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ABSTRACTIN this paper we obtain new results on periodic kernel representatiodperpose a
definition of “image" representation for periodic behaviors. Further,characterize controlla-
bility and autonomicity in representation terms. We also show that the contépe variable
used in the time-invariant case cannot be carried over to the periode ices straightforward
manner and introduce a new concept of variable freeness (P-peffi@diness). This allows us
to define input/output structures for periodic behaviors.

RESUME.Dans cet article nous présentons de nouveaux résultats sur la repadien des sys-
temes (comportements) périodiques par des équations aux différ@mceefficients pério-
diques; nous proposons aussi une définition de représentation dip@gr ces systémes. Nous
caractérisons également la commandabillité d’un systéeme en termes @ps&sentations. En-
suite, nous prouvons que le concept de variable libre utilisé dans le cadgdnv au cours du
temps ne peut pas étre reporté de facon directe au cas périodiquec@aerraison nous intro-
duisons un nouveau concept de liberté d’'une variable (liberté P-p&ued qui nous permet
de définir des structures d’entrée-sortie pour des comportementijmgres.

KEYWORDSPeriodic systems; behaviors; representations.
MOTS-CLES Systemes périodiques; comportements; représentations.
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1. Introduction

In this paper we present new results on the behavioral thefdiyear periodically
time-varying systems based on the framework developed hjpéuand Willems,
see [KUI 97] and the references therein. This approach useshaique known as
lifting, that associates to each periodic behavior a time-invadaa. This allows
to derive many results for periodic systems based on theimxienes for the time-
invariant case. Using this technique, we present someduitisights into (what we
call) “kernel" and “image" representations. Moreover walgtthe structural proper-
ties of controllability and autonomicity and provide a cheterization of these prop-
erties in terms of those representations. We show thatpgoas to what happens
for time-invariant systems, the correspondence betweatratability and the exis-
tence of image representations also holds for periodic\hetsa However, in spite of
the many formal resemblances, there are some fundamefiéabdices between time-
invariant and periodic behaviors. This is, for instance, tase with the relationship
between free variables, controllability and autonomicibdeed, as we shall see, the
usual definition of freeness used in the time-invariant éaset suitable for periodic
systems. In order to overcome this complication we intredaoew concept of peri-
odically free variable, which also allows us to define inpard outputs in a periodic
system.

2. Periodic behavioral systems

In the behavioral framework a dynamical systéins defined as a tripl&é =
(T, W, B), with TCR as the time sef{V as the signal space amiC W' as the be-
havior. Here we focus on the discrete-time case, that is,Z, assuming furthermore
that our space of external variable$¥s= R? with g€ Z, .

Let the A-shift
o i (R — (R9)”,
be defined by
(c*w) (k) :==w (k+ A).

Whereas the behavior of a time-invariant system is chatiaeteby its invariance
under the time shift, that is,

B =B,

periodic behaviors are characterized by their invarianith vespect to theP-shift
(P €N), as stated in the next definition.

DEFINITION 2.1 [KUI 97] A systemX. is said to beP-periodic (with P € N) if its
behaviorB satisfiess”B = 8.
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3. P-periodic kernel representations PPKR

According to [KUI 97] and [WIL 91], a behavidB is ac” -invariant linear closed
subspace oﬁRq)Z (in the topology of point-wise convergence) if and only ihds a
representation of the type

(Re (0,0 w) (Pk+t)=0, t=1,...,P keZ, (1)

whereR; € R9:*4 [5,5*1]. Note that the Laurent-polynomial matric& need not
have the same number of rows (in fact we could even have ggrequal to zero,
meaning that the corresponding matix would be void and no restrictions were
imposed at the time instan¥: +t). Analogously to the time-invariant case, although
with some abuse of language, we refer to (1) a-periodic kernel representation
(PPKR).

A common approach in dealing with periodic systems is toteelaem with suit-
able time-invariant ones. Here, following [KUI 97], we aside with aP-periodic

behavior® c (R?)” a time-invariant behaviofB c (RP‘I)Z, the lifted-behavior
defined by

LB = L(®) = {we (R")"| @ = Lw, weB},

whereL is the linear map

L: (RN — (RP9)",
defined by
w (Pk+1)
(Lw) (k) = :
w (Pk + P)
Note that, since
(Ri (0,07 w) (Pk+t)=((0'Ry (0,07 ")) w) (Pk), t=1,...,P, k€Z,

the P-periodic kernel representation (1) can be written as

(R (0,07 ") w) (Pk) =0, keZ, )
where
S
R(&€7) = §R2<§’£) eR[E,€71], €)
EFRp (6,671)

with g::Zf:l g¢- From now on we refer to the matrik (£,£!) as aPPKR matrix
of the corresponding behavior.
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Decomposingr (£,£71) as

R (57671) = é-Rl (£P7£7P) + o+ ngP (£P7£7P)

=R (€7,677) Qpq (6, 4
with .
QP,q (f) = [ fIq fPIq ] )
and
RE(&e)=[ R'(&67") R*(&67") - RP(&E) ]

and recalling the definition of the lifted trajectofyw associated tav, (2) can be
written as

(RY (0,07") (Lw)) (k) =0, keZ.

This allows us to conclude that the lifted behavidB is given by thekernel repre-
sentation

LB = {w| R" (0,07") @ =0} =ker R" (s,07").

Taking into account that this reasoning can be reversed,btarothe following
result.

LEMMA 3.1 [KUI 97] A P-periodic behaviofs C (]R‘?)Z is given by the kernel rep-
resentation (1), that is,

B = {w| (R (0,07 )w) (Pk+1t)=0, t=1,..., P, keZ}
if and only if the associated lifted behavibfs is given by the kernel representation
LB = {w|R" (o,07 ") w =0},
whereR" (¢,671) e R9*P4 [¢, 671, g=S"1 | g4, is given as in (6).

By using this one-to-one relation, some known results fertitme-invariant case
can be somehow mimicked into tif&periodic case. For instance, this happens with
two important issues which are the questions of kernel sgmtation equivalence and
minimality.

THEOREM 3.2 [ALE 05] Let and®B’ be two P-periodic behaviors with represen-

tation matrices (¢,£71) and R’ (&, &), respectively. Thef C B’ if and only if
there exists a Laurent-polynomial matiix(¢, £ ~*) such that

R(&€) = L(&" &M R(6ET)
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This result can be proven as follows. Consider the timeriawhbehaviord B =
ker R and LB’ = ker R'" associated witf3 and®’, respectively. Thef C B’
if and only if LB C L®B’, meaning that there exists a Laurent-polynomial matrix
L (& ¢71) such thatR’> = LR™, which implies the desired relation betweBhand
R.
This theorem yields the following fundamental result, vhis the counterpart
for P-periodic behaviors of a similar result for time-invaridsehaviors, [POL 98,
Theorem 3.6.2].

THEOREM 3.3 [ALE 05] Let and®B’ be two P-periodic behaviors with represen-
tation matricesk (£,£71) andR’ (&,£71), respectively, possessing the same number
of rows. Thert3 = B’ if and only if there exists a unimodular matlli)k(g, 5*1) such
that

R(&&7) =U (T R,

As for the question of minimality, given a linear time-iniaat system with behav-
ior B described by:

(R (07071) w) (k)=0, kez, @)

with R (£,£71) € R9*4 [£,£71], we say that the representation (7) is minimal if
the number of rows of the matrik (¢, £~') is minimal (among all the other repre-
sentations ofB). This is equivalent to say that (f,g—l) has full row rank (over
R[&€71)).

In the P-periodic case, we adopt the definition of minimality frone time invari-
ant case.

DEFINITION 3.4 [ALE 05] Arepresentation matri® € R9*4¢ [5, 5*1] of a P-periodic
systemX = (Z,R?,%8) is said to be a minimal representation if for any other repre-
sentationR’ € RY *7 [¢,£71] of ¥, there holdy < ¢'.

It is not difficult to check that a representatidh(¢, ') of a P-periodic sys-
tem X is minimal if and only if the same is true for the correspomgiapresentation
RY (¢,¢71) of the associated time-invariant lifted systéit. ThusR (¢,£71) is
minimal if and only if R (¢£,£71) is full row rank overR [¢,£71]. The next lemma
translates this in terms of the matdk(¢, ¢ 1) itself.

LEMMA 3.5 [ALEO5] Let R(¢,&71) € R9%7[¢, ¢! be the representa-
tion matrix of a P-periodic system and consider the corresponding matrix
RL(¢,671) € R9*Pa ¢, &7 given by (4) and (6). Then, the following con-
ditions are equivalent:

(i) RE (& ¢71) has full row rank oveR [¢,£71];
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(i) R(&,€71) has full row rank overR [¢7, 677 (ie., if r(¢,67F) €
R0 [¢F ¢=F] is such thatr (¢7,¢7) R (¢, 1) —0¢c T R1xa [£,671], then
r(¢P,€-P)=0).

Together with the previous considerations, this resultdgi¢he following charac-
terization of minimality.

THEOREM3.6 [ALE 05] LetR (£,£71) € R9%? [¢,£71] be the representation ma-
trix of a P-periodic system. The® (¢, 5*1) is a minimal representation if and only
if it has full row rank overR [¢7, 7).

4. P-periodic image representations PPIR

Image representations constitute an alternative systesorigéon in the time-
invariant case. As a generalization of such representatie; introduce herd°-
periodic image representatioBRIR).

DEFINITION 4.1 A behaviorB is said to have ®&PIRIf it can be described by equa-
tions of the form:

w(Pk+1t)= (M (0,07 ") v) (Pk+t), t=1,...,P, k€Z, (8)

wherew € (Rq)Z is the system variable andis an auxiliary variable taking values in
R¢ ¢ eN.

Notice that (8) can be written as

w(Pk+1)
w (Pk +2)
: = (M (0,07")v) (Pk), keZ,

w (Pk + P)

with
EM, (€,
Mo (€6
ety | MO e e e
§PMp (6,¢71)

we refer to this matrix as BPIR matrix
Consequently

(Lw) (k) = (M* (0,07") (L)) (k) , k€Z,
whereM ! is such that

M(&¢7h) = MY (€7,677) Qpe(€). 9
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Therefore, ifB is a P-periodic behavior witiPPIR matrixM, L9 is a time-invariant
behavior with image representatidn’. It turns out that the converse also holds true,
yielding the following result.

THEOREM4.2 A P-periodic behavior3 c (R?)” has aPPIR if and only if the
associated lifted behavidr3 has an image representation.

5. Controllability

Loosely speaking, a behavi® is said to becontrollable if the past of every
trajectory inB can be concatenated with the future of an arbitrary trajgdtothis
behavior. More concretely,

DEFINITION 5.1 [POL 98] A behaviof8 is said to becontrollableif for all w;, ws €
B andkg € Z, there existg; > 0 andw € B such thatw (k) = w; (k), for k < ko,
andw (k) = wq (k), for k > ko + k;.

As stated in the next theorem, the controllability dPgperiodic behavior is equiv-
alent to the controllability of its associated lifted syste

THEOREM5.2 [ALE 05] A P-periodic behaviofB is controllable if and only if the
corresponding lifted behavidr is controllable.

From Theorem 5.2, together with the characterization o&kigial controllability
given in [WIL 91, Theorem V.2], it is possible to charactertbe controllability of
P-periodic systems.

PROPOSITION5S.3 [ALE 05] LetY=(Z,R?,B) be aP-periodic system, represented
by (1), with representation matri® as in (3). Therk is controllable if and only if the
corresponding matrik” (see (4) and (6)) is such th&" (X, A=) has constant rank

overC\{0}.

In case the matriR” (£,£71) € R9*P4 [¢, 7] has full row rank, the condition
that R> (A, A=!) has constant rank ovér\ {0} is equivalent to say thak’ (¢,£71)
is left-prime, i.e, all its left divisors are unimodular mages inRY*9 [E, 5‘1]. It turns
out that the left-primeness @t" (¢, £~1) can be related with the following primeness

property forR (£,£71).

DEFINITION 5.4 [ALE 05] A Laurent-polynomial matrix (£,£71) € R9*7 [¢,£7]
with full row rank overR [¢7, "] is said to be left-prime ovek [¢F, 7], or sim-
ply P-left-prime, if whenever it is factored as

R ) =D(E" )R,
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with D (¢7,¢7F) e R9*9 [¢P ¢7P], then the factoD (¢7,¢~) and, equivalently,
D (&,¢71), are unimodular (oveR [¢7, 7] andR [¢,£71], respectively).

LEMMA 5.5 [ALE 05] LetP € NandR (§,£71) eR9%4 [¢, 7] have full row rank
overR [¢F,¢7F]. Consider the associated matd (£,£71) € R9*P[¢ 71
according to the decomposition (4). Then, the followingditians are equivalent:

(i) R™ (¢,¢71) is left-prime;
(i) R (&,€71) is P-left-prime.
This leads to the following direct characterization of colability.

THEOREMS.6 [ALE 05] A P-periodic systenk = (Z,R?,B) with PPKRis con-
trollable if and only if its minimalPPKRmatricesk (5, 5—1) are P-left-prime.

Since, for time-invariant behaviors, there is an equivedebetween behavioral
controllability and the existence of image representation(see
[POL 98]), Theorem 4.2, together with Theorem 5.2, allowgtove the following
result.

THEOREMb5.7 A P-periodic behavio® has aPPIRif and only if it is controllable.

Combining Theorems 5.6 and 5.7 we can state that:

THEOREMb5.8 LetX = (Z,R?,%B) be aP-periodic system wittPPKR Then the
following are equivalent:

() B is controllable;
(ii) all the minimal PPKRof 9B are P-left-prime;

(iii) B has aPPIR

6. Autonomicity

Autonomicity is the opposite of controllability. Indeedhereas in a controllable
behavior the future of a trajectory is independent of itd,dasan autonomous behav-
ior every trajectory is uniquely determined by its past.

DEFINITION 6.1 [WIL 91] A behaviors is said to be autonomous if for &}, € Z
and allw,, wy € B

w1 (k) = W2 (k) fork < ko = w1 = Wa.
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Similar to what is the case with controllability, the autamioity of %5 and of L5
are one-to-one related.

THEOREM®6.2 [KUI97] Let ¥ = (Z,R?9,8) be a P-periodic system. ThefB is
autonomous if and only i3 is autonomous.

Taking into account the characterization of autonomiatytime-invariant behav-
iors given in [POL 98], the following result is trivially ohined.

COROLLARY 6.3 LetX = (Z,R?,B) be aP-periodic system with #PKRand a
representation matrix. Then$ is autonomous if and only if the corresponding
representation matrix of the associated lifted systBfm, has full column rank (fcr).

7. Free variables

Given a behaviof8 C (Rq)Z, a componenty; of the system variable is said
to befreeif for all o € RZ there exist a trajectory* € B such thatw} (k) =
a(k), k € Z. This means thab; is not restricted by the system laws.

The existence or absence of free variables is related, ititfeeinvariant case, to
properties as controllability and autonomicity: a nowigitime-invariant controllable
behavior must have free variables; on the other hand thenabg# free variables is
equivalent to autonomicity, [POL 98]. As the next example®s this no longer holds
in the P-periodic case.

Example 1Consider the-periodic behaviof with PPKR
R (67671) = € - 17

i.e., described by
wk+1)=w(2k), k € Z.

Since

R(ge) =e-1=[1 —5—2][52],

its associated lifted behavidrB is described by the kernel representation
_ w
(RL (a,a 1) { @; ]) (k)=0,keZ,

where

RU(&&) =[1 =1 ]
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It is also possible to describe this lifted behavior in teohan image representation,
namely

LB = im { ! ] .
g
In order to achieve the decomposition (9) we use the factiffatan also be given as
LB =imM" (o,07"),
with M% (&,671) € R?*# [¢,¢71], such that

_ 10
M*" (&€ 1):[5 0}.
Therefore the originat-periodic behavior hasBPIR matrix\ given by

M (575—1) = 512 8 } D21 (€)

::512 gHﬂ

_[¢ ]
- £3 )
that is, the2-periodic behaviof3 allows thePPIR
w(2k 4+ 1) B
{ w (2k 4 2) ]:(M (0,071) v) (2k), kEZ (10)

and is consequently controllable. Howe¥rhas no free variables, since the values
of w on each even time instant and its consecutive one must deinci

Example 2Let B C RZ be the2-periodic behavior described by (2k) = 0, k € Z.
Clearly the only system variable is not free, since it is required to be zero on even
time instants. Howevefs is not autonomous. Indeed fixing the valuesuofk) for

k < 0 does not yield a unique trajectory, since the values ¢k + 1), k£ > 0 can
still be chosen freely. Thus the absence of free variables dot imply autonomicity.

The analysis of these examples suggests that a differeiannot free variable
should be considered in thfe-periodic case.

DEFINITION 7.1 Let® C (R%)” be a behavior i variables. Théth system variable
wi, © € {1,...,q}, is said to beP-periodically free with offset or ¢- P-periodically
free,fort =1,..., P, if w; (Pk +1t), k € Z, is not restricted by the behavior. More
precisely, if for alla € RZ, there existsv* € B such that itsth-component satisfies

w; (Pk+1t)=a(k), keZ.

Moreover,w; is said to beP-periodically free if it isP-periodically free with offset
forsomet =1,...,P.
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This definition yields the usual notion of free variable fioné¢-invariant behaviors,
if one regards time-invariance ageriodicity.

As a direct consequence of this definition we can state thadlg result:

PROPOSITION7.2 Given aP-periodic behaviof3 c (R9)”, theith system variable
wy, 1 € {1,...,q}, ist-P-periodically free (inB) if and only if (Lw)(tq)qﬂ' is free
in LB,

Now, a controllableP-periodic behavior must hav@-periodically free variables.

Example 3As we have seen, the variablein Example 1 is not free. However, this
variable is2-periodically free. Recall that the associated lifted hétral®s is de-

scribed by
_ w1
(RL (o,07") [ T D (k)=0, k € Z,
or, equivalently,
’L’[)l(k):lfljg(k*l), kGZ,

showing that eitheto; or ws are free inLB. Thusw is 2-periodically free since it is
2-periodically free with offset¢ = 1 or¢ = 2.

Moreover, the following characterization of autonomidityerms of P-periodically
free variables holds.

THEOREM 7.3 LetY = (Z,R?,B) be aP-periodic system. Thef is autonomous
if and only if 8 has noP-periodically free variables.

Example 4As we have seen, although behavidrin Example 2 is not autonomous,
the system variable is not free. Notice that however is 2-periodically free since
in this case we have

R ) =1=[0 ¢2] { & }
which leads to

RE(67) =[0 ¢ ].
Therefore the associated lifted behavidB is described by

(RL (0,07) [ 0 D (k) =0, ke,

w2

equivalently,
we(k—1)=0, k€ Z,
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or still
7:62(]6):0, ke Z.

Thusw, is free andw is 2-periodically free since it i2-periodically free with offset
t=1.

The notion of P-periodic freeness plays an important role in the definibbm-
put/output structures for periodic behaviors. This impliensidering simultaneously
free components in the system variable. However, irperiodic behavior, one has
to take into account that such components mayhgeriodically free with different
offsets. This is illustrated in the following example.

Example 5Let B C (}RQ)Z be the3-periodic behavior given by the equations
we (Bk+1)=ws (Bk+2)=w1 (3k+3)=0, keZ.

Clearly the values ofv; (3k + 1), wq (3k + 2) andws (3k + 3) (k € Z) are free, i.e.,
wy is 3-periodically free with offsetd and2, andws, is 3-periodically free with offset
3. Note further, that none of the variables is free at all thesgale offsets = 1, 2, 3.

This can be put in a more compact form by saying that w,, ws) is (1, 2, 3)-3-
periodically free. Note that, in this case, the freeneshérstystem cannot be assigned
to one of the two system variables alone. Therefore, neithamor w, can be taken
as an “input”, in the classical, time-invariant sense. FBhiggests to use an alternative
approach.

Using the operataf p , introduced in section 3, we have that
oW1
gWw2
J2w1
Q2 (0) ()= | 7!

0'311)1
0'3’LU2
Thus

wy 3k +1) = (232 (o) w), (3k)
wy (3k 4 2) = (32 (0) w), (3k)
w2 (3k + 3) = (0372 (O’) ’LU)6 (3]{1) .

w

where the sub-indices correspond to the componerts gf(c) w. Now

u= (22 (0)w),,( Q2 (0)w);, (2 (0)w))
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is a free set of variables 615 » (o) w, sinceu (3k) can be chosen freely for dll € Z,
i.e., givena € (R3)Z, there existsv* € B, such that,

u* (3k) = (Q32 (0)w*) Bk) = (k), k € Z.

Moreover,u is amaximallyfree set of variables, in the sense that onde fixed (say,
u(3k) = 0, k € Z) no other free components are left , (o) w. Therefore, we
call u a P-periodic inputof 8. The complementary components(f » (o) w,

y=(Qs2(0)w)y, (32 (0)w),,(Qs2(0)w);),

constitute the correspondirdg-periodic output.

In the general case, given R-periodic behavioB with variablew, a choice

of (possibly repeated) componentsof (w;, ---w; )’ ir € {1,...,q} for r =
1,...,m, is said to be(ty,...,ty,)-P-periodically free ¢, € {1,...,P} for r =
1,...,m, iffor all o, € RZ, there existsv* € 9B such that its,.th-component satis-
fies

w; (Pk+t.)=a,(k), kel
Note that(w,, - --w;, )" iS (t1,. . . ,tm)-P-periodically freeif and only if

v = ((vaq (0)0) 4y _1ygsay -+ (g (o) w) (tmfl)qﬂ.m)
is a free set of variables 6ip , (o) w, with Qp , () defined as in (5).

DEFINITION 7.4 Given aP-periodic behavio® c (R?)” with variablew = (w; - - - w,)”,

a choice of components

= (O s 0,

of Qp, (o) w is said to be aP-periodic input ofB if » is a maximally free set of
variables of2p , (o) w in the following sense:

(i) uis free, i.e.Va € (R™)” Ju* € B sit.

) ()

m

u* (Pk) = ((Qp,q (@)W )y, s es (Rpg (0) w),
=al(k), k €Z,;
(ii) The set of trajectories
{(Qpq (o)w) (Pk), weB: u(Pk)=0}

has no free variables.
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A choice of componentgof Qp , (o) w is said to be &-periodic output of5 if (u,y)

is a partition of the components 6fp , (o) w. Finally, an input-output structure for
B is defined as a partitiofu, y) of the components dp, (o) w, such that is an
input andy is an output.

Since
(Qpg (o) w) (Pk) = (Lw) (k) , k € Z,
it is obvious that:
PROPOSITION7.5 @ = ((Lw),, ,...,(Lw), ) is an input of the time-invariant be-

havior LB if and only if u = ((prq (O)w)y sy (2pg (o) “’)em) is a P-periodic
input of 2B8.

Taking into account the relationship between thgeriodically free variables of
a P-periodic behavior and the free variables of its associbfied system, it is now
possible to define input/output structures in the periodgechased on the available
results for time-invariant systems. This leads to the foilhg theorem.

THEOREM 7.6 EveryP-periodic behaviof3 admits an input/output structure.

Example 6Consider the3-periodic behavio®s with PPKR matrix

g-1 ¢

2 3

Ree=| o5 ¢
26— @

Its associated lifted system has also a kernel representdhiat is,

LB = ker R" (0,0_1) ,

with
0o 1 1 0 -1 0
Lieoeoty | 1 0 =1 0 0 1
R (515 )_ 0 0 0 0 5—2 f_l
-1 0 0 -1 2 1

Letting
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00 0010

1 0 0 0 0 O

oL -1\ _ pL -1 01 0 0 0 O
0 001 0O

00 0 0 01

1 1 0 —=¢'0 o0

o -1 0 o0 |1 1

1o 0o 0o ¢&2|o0 ¢t

0 0 -1 2 -1 1

the lifted system can be represented as

w

(é )2
P(a,o_l) ELw§
(Lw)

w

(k) = (Q (o,071) [ %Z;; D k), keZ.

w
w

4
5

Sincedet P (£,71) # 0, 4 == [ Lwy Luwg }T is an input inLB and, conse-
quently

u = ((9372 (O’) UJ)l ; (93,2 (U) w)G)

is a3-periodic input forB.

8. Conclusions

In the sequel of the work carried out in [KUI 97] and [ALE 05]evinave consid-
ered P-periodic systems within the framework of the behaviorgrapch. We ana-
lyzed some properties d?P-periodic kernel representations, such as equivalence and
minimality. Moreover, at the level of system theoretic pedjes, we have obtained
further results on controllability and autonomicity. Wefided a new type of rep-
resentationsP-periodic image representatioBKIR), that generalize time-invariant
image representations. Further, we have introduced a neweepb of P-periodic free
variables and analyzed the relationship between the existef such variables and
controllability and autonomicity. Related to our notionfaéeness, we defined the
concept ofP-periodic input, as well as input/output structuresirperiodic systems.
In our opinion, these preliminary results will play an imfaot role in other contexts,
such as for instance the study of control problemsHeperiodic behaviors.
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