson arrivals
and general service times:

E[W q] = E[S]
ρ

1−ρ

1+ c2
S

2
, (31)

where c2
S denotes the scv of the service time. The mean sojourn time for the G/M/1

queue is:

E[W ] =
E[S]

1−σ
, (32)

where σ is the unique root in the range 0 < σ < 1 of the following equation:

σ = Ā(µ−µσ), (33)

with Ā the Laplace-Stieltjes transform of the inter-arrival time and µ = 1
E[S] [57].

For the G/G/1 queue the following approximation solution is often used [52]:

E[W q]≈ E[S]
ρ

1−ρ

c2
A + c2

S
2

, (34)

where c2
A denotes the scv of the arrival process. This result includes the G/M/1

queue and is exact for the M/G/1 queue.
It is hard to determine the exact effect of using the exponential distribution to

represent a non-exponential process. As a rule of thumb, we suggest that as long as
the actual variance is below that of the exponential distribution, then the exponential
distribution provides a conservative estimate. In other words, the calculated expec-
tations of the queue length and waiting times will over-estimate the actual values.
Such a conservative estimate is for instance useful when a strategic decision that
does not involve a lot of detail needs to be made.

For the mean waiting time in the G/G/s queue the following approximation is
very useful [31]:

E[W q]≈ E[Wq(M/M/s)]
c2

A + c2
S

2
, (35)
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where E[Wq(M/M/s)] denotes the mean waiting time in the M/M/s queue with iden-
tical λ and µ . In [31] lower and upper bounds on E[W q] are also provided. Using
the results for E[W q], Little’s Law can be applied to determine the mean number of
patients in the queues mentioned in this subsection.

2.2.5 Service Disciplines

So far, we only discussed the FCFS service discipline. Other options are Processor
Sharing (PS) and Last Come First Serve (LCFS). We will elaborate on queuing
networks with these kind of queues in Subsection 2.4.2.

In the processor sharing service discipline, all arriving patients are immediately
served, thus there is no queuing. A single server is shared equally among patients,
where each patient class may have its own service requirement. For the M/M/1−PS
queue the queue length distribution, Pn, is identical to that of the M/M/1−FCFS
queue (9). Intuitively, this can be explained as follows. The server works at rate µ ,
and when there are n patients in the queue, an individual patient is served with rate
µ

n . However, since n patients are served simultaneously, the overall completion rate
is still µ ( µ

n · n = µ). Since the patient arrival rate equals λ , the flow in and out of
the queue is identical to that of the M/M/1−FCFS queue.

The M/M/1−LCFS queue with preemptive resume can be seen as a stack, for
instance of patient files, where a single server (the doctor) works on the top item of
the stack. Whenever a new item is added, the server immediately starts working on
this item. However, when the server returns to the previous item, it resumes service
(i.e., the queue is work conserving). The queue length distribution is again given by
(9), where the same argument holds as for the M/M/1−PS queue.

2.2.6 Miscellaneous Queuing Results

In this subsection we briefly mention a couple other queuing results. Some of the
results that can be obtained for G/G/1 queues are exact, but do not transfer to
queuing networks. In particular, the equilibrium distribution at arrival instants in the
G/M/1 queue is:

Pn = (1−σ)σn, (36)

where σ is defined as in (33).
The equilibrium distribution of the M/M/1 queue and the G/M/1 queue at ar-

rival epochs have a geometric form. At arbitrary epochs, the equilibrium distribution
for the M/G/1 and G/M/1 queues is not available in an amenable form. These dis-
tributions, however, can be obtained using the theory of matrix geometric queues.
To this end, we introduce the class of so-called phase type distributions [40]. A dis-
tribution is of phase-type if it can be represented as a continuous time Markov chain
on the phases such that the chain remains in a phase during an exponential time and
jumps from phase to phase according to transition probabilities, see [40] for details.
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It is interesting to observe that each probability distribution that attains positive
values, only, can be approximated arbitrarily closely by a phase-type distribution.
Using phase-type distribution for respectively the service time and inter-arrival time
distribution, the equilibrium distributions for the M/Phr/1 and Phs/M/1 queues are
available in closed form. For these queues, the state description requires the num-
ber of patients n and the phase of the service or inter-arrival times r resp. s. The
equilibrium distribution is obtained in closed form:

Pn = P0Rn, n = 0,1,2, . . . , (37)

where P0 and Pn are r resp. s vectors over the phases of the service or inter-arrival
times and R is an r× r or s× s matrix over these phases. The result generalizes to
the Phr/Phs/1 queue where P0 and Pn become rs vectors recording the joint phases
of inter-arrival and service times. Although the form (37) is geometric, obtaining
the matrix R is quite involved and goes beyond the scope of this chapter, see [39]
for details. We specifically mention this queue since phase-type distributions are
common in healthcare. For example the length of stay in geriatric care has been
modeled using phase-type distributions [24].

Instead of joining the queue, patients may be impatient and leave the queue be-
fore service. When this happens upon arrival, it is called balking. When patients
leave after waiting some time, it is referred to as reneging. In the M/M/s/s queue it
is assumed that patients who are blocked are lost to the system. When blocked and/or
impatient patients return to the queue after some time, we have a retrial queue [31].

In this subsection we have considered only queues with a single class of patients.
When more than one patient class arrives at the queue, and classes have priority over
one another, we have a priority queue [57]. In the case of preemptive priority, the
service of the low priority patient is interrupted immediately when a higher priori-
tized patient arrives. Afterwards, the service of the low priority patient is resumed
(work conserving) or may have to start allover again (work is lost). In the case of
non-preemptive priority, a patient that is already in service is completed first.

Vacation queues are a generalization of the M/G/1 queue, where the server may
take a vacation (i.e., becomes idle for a certain amount of time), also when there
are patients in the queue [57]. A generalization of the vacation queue is the polling
model, where a single server visits multiple queues [51]. In this chapter we restrict
our focus to networks of queues with continuous availability.

2.3 Networks of Exponential Queues

Now that we have defined the building blocks, we can proceed to queuing net-
works. We start with networks of exponential queues with either a single or multiple
servers.
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2.3.1 Tandem Networks

Consider a tandem network of J queues that are placed in series. All queues have
infinite waiting room, a single-server, and the service requirement at queue j, j =
1, . . . ,J, has an exponential distribution with mean service time E[S j]. Patients arrive
at queue 1 according to a Poisson process with rate λ . Upon service completion at
queue j the patient routes to queue j+1, j = 1, . . . ,J−1, and finally departs from
queue J.

From Burke’s theorem [14] it follows that the departure process of a queue with
Poisson arrivals and exponential service times, is again a Poisson process with the
same rate as the arrival process, and that departures from queue 1 before time t0
are independent of the queue length of queue 1 at time t0. This fundamental result
indicates that the queue length at time t0 in queue 1 and queue 2 are statistically
independent. Hence, for the tandem queue of Figure 3,

P(n1,n2) = P(N1 = n1,N2 = n2) = (1−ρ1)ρ
n1
1 (1−ρ2)ρ

n2
2 , n1,n2 ≥ 0, (38)

where ρ1 = λE[S1], ρ2 = λE[S2], and N j is the random queue length at queue j in
equilibrium. Continuing this argument, for a tandem network of J queues, we obtain
the so-called product-form solution [52]:

P(n1, . . . ,nJ) =
J

∏
j=1

(1−ρ j)ρ
n j
j , (39)

where ρ j = λE[S j]. This elegant result leads us to Open Jackson Networks with
general patient routing.

2.3.2 Open Jackson Networks

We now consider a network consisting of J single-server queues. The external arrival
process at queue j, j = 1, . . . ,J, is Poisson distributed with rate γ j, γ j ≥ 0 ∀ j. Each
queue j has an exponentially distributed service requirement with mean service time
E[S j]. Patients are routed from queue i to queue j with state independent routing
probability ri j, 0 ≤ ri j ≤ 1, i.e., a fraction ri j of patients served at queue i routes to
queue j. The parameter ri0 denotes the fraction of patients leaving the network at
queue i. The total arrival rate λ j at queue j is given by:

λ j = γ j +
J

∑
i=1

λiri j, j = 1, . . . ,J, (40)

and is composed of the arrivals to queue j from outside and inside the network.
A queuing network with these characteristics is called an Open Jackson Network,
named after James R. Jackson who first studied its properties in 1957 [32]. In Fig-
ure 7 an example of an Open Jackson Network is given. According to Jackson’s
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Fig. 7: An example of an Open Jackson Network with four queues and patient routing from
queues 1→2, 1→3, 2→3, and 3→4. External arrivals occur at queue 1, 3, and 4; departures occur

at queue 2, 3, and 4

Theorem [32], the product-form solution for this type of network is given by:

P(n1, . . . ,nJ) =
J

∏
j=1

(1−ρ j)ρ
n j
j , n j ≥ 0, j = 1, . . . ,J, (41)

where ρ j = λ jE[S j].

The Power of Jackson’s Theorem

From Jackson’s theorem it follows that per queue only a single parameter, ρ j,
is required for the calculation of P(n1, . . . ,nJ). Consequently, only J parame-
ters are required to analyze the entire network! This result is surprising since
usually many parameters are required to characterize a probability distribution.

Since the queues in the network act as if they are independent M/M/1 queues,
the performance measures are easy to compute:

E[L j] =
ρ j

1−ρ j
, E[Wj] =

E[L j]

λ j
. (42)

The mean sojourn time for an arbitrary patient can be calculated using Little’s Law:

E[W ] =
∑

J
j=1E[L j]

∑
J
j=1 γ j

. (43)

Note that this is not equal to ∑
J
j=1E[Wj], since patients may not visit all queues in

the network or visit some queues several times. Jackson’s result can be extended to
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the multi-server case. We obtain:

P(n1, . . . ,nJ) =
J

∏
j=1

ρ
n j
j

m(n j)
P0 j, (44)

where ρ j = λ jE[S j],

m(n j) =

{
n j! for 0≤ n j < s j,

s
n j−s j
j s j! for n j ≥ s j,

(45)

and s j ≥ 1 for j = 1, . . . ,J. The normalization constant P0 j is given by

P0 j =

(
s j−1

∑
n j=0

ρ
n j
j

n j!
+

ρ
s j
j

s j!
s j

s j−ρ j

)−1

. (46)

2.3.3 Closed Jackson Networks

A Jackson Network where the external arrival rates γ j = 0 ∀ j and the departure
probabilities ri0 = 0 ∀i, is a called a Gordon-Newell or Closed Jackson Network,
since patients do not enter or leave (see Figure 8). The finite number N of patients

2

31 r13

r12
r23

r31

Fig. 8: An example of a Closed Jackson Network with three queues and patient routing from
queues 1→2, 1→3, 2→3, and 3→1

that is present in the network is continuously routed among J queues according to
the state independent routing probabilities ri j. For the single-server case we obtain
a product-form solution [27]:
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P(n1, . . . ,nJ) = B(N)−1
J

∏
j=1

ρ
n j
j , (47)

where ∑
J
j=1 n j = N. In this formula B(N) is called the normalization constant. In

the open network variant, the expression ∏
J
j=1(1−ρ j) is actually the normalization

constant and easy to compute. In the closed network variant, B(N) is given by:

B(N) = ∑
∑

J
j=1 n j=N

J

∏
j=1

ρ
n j
j . (48)

Calculating B(N) can be quite cumbersome, even for small N. Buzen’s algorithm
[16] is very helpful in this case and works as follows.

Buzen’s Algorithm

Step 1.
Define

G j(k), where j = 0, . . . ,J and k = 0, . . . ,N, (49)

with initial values

G1(k) = ρ
k
1 , G j(0) = 1. (50)

Step 2.
Recursively compute

G j(k) = G j−1(k)+ρ jG j(k−1). (51)

Step 3.
The normalization constant is given by:

B(N) = GJ(N). (52)

Buzen’s algorithm can also be used to compute other performance measures of
interest. The marginal probability that n j patients are present at queue j is given by:

P(n j) = B(N)−1
ρ

n j
j (GJ(N−n j)−ρ jGJ(N−n j−1)) . (53)

The mean number of patients present at queue j is given by:

E[L j] =
N

∑
n j=1

ρ
n j
j B(N)−1GJ(N−n j). (54)

The Closed Jackson Network can also be extended to the multi-server case. The
product-form solution is then given by:
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P(n1, . . . ,nJ) = B(N)−1
J

∏
j=1

ρ
n j
j

m(n j)
, (55)

where ∑
J
j=1 n j = N, m(n j) is given by (45), and

B(N) = ∑
∑

J
j=1 n j=N

J

∏
j=1

ρ
n j
j

m(n j)
. (56)

For the multi-server case B(N) can also be calculated using Buzen’s algorithm.
In a closed single-server Jackson network the mean waiting time and mean num-

ber of patients at queue j can be calculated without evaluating B(N) [31]. This
algorithmic approach is called Mean Value Analysis (MVA). We present the basic
algorithm, but MVA has been extended to many other queuing systems, see [2].

MVA Algorithm

Step 1.
Set λ1 = 1 and solve the traffic equations:

λ j =
J

∑
i=1

λiri j, j = 1, . . . ,J. (57)

Step 2.
Define L j(0) = 0 for j = 1, . . . ,J.

Step 3.
For n = 1, . . . ,N, calculate

Wj(n) = (1+L j(n−1))E[S j], j = 1, . . . ,J,

ν1(n) =
n

∑
J
j=1 λ jWj(n)

,

ν j(n) = ν1(n)λ j j = 2, . . . ,J,
L j(n) = ν j(n)Wj(n), j = 1, . . . ,J. (58)

Step 4.
The mean waiting time at queue j is given by:

E[Wj] =Wj(N). (59)

The mean number of patients at queue j is given by:

E[L j] = L j(N). (60)
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2.4 Networks of Queues with General Arrival and/or Service
Processes

As said, the few exact results that exist for general queues cannot be transferred
to general queuing networks. However, many of the approximation results are. In
this subsection we describe three types of networks that have an exact solution for
the queue length distribution, namely networks with fixed routing, BCMP networks,
and loss networks. We conclude with the Queuing Network Analyzer (QNA). This
is a generalization of MVA for networks of G/G/s queues.

2.4.1 Networks with Fixed Routing

All of the queuing networks we have discussed so far employ Markovian routing.
This means that after departure, patients are routed to other queues or leave the net-
work with a certain probability. This excludes fixed routes in which patients follow
a prescribed path.

Consider a network in which each patient class has its own route. The route
of patient class k, k = 1, . . . ,K, is given by the sequence of queues to visit before
leaving the system [34]:

r(k,1),r(k,2), . . . ,r(k,H(k)). (61)

So in stage h, h = 1, . . . ,H(k), patient class k visits queue r(k,h). Note that one
queue may appear multiple times in the route. Using this notation enables to include
patients that visit the same queue multiple times, but have a different destination
depending on the times the queue has been visited. An example route for a patient
class could be 3→ 2→ 3→ 4, where queue 2 is visited after the patient departs from
queue 3 the first time, and queue 4 is visited after the patient departs from queue 2
the second time. This type of queuing network can be seen as a set of intertwined
tandem networks (Subsection 2.3.1). Each patient class is routed through its own
tandem network of queues, and different patient classes may meet each other at one
of the queues.

Let γk denote the arrival rate of patient class k. As a consequence of fixed routes,
the arrival rate of patient class k at stage h to queue r(k,h) equals the arrival rate of
the patient class to the network. In order to be able to determine how many patients
of class k being in stage h of their route, are present at queue j, we have to record
the position in the queue for each individual patient. We introduce some additional
notation. Let k j(`) denote the class of the patient that holds position ` in queue j,
and let h j(`) denote the stage the patient is currently in. Then c j(`) = (k j(`),h j(`))
gives the type of this patient. Since a patient may visit one queue several times,
his type potentially gives more information than his class. The state of queue j is
given by the vector c j = (c j(1), . . . ,c j(n j)), and C = (c1, . . . ,cJ) gives the state of
the queuing network. Now if we define the parameter α j(k,h) as follows:
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α j(k,h) =

{
νk if r(k,h)≡ j,
0 otherwise,

(62)

where ν j is given by λ jE[S j], and a j is the load of queue j:

a j =
K

∑
k=1

H(k)

∑
h=1

α j(k,h), (63)

then the marginal queue length distribution of the number of patients of class k,
k = 1, . . . ,K, present at queue j, is given by:

Pj(c j) = B−1
j

n j

∏
`=1

α j (k j(`),h j(`)) , where

B j =
∞

∑
n=0

an
j . (64)

The queue length distribution for the entire queuing network is then given by:

P(C) =
J

∏
j=1

Pj(c j). (65)

The queue length distribution of the number of patients at the queues in the network
is given by:

P(n1, . . . ,nJ) =
J

∏
j=1

(1−ν j)ν
n j
j . (66)

Note that this result does not discriminate among patient classes. Even though the
notation required can be quite cumbersome, networks with fixed routing introduce
substantial modeling flexibility.

2.4.2 BCMP Networks

If each queue j in a network of J queues is one of the following types:

1. M/M/s−FCFS
2. M/G/1−PS
3. M/G/1−LCFS preemptive resume
4. M/G/∞,

an exact solution exists and the network is a BCMP network. It is named after the
authors Baskett, Chandy, Muntz and Palacios, who described it in 1975 [8]. The
network may be open or closed with multiple patient classes, and employ Markovian
or fixed routing. In the case of an open network, the external arrival rates to the
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queues are Poisson. For notational convenience, we give the product-form solution
for a BCMP network with Markovian routing and a single patient class. In this case
the queue length distribution is given by:

P(n1, . . . ,nJ) = B(N)
J

∏
j=1

Pj(n j), (67)

where B(N) is the normalization constant such that ∑N P(n1, . . . ,nJ) = 1, and Pj(n j)
is the equilibrium distribution for queue j, j = 1, . . . ,J. If queue j is of type 1:

Pj(n j) =
ρ

n j
j

m(n j)
Pj(0), where

m(n j) =

{
n j! for 0≤ n j < s j,

s
n j−s j
j s j! for n j ≥ s j,

and

Pj(0) =

(
s j−1

∑
n j=0

ρn
j

n j!
+

ρs
j

s j!
s j

s j−ρ j

)−1

. (68)

If queue j is of type 2 or 3:

Pj(n j) = ρ
n j
j Pj(0), where

Pj(0) = 1−ρ j. (69)

If queue j is of type 4:

Pj(n j) =
ρ

n j
j

n j!
Pj(0), where

Pj(0) = e−ρ j . (70)

Note that the four queue types include the service disciplines we discussed in Sub-
section 2.2.5. For BCMP networks the queue length distributions for these service
disciplines are insensitive to the service requirement distribution, that is, only the
mean service times are required to obtain the equilibrium distribution (67).

2.4.3 Loss Networks

A loss network is the multi-dimensional generalization of the Erlang loss queue
(Subsection 2.2.3). In a loss network, patients simultaneously claim at least one
server in at least one queue. When upon arrival at the network one of the designated
queues is full, the patient is blocked and lost. Note that this kind of queuing network
shows an analogy with some hospital processes. For instance, a patient that needs
to be admitted to the ICU after surgery, will not be operated on when there is no
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ICU bed available. Thus the patient simultaneously claims an operating room and
an ICU bed. If either one is not available, the surgery will not commence.

For a loss network handling K patient classes, the queue length distribution of
the number of patients of class k, k = 1, . . . ,K, is given by [35, 59]:

P(n1, . . . ,nK) = B(S)−1
K

∏
k=1

ρ
nk
k

nk!
, where n ∈ S(S),

S(S) = {n ∈ N0,
K

∑
k=1

A jknk ≤ s j},

B(S) = ∑
n∈S(S)

K

∏
k=1

ρ
nk
k

nk!
, ρk = λkE[Sk], (71)

with λk the arrival rate to the network of patients of class k, E[Sk] the mean sojourn
time in the network, s j the number of servers at queue j and A jk the number of
servers a patient of class k claims at queue j. Loss networks are insensitive to the
sojourn time distribution. Various algorithms and approximations exist to obtain
blocking probabilities [35, 59].

2.4.4 The Queuing Network Analyzer

Despite the fact that many real world problems do not exhibit exponential service
times, open Jackson networks have been used in numerous applications, often with
good results. However, to analyze networks of general queues, the Queuing Net-
work Analyzer (QNA) is a better alternative. The QNA was developed in 1983 by
Ward Whitt [55] for approximate analysis of open networks of G/G/s queues with
FCFS service discipline. There are several variations on the QNA, also known as
reduction or decomposition methods (see [15]). In this subsection we summarize
the basic QNA algorithm.

QNA Algorithm
Step 1.
Calculate the aggregate arrival rates at queue j, λ j:

λ j = γ j +
J

∑
i=1

λiri j. (72)

Step 2.
Calculate the load of a server at queue j, φ j:

φ j =
λ jE[S j]

s j
. (73)
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Step 3.
Calculate the flow from queue i to queue j, λi j:

λi j = λiri j, (74)

and the fraction of arrivals at queue j that come from queue i, qi j:

q0 j =
γ j

λ j
, qi j =

λi j

λ j
, (75)

where q0 j denotes the fraction of external arrivals to queue j.

Step 4.
Calculate the scv for the arrival process at queue j, c2

A, j:

c2
A, j = a j +

J

∑
i=1

c2
A,ibi j, with

a j = 1+w j

[
(q0 jc2

0 j−1)+
J

∑
i=1

qi j((1− ri j)+ ri jφ
2
i xi)

]
, (76)

where c2
0 j is the scv of the external arrival process at queue j, and

xi = 1+
1
√

mi
(max(c2

S,i,
1
5
)−1), (77)

with c2
S,i the scv of the service process at queue i. We have

bi j = w jqi jri j(1−φ
2
i ), w j =

[
(1+4(1−φ j)

2(η j−1)
]−1

, and

η j =

[
J

∑
i=0

q2
i j

]−1

. (78)

Step 5.
The mean waiting time at queue j, E[Wj], is given by

E[Wj] = E[WM/M/s]
c2

A, j + c2
S, j

2
. (79)

The calculations involved with the QNA are usually straightforward and can be
done by hand. However, when the parameters need to be changed often, we sug-
gest using a spreadsheet program such as MS Excel. QtsPlus [49] also supports the
analysis of general queuing networks. Even though the QNA has proved to be very
useful, other approximation methods give better results when the network is highly
congested (see [15] for further reference).
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2.5 State of the Art in Networks of Queues

Queuing theory traces back to Erlang’s historical work for telephony networks in
1909 [12]. The simplicity and fundamental flavour of Erlang’s famous expressions,
such as his loss formula for an incoming call in a circuit switched system to be lost,
see Subsection 2.2.3, has remained intriguing, and has motivated the development
of results with similar elegance and expression power for various systems modeling
congestion and competition over resources.

A second milestone was the step of queuing theory into queuing networks as mo-
tivated by the product form results for manufacturing systems in the nineteen fifties
obtained by Jackson [32]. These results revealed that the queue lengths at nodes of a
network, where customers route among the nodes upon service completion in equi-
librium can be regarded as independent random variables, that is, the equilibrium
distribution of the network of nodes factorizes over (is a product of) the marginal
equilibrium distributions of the individual nodes as if in isolation, see Subsection
2.3.2. These networks are nowadays referred to as Jackson networks.

A third milestone was inspired by the rapid development of computer systems
and brought the attention for service disciplines such as the Processor Sharing dis-
cipline introduced by Kleinrock in 1967 [36]. More complicated multi-server nodes
and service disciplines such as First Come First Served, Last Come First Served
and Processor Sharing, and their mixing within a network have led to a surge in
theoretical developments and a wide applicability of queuing theory, see Subsection
2.4.2.

Queuing networks have obtained their place in both theory and practice. New
technological developments such as Internet and wireless communications, but also
advancements in existing applications such as manufacturing and production sys-
tems, public transportation, and logistics, have triggered many theoretical and prac-
tical results. The questions arising in health care will no doubt again lead to a surge
in the development of queuing theoretical results and applications, a fourth mile-
stone in queuing theory.

Queuing network theory has focused on both the analysis of complex nodes, and
the interaction between nodes in networks. Many textbooks and handbooks include
or are devoted to queuing theory. Basic level textbooks include [50, 56], and more
advanced handbooks are [31, 36, 37, 44, 52, 57]. The state of the art in the math-
ematical theory for queuing networks is described in the handbook [11]. Topics
treated include:

• A general theory for product form equilibrium distributions far beyond those for
Jackson and BCMP networks.

• Monotonicity and comparison results that allow analytical bounds on perfor-
mance measures for networks that slightly deviate from Jackson or BCMP type
networks.

• Fluid and diffusion limits that aim at analyzing networks in the regimes domi-
nated by the mean or the variances of the underlying processes such as service
times and inter arrival times.
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• Computational results that are far more general than the queuing network ana-
lyzer of Subsection 2.4.4.

In the last chapter an application of networks of queues in healthcare is presented,
indicating that many available theoretical results for networks of queues are waiting
to be disclosed for application in healthcare.

3 Examples of Healthcare Applications

As we have seen in the previous section, for some queuing networks that consist of
only exponential queues analytical solutions are available. When either the arrival
or service process is non-exponential, approximation methods are usually required.
In this section we provide several references to healthcare examples that involve
queuing networks, and discuss two examples in detail. For examples that involve
single queues, we refer to [29].

Generally speaking, three types of healthcare networks have been studied using
queuing network topologies. We distinguish between networks of healthcare facili-
ties, networks of departments within a facility, and networks of healthcare providers
within a department (see Figure 9). Using this network classification, and the dis-

H
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ED

OR

ICU

Wards

Network of healthcare facilities

Network of departments
within a healthcare facility

Network of healthcare providers
within a department

Fig. 9: Different types of networks in healthcare
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tinction among exponential and general networks, the references provided in this
section can be categorized as presented in Table 1.

Table 1: Categorization of references

Exponential networks General networks

Network of healthcare facilities [5],[6],[10],[38],[42] [1]
Network of departments within a facility [18],[19],[47] [22]
Network of healthcare providers within a department - [3],[20],[33],[61]

3.1 Applications of Exponential Networks

Modeling a healthcare network with exponential queues gives a lot of insight into
the structural behavior, such as bottlenecks. The modeling power of these networks
is most when many of the details on patient behavior are not yet specified, but ran-
domness is an essential part of the behavior of the system, i.e., at the strategical level
of allocation of capacity, facilities and resources.

3.1.1 Facility Location and Bed Blocking Problems

One of the earliest developments in this area is given in [10], where a network of
M/M/s/s queues is combined with an algorithm to determine the optimal location
of burn care facilities in the state of New York. The resulting system of equations
can be solved, but due to computational difficulties only for a small number of fa-
cilities and beds. This type of network is further studied in [47]. The latter paper
involves an example where patients are routed through a network of operative and
post-operative units (such as the OR, ICU and nursing wards), and may experience
bed-blocking when the next unit on the route operates at full capacity. Also in this
model the numerical computations remain problematic when there are numerous
units and beds. The relationship between the OR and bed availability on the ICU
is further studied in [23], where the authors use a loss network to determine the
blocking probability for surgical patients caused by a lack of ICU beds. The bed
blocking problem is also considered in [38], where the flow of psychiatric patients
within a network of healthcare facilities is considered. A relatively simple steady-
state analysis results in a product-form solution. The capacity planning problem for
neonatal units (how many cots to place at each care unit) is analyzed in [5] using a
loss network model. The implementation of the solution is described in [6].
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3.1.2 Patient Flow

Modeling patient flow has received limited attention [53]. Patient flow between dif-
ferent hospital departments is studied in two papers by the same author. In [18] the
patient flow from the ED to the ICU and nursing wards is studied using an open
Jackson Network. The same methodology is used in [19] to analyze flow of obstet-
ric patients. Patient flow within a care facility is studied from another perspective
in [17] and [58]. In these papers, different phases in the care trajectory of a patient
are considered. While in [17] a closed queuing network is used, in [58] the model is
extended to a semi-open queuing network with a capacity constraint (the maximum
number of patients that can be admitted).

3.1.3 Clinical Capacity Problem

Patients with renal failure are considered in [42]. These patients either receive dialy-
sis at a clinic, or when their condition worsens, (temporarily) hospitalized. A multi-
class open queuing network with two queues (the clinic and the hospital respec-
tively) is used to determine the clinic’s capacity and the maximum number of pa-
tients to be admitted into the clinic, given that patients do not use clinic resources
when they are hospitalized.

3.2 Applications of General Networks

When a higher level of detail is required, for example when networks of healthcare
providers withing a department are studied, models with general queues are of more
value.

3.2.1 Organization of Acute Care

The organization of acute care is studied in [20] and [33]. In [20] an ED is modeled
with a multi-class open network of M/G/s queues. The main purpose of this model
is to determine the required ED capacity needed to achieve service targets such as
waiting time and overflow probabilities. In [33] the same kind of network is used
to model an urgent care center (UCC), which is basically an outpatient clinic that
delivers ambulatory urgent care to relieve pressure from the ED. The main goal
of this model is to determine whether parallelization of tasks in the patient’s care
trajectory has a positive effect on the patient’s length of stay at the UCC.
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3.2.2 Other Applications

In [22] hospital departments and their interdepartmental relationships are modeled
as a network with G/G/s queues. Analysis of the network gives relevant informa-
tion such as utilization rates and mean waiting times for each queue, and also allows
for exploring the impact of service interruptions, aggregating patient flows, and de-
termining the optimal number of patients in a clinic session. Another application is
the recent outbreaks of viruses, such as the H1N1 influenza virus, which call for a
rapid response of the authorities. In [1] the authors show how a queuing network
can help to plan emergency mass dispensing and vaccination clinics. In [3] an out-
patient clinic is studied using the Queuing Network Analyzer. The paper provides
a nice example of how a queuing network can be of added value when performing
bottleneck analysis.

3.3 Example I: Distribution of Patient Classes over Nursing Wards

This example is based on a project carried out by the authors at Leiden University
Medical Center (LUMC), one of the eight university hospitals in the Netherlands.
The LUMC admits 20,500 inpatients per year and has 14 wards with a total of 390
beds (2009 data).

3.3.1 The Problem

LUMC management wanted to study the distribution of patient classes over the
nursing wards and the related bed requirements. We supported them by developing
a loss network model that allows for an exact calculation of the fraction of patients
that are blocked because the ward is full, and the mean utilization rate per ward.
Of course, in practice arrival and service processes at the wards are very complex;
arrivals are not homogeneously distributed over the day; patients are not always
blocked when the ward is full (e.g. an extra temporary bed is created), and so on.
However, for the purpose of this project, this model was a sufficient and fitting tool.

3.3.2 The Model

Figure 10 gives a simple representation of the nursing ward loss network. Patients
enter the wards via the ED, the ICU, another hospital, or come from (a nursing)
home. Ultimately patients leave the ward again to go home, to another hospital, or
sometimes, unfortunately, die. Each patient has an attending physician from spe-
cialty i, i = 1, . . . , I. We assume that patients are routed to the ward of their attend-
ing physician. Patients come in three classes k: elective short-stay patients (k = es),
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Ward 1

Ward 2

Ward 3

Ward N

Via ED

Via ICU

From other hospital

From home

Fig. 10: Nursing ward loss network

elective long-stay patients (k = el), and urgent patients (k = u), and have mean so-
journ time E[Sik]. They originate from one of the four sources m: ED (m = ed), ICU
(m = ic), another hospital (m = oh), or home (m = ho). Patients are admitted to one
of the wards j, j = 1, . . . ,J, with routing probability Pik,m, j, where Pik,m, j ∈ {0,1}
and ∑ j Pik,m, j = 1 ∀i,k,m (all patients should be admitted to a ward). Each ward has
c j physical beds, of which s j are staffed and can be used to admit patients. It may
occur that a ward has more physical than staffed beds, so s j ≤ c j. If all staffed beds
at the designated ward are full, the patient is blocked and not admitted to the ward
(patients will not be admitted at another ward). The mean sojourn time, E[S j], and
arrival rate, λ j, at ward j are calculated using the fraction of patients that is routed
to ward j:

λ j =
I

∑
i=1

∑
k={es,el,u}

∑
m={ed,ic,oh,ho}

λik,mPik,m, j,

E[S j] =
I

∑
i=1

∑
k={es,el,u}

∑
m={ed,ic,oh,ho}

E[Si j]Pik,m, j. (80)

We assume that the departure rates from the sources m are Poisson; thus, the ward
arrival rates are also Poisson. The problem we study is how the hospital should
distribute the patient groups ik over the wards j. Depending on the number of staffed
beds, each ward can offer a certain amount of care. The hospital should choose
whether it wants to focus on achieving a blocking probability which is below a
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certain value, or a mean utilization rate which is above a threshold2. An additional
benefit of a distribution that optimally uses the ward capacities is that it might be
possible to close one or more wards. Since we consider each ward j as a separate
entity, the blocking probability, Ps j , is given by

Ps j =
(λ jE[S j])

s j /s j!

∑
s j
l=0

(λ jE[S j ])
l

l!

. (81)

The utilization rate of the beds at ward j, φ j, is given by

φ j =

(
1−Ps j

)
λ jE[S j]

s j
. (82)

To attain the desired value of either Ps j or φ j, one can calculate the required value
of λ jE[S j]. This can be done by hand or by using spreadsheet software such as MS
Excel. An easier option is to use one of the Erlang-B calculators available online (see
e.g. [48]). By amending the routing probabilities Pik,m, j, it is possible to evaluate all
kinds of patient class distributions over the wards.

During the project, we developed a practical extension to the model. We observed
it was hard for hospital management to obtain a ‘gut feeling’ for which patient
classes could be combined at a ward. We therefore printed a large map of the hospital
with the locations of the wards. For each ward we printed the maximum value of
λ jE[S j] (which depends on s j). We also made cards that for each patient class ik
had the value of ∑m λik,mE[Sik] printed on it. Hospital management could put the
cards with patient classes on the locations on the map, and explore the effect of
combining various patient classes. This example shows that queuing techniques can
also provide online decision support.

Using the theory of loss networks (Subsection 2.4.3), we can further improve
the performance of the wards. Patient groups are still routed to a dedicated ward,
but nursing staff can be shared among wards. This way, the previously unstaffed
physical beds can be used as well, resulting in a lower blocking probability and a
higher utilization rate. Consider for example a simple system with two wards. Ward
1 has c1 = 5 physical beds, s1 = 3 staffed beds, and arrival rate λ1 = 2 patients per
day. Ward 2 has c2 = 5 physical beds, s2 = 4 staffed beds, and arrival rate λ2 = 3
patients per day. At both wards the mean sojourn time equals one day. If the wards
would operate separately as in the example above, both wards would have a blocking
probability of 21% and an utilization rate of 53% resp. 60%.

If the two wards would share nursing staff, we can formulate this example as a
loss network:

2 Many hospitals aim for a mean utilization of 85% and a blocking probability below 5% at the
same time. This is only possible when the ward has a large (around 50) number of beds [13].
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P(n1,n2) = B(S)−1 ρ
n1
1

n1!
ρ

n2
2

n2!
,

n1 ≤ c1, n2 ≤ c2, n1 +n2 ≤ s1 + s2, and

B(S) = ∑
n1,n2

ρ
n1
1

n1!
ρ

n2
2

n2!
, (83)

where n1, n2 denotes the number of patients present at ward 1 resp. 2. We see that
in total still at most s1 + s2 = 7 patients could be present at the same time. However,
now at ward 1 at most c1 = 5 instead of s1 = 3 patients can be admitted, and at
ward 2 at most c2 = 5 instead of s2 = 4 patients can be admitted, as long as the total
number of patients does not exceed 7. The blocking probability then decreases to
16%, while the utilization rate per staffed bed at the wards increases to 56% resp.
63%.

3.4 Example II: Redesign of a Preanesthesia Evaluation Clinic

This example is based on [61].

3.4.1 The Problem

We consider a preanesthesia evaluation clinic (PAC). At this clinic, which is oper-
ated by the department of Anesthesiology, patients are screened before undergoing
elective surgery. In the last decades most hospitals have organized this screening in
an outpatient setting. Not only will a well-performed screening reduce the surgical
risk for the patient, but also it reduces the number of canceled surgeries due to the
physical condition of the patient [25]. Initially, the screening process at the PAC was
organized as follows. Four anesthesia care providers performed the actual screening,
supported by a secretary and two clinic assistants. The screening consisted of sev-
eral separate medical and administrative tasks. The majority of patients (70%) would
be screened directly after their consultation at the surgeon’s outpatient clinic. This
direct (walk-in) screening would only be possible for non-complex patients with
ASA I&II classification [4], patients with a more severe health status (ASA III&IV
classification) would receive an appointment, since additional medical information
and a longer consultation time was required. An increased staff workload, resulting
from the introduction of an electronic patient data management system, led to lower
job satisfaction, work stress and prolonged patient waiting times. Although 90% of
the annual 6,000 PAC patients were eligible for walk-in, one third of these patients
were seen on appointment basis, due to an overcrowded waiting room when they
first presented themselves at the PAC.
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3.4.2 The Model

To identify bottlenecks in the PAC’s operations, the clinic was modeled as a multi-
class open queuing network (see Figure 11). There were three patient classes: chil-
dren, adults eligible for direct (walk-in) screening, and adults requiring an appoint-
ment because of their (more severe) health status. The PAC queuing network has
three separate (connected) queues, where the employees act as servers. Patients only
enter the PAC through the secretary queue, but may leave the system at any queue.
The PAC queuing network was analyzed using a decomposition method, based on
the QNA. This method consists of three steps. We first summarize the method and
then provide a detailed description of the model with the corresponding formulas.

First, the multi-class network is reduced to a single class network. This is done by
aggregating all patient flows that enter a queue. Then the workload ρ is calculated
for each queue. This already gives significant and valuable information; recall that ρ

is a measure for the fraction of time employees are busy. In the next step, the single
class open queuing network is analyzed, where the mean contact time and scv of the
joint arrival and service processes at the three queues are deduced. In the final step
the mean waiting time per queue is calculated, using the variables that were derived
in step 1 and 2.

In the initial analysis of the PAC queuing network, it was found that the secre-
tary and anesthesia care providers functioned as bottlenecks. Consequently, several
alternatives were formulated together with clinic staff, in order to remove these bot-
tlenecks. All alternatives were evaluated using the queuing network model, resulting
in one alternative that outperformed the others. In this alternative, several tasks were
redistributed and the patient arrival process was amended such that the arrivals were

Referring 

Surgical 

Outpatient Clinic
Home

HomeHome

Secretary
Clinic 

Assistant

CLINIC

ENVIRONMENT

Anesthesia Care 

Provider

Fig. 11: Queuing network representation of PAC
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spread more equally over the day. In the year following the implementation of the
alternative clinic design, patient arrivals increased (unexpectedly) by 16%. In the
old situation, this would likely have resulted in even longer patient waiting times
(recall Figure 2). However, the mean patient length of stay at the PAC did not in-
crease significantly, and more patients (81%) were offered the direct screening.

Detailed Description of the Decomposition Method

The PAC queuing network consists of three queues. The secretary queue is a single-
server queue whereas the clinic assistant and anesthesia care providers are repre-
sented by multi-server queues. Patients enter the queuing network via the secretary
queue and depart the system from any of the queues. Furthermore, if upon arrival
at a queue an employee is available patients are served immediately; otherwise they
join the queue and are treated on first come first serve basis. We use an approx-
imate decomposition method [9] that is based on the QNA to analyze the model.
The model we will present here is more involved than the initial QNA formulation
as given in Subsection 2.4.4. Practical situations can usually not be directly trans-
lated into an existing model. Instead, the theory has to be amended and extended to
represent reality. We will describe in detail the changes we have made to the QNA
algorithm.

First we introduce some notation. There are k distinct patient classes, where k = 1
are patients deferred to an appointment by the secretary, k = 2 adults with ASA I or
II, k = 3 adults with ASA III or IV, and k = 4 are children. To evaluate the alterna-
tive clinic design, we also introduce k = {5,6,7} to represent patients (adults with
ASA I or II, adults with ASA III or IV, and children, respectively) who return for
their appointment. We have j queues, j = 1,2,3, representing the secretary, clinic
assistant and anesthesia care provider.

Step 1.
The aggregated arrival rates at queue j are:

λ1 =
4+3d

∑
k=1+d

γk, λ2 =
3

∑
k=2

γk, λ3 =
4

∑
k=2

(1−dak)γk +d
7

∑
k=5

γk, (84)

where γk is the arrival rate of patient class k at queue 1, and ak is the fraction of
patients of class k who are deferred to an appointment in the alternative clinic de-
sign. Since the indices k = {5,6,7} only exist when the alternative clinic design is
evaluated, we introduce the binary variable d, which equals 1 if the alternative clinic
design is evaluated and 0 otherwise.

Step 2.
The load per patient class per server for queue 1,2, and 3 is:
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φ1,k = γkE[Sk,1]
1

e1s1
for k = {1+d, . . . ,4+3d},

φ2,k = γkE[Sk,2]
1
s2

for k = {2,3},
φ3,k = γkE[Sk,3]

1
e3s3

+d(1−ak)γkE[Sk,3]
1

e3s3
for k = {2, . . . ,4+3d},

(85)

where E[Sk, j] is the mean service time for patient class k at queue j. Since the sec-
retary is often consulted by other patients and co-workers while handling a patient
at the reception desk, an effective capacity e1, 0 < e1 ≤ 1, is taken into account
when calculating the mean time a patient spends at this queue. The anesthesia care
provider is often disturbed, but not while treating patients and therefore the effective
capacity, e3, 0 < e3 ≤ 1, is only used in calculating the load. These effective capac-
ities are calculated by using direct observations and interviews with the employees.
The number of servers (i.e. employees) at queue j equals s j. Adding the load over
all patient classes gives the aggregated load per server of queue j, j = 1,2,3:

φ1 =
4+3d

∑
k=1+d

φ1,k, φ2 =
3

∑
k=2

φ2,k, φ3 =
4+3d

∑
k=2

φ3,k. (86)

For stability it is required that φ j < 1 for all queues j.

Step 3.
The flow from queue 1 to queue 2 or 3 and from queue 2 to queue 3 is given by:

λ1,2 =
3

∑
k=2

(1−dak)γk

λ1
, λ1,3 =

∑
4+3d
k=4 (1−dak)γk

λ1
, λ2,3 =

3

∑
k=2

(1−dak)γk

λ2

(87)

The fraction of arrivals at queue 3 that come from queue 1 or 2 is given by (note that
q1,2 = 1):

q1,3 =
∑

4+3d
k=4 (1−dak)γ4

λ3
, q2,3 =

3

∑
k=2

(1−dak)γk

λ3
. (88)

Step 4.
The arrival process at queue 1 has scv, c2

A,1:

c2
A,1 = w1

4+3d

∑
k=1+d

Qk,1c2
A,k,1 +1−w1, (89)

where c2
A,k,1 is the scv of the arrival process of patient class k at queue 1, and

w1 =
(
1+4(1−φ1)

2(η1−1)
)−1

, η1 =
λ 2

1

∑
4+3d
k=1+d γ2

k

, Qk,1 =
γk

λ1
. (90)

The mean service time, E[S1] and scv at queue 1, c2
S,1, are:
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E[S1] =
∑

4+3d
k=1+d γkE[Sk,1]

λ1
, c2

S,1 =
∑

4+3d
k=1+d γkE2[Sk,1](c2

S,k,1 +1)

λ1E2[S1]
−1, (91)

where c2
S,k, j is the scv of the service time for patient class k at queue j. The arrival

process at queue 2 has scv, c2
A,2:

c2
A,2 = λ1,2c2

D,1 +1−λ1,2, (92)

where c2
D,1 is the scv of the departure process at queue 1. Queue 2 has mean service

time, E[S2], and scv, c2
S,2:

E[S2] =
∑

3
k=2 γkE[Sk,2]

λ2
, c2

S,2 =
∑

3
k=2 γkE2[Sk,2](c2

S,k,2 +1)

λ2E2[S2]
−1. (93)

The arrival process at queue 3 has scv, c2
A,3:

c2
A,3 = w3(q2,3c2

2,3 +q1,3c2
1,3)+1−w3, with

w3 =
(
1+4(1−φ3)

2(η3−1)
)−1

, η3 =
(
q2

2,3 +q2
1,3
)−1

,

c2
1,3 = λ1,3c2

D,1 +1−λ1,3, c2
2,3 = (1−d)c2

D,2 +d(λ2,3c2
D,2 +1−λ2,3),

c2
D,2 = 1+(1−φ

2
2 )(c

2
A,2−1)+

φ 2
2√
s2
(c2

S,2−1), (94)

where c2
2,3 is the scv of the patient flow from queue 2 to queue 3, c2

1,3 the scv of the
patient flow from queue 1 to queue 3, and c2

D,2 is the scv of the departure process at
queue 2. Queue 3 has mean service time, E[S3], and scv, c2

S,3:

E[S3] =
∑

4
k=2(1−dak)γkE[Sk,3]

λ3
+d

7

∑
k=5

γkE[Sk,3],

c2
S,3 =

∑
4
k=2(1−dak)γkE2[Sk,3](c2

S,k,3 +1)+∑
7
k=5 γkE2[Sk,3](c2

S,k,3 +1)

λ3E2[S3]
−1.

(95)

Step 5.
We are interested in the waiting times for patients per queue and the load per em-
ployee at each queue. The latter is given by the aggregated load derived in step 1,
while the mean waiting times are obtained by using the scv and mean service time
calculated in step 2. The mean waiting time, E[W q

j ], is equal for all patient classes.
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E[W q
1 ] =

c2
A,1 + c2

S,1

2
φ1

1−φ1

E[S1]

e1
,

E[W q
j ] =

c2
A, j + c2

S, j

2
E[W q

j(M/M/s)], where

E[W q
j(M/M/s)] = G−1

j
(s jφ j)

s j

s j!
E[S j]

s j(1−φ j)2 ,

G j =
s j−1

∑
n=0

(s jφ j)
n

n!
+

(s jφ j)
s j

(1−φ j)s j!
for j = 2,3. (96)

Patient length of stay for each patient class can now be calculated by adding the
mean waiting and length of stay of all care queues the patient calls at on his visit to
the PAC.

4 Challenges and Directions for Future Research

In the last decade the number of healthcare problems that have been studied using
a queuing network approach has increased tremendously. Except for [3] and [10],
all of the references included in Section 3 were published in the years 2000-2010.
In this final section we point out a few directions for future research. We distin-
guish between mathematical challenges: healthcare problems for which appropriate
queuing network models have not yet been developed, and healthcare challenges:
healthcare problems which have not been studied yet, but could be studied with the
queuing techniques available in literature.

4.1 Mathematical Challenges

The mathematical challenges mainly lie in the modeling aspect. One example is the
development of models for networks of care providers who perform several tasks
in parallel, in sequence, and sometimes even in a mixed form. Polling models [51]
could be of interest here. Also, clinics where patients have to (re-) visit specific care
providers in a network of care queues still involve modeling complications. How-
ever, re-visiting occurs often in reality (consider for example the complex network
of multiple care providers in ED treatment).

The application of time inhomogeneous models that capture the time-dependent
arrival patterns of patients has attained only limited attention, see for example [30].
Introducing time inhomogeneity in queuing networks is a tremendous challenge.
Related is the development of computationally efficient methods that explicitly take
into account opening hours of healthcare facilities.
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4.2 Healthcare Challenges

Healthcare professionals in a couple of fields are familiar with the possibilities of
mathematical decision support techniques in general and queuing theory in par-
ticular. As we have seen in Section 3, modeling networks of healthcare facilities,
departments and care providers has received some attention. However, capturing
the complex relationships between hospital departments has proved to be quite in-
volved. The relationship studied is usually that with a downstream department [53],
while that with upstream departments is not considered, even though it can be of
significant influence.

Our aging population requires more and more care, which has to be delivered
with limited resources. Rationing care and the consequences thereof has therefore
become an important research topic. Decisions regarding which patient class will
be offered what type of care are inevitable. The influence of these decisions on
other patient classes, regarding accessibility and other important matters, should be
studied in detail. Moreover, the dimensioning of healthcare facilities, not only in
the number of beds required, but also regarding care that will be offered to certain
patient classes only, will become increasingly important.

This chapter has provided a thorough theoretical background on networks of
queues and examples of how networks of queues may be used to model, analyze
and solve health care problems. In that respect, often, the theory has to be amended
or extended. We are confident that this contribution has made health care profes-
sionals increasingly aware of the possibilities and opportunities queueing networks
have to offer to tackle the challenges they are facing, now and in the future.
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