
Chapter 13
Verifying Runtime Reconfiguration
Requirements on UML Models

Selim Ciraci, Pim van den Broek, and Mehmet Aksit

Abstract Runtime reconfiguration is a method used for changing the structure and
the call pattern such that the software can adapt itself to the client’s computing en-
vironment. The current practice of verifying software models with respect to the
reconfiguration requirements is rather subjective: based on the stakeholders’ needs,
architects define a set of reconfiguration scenarios and manually trace the models.
This chapter presents a novel process and a tool for automating the verification
of the UML class and sequence diagrams with respect to runtime reconfiguration
requirements. In this process, the models are simulated, which generates the execu-
tion tree. In the execution tree, each path from root to a leaf node is an execution
sequence. The branching in this tree is caused by the reconfiguration of the structure
and the call pattern. The runtime reconfiguration requirements are expressed with a
visual state-based language which is verified against the execution tree. If the ver-
ification fails, feedback about the possible location of the problem is presented to
the designers. The process has been tested with case studies and experiments con-
ducted on the UML class and sequence diagrams of a software system from Philips
Healthcare MRI.

13.1 Introduction

Reconfiguration allows software systems to be adapted to the clients’ environ-
ment (Oreizy et al, 1998). Reconfiguration can be achieved at compile time by

Software Engineering Group
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente
PO Box 217
7500 AE Enschede
The Netherlands
{s.ciraci, pimvdb, aksit}@ewi.utwente.nl

1

2 Selim Ciraci, Pim van den Broek, and Mehmet Aksit

defining configuration semantics as program pieces to be compiled. For certain ap-
plications, however, runtime reconfiguration is preferable as the application may not
be stopped for reconfiguration and the development environment may not be avail-
able at the client side. Runtime reconfiguration can be achieved through program
generation, reflective programming and reconfiguration mechanisms (RMs). RMs
are parts of the application whose purpose is to change the structure and the call
patterns of the application. The change in the structure and the call patterns can be
accomplished by polymorphism, conditional statements and dynamic type loading.
This chapter focuses on reconfiguration with RMs as they are commonly used for
tailoring embedded systems. Figure 13.1 presents an example software system hav-
ing 3 components. Here, depending on the existence of the hardware at the client
side, the structure and the call pattern is programmed to work with the component
machine data reader, as shown in Figure 13.1-(a) or the component file data reader,
as shown Figure 13.1-(b).

Fig. 13.1 A software with 3 modules a) a configuration with module Machine Data Reader b) a
configuration with the module File Reader

Since runtime reconfiguration is carried out at the operational phase of the sys-
tem, it is important that (a) the reconfiguration does not violate the invariants of the
system, and (b) the system supports all the desirable reconfigurations. The verifica-
tion can be realized at the model level or at the code level. Extracting calls/structure
from the code can be time consuming and it is generally said that correcting the
design errors at the implementation level can be costly. Therefore it is worthwhile
to conduct the verification as early as possible such as at the model level.

The Unified Modeling Language (UML) is used to specify, visualize and doc-
ument the designs of the OO software systems (uml, 2010). From these models,
UML class and sequence diagrams are at a sufficiently high level of abstraction to
capture the effects of the reconfiguration on the object structure and call patterns.
More importantly, they are widely accepted and standardized ways of modeling OO
software systems. This makes UML class and sequence diagrams adequate models
to evaluate the effects of reconfiguration on the application. However, conducting
this evaluation manually is still hard because one has to trace through complex class
hierarchies, many conditional blocks and, possibly, many sequence diagrams.

13 Verifying Runtime Reconfiguration Requirements on UML Models 3

13.1.1 State of the art in reconfiguration verification tools

In the literature, there are a number of approaches using UML models for specifying
and verifying the reconfiguration of the software systems (Giese et al, 2004; Becker
et al, 2006; Apvrille et al, 2004; Bucchiarone and Galeotti, 2008). For example, in
the approach proposed in (Becker et al, 2006), the structure of the software system is
modeled using a variant of UML class diagrams and the reconfiguration is simulated
with application specific execution semantics. Although these approaches seem to
be quite intuitive, we observe the following drawbacks: 1) their modeling languages
(or UML profiles) are different from standard UML requiring the software system to
be remodeled in the language of the model checker, 2) they require application spe-
cific execution semantics, 3) they only consider the structure (e.g. the changes in the
connections between components); however, the call pattern leading the structural
changes should also be considered.

The approaches for call graph generation (Grove et al, 1997) can be also applied
to UML class and sequence diagrams for finding out the changes in the call patterns.
However, the changes in call pattern should be supported by the object structure for
correct runtime reconfiguration and these approaches do not consider the object
structure. Model checking has also been applied in verifying the implementation of
the software system (Kastenberg et al, 2006) (Visser et al, 2000). In the OO design
phase with UML models, implementation level model checking is not suitable as
the semantics provided by these model checkers are specific to a programming lan-
guage. Whereas in the UML modeling most implementation level details are not
known.

13.1.2 Our solution: simulation of UML models

Figure 13.2 presents the process for verifying the reconfiguration requirements of
the UML models; in the rest of the chapter we refer to UML sequence and class
diagrams as UML models. Here, the designer only inputs the design of the software
system in UML; that is without providing additional models. The object structure
and the call pattern conforming to a desired reconfiguration or the application in-
variant is expressed in the order of execution or as an execution sequence. This
specification is done using a visual state-based language (VSL). We developed a
converter tool that converts the reconfiguration specifications in VSL into formal
verification specifications.

The input UML models are converted into a graph-based model. With generic
execution and reconfiguration semantics modeled using graph transformation rules,
the simulator simulates the input UML models. Two important aspects of these se-
mantics are that they are not specific to an application and the execution semantics
implemented by them are similar to actual execution of an OO software system.

The simulation generates a state-space showing all possible execution sequences
supported by the input UML models; here, the simulation yields more than one

4 Selim Ciraci, Pim van den Broek, and Mehmet Aksit

Fig. 13.2 The process for verifying the reconfigured application behavior on the UML models.
The ellipses represent the tools and the arrows are the inputs to the tools.

execution sequence due to reconfiguration. An evaluation algorithm evaluates the
formula by searching the generated state-space to find whether the software design
models support the specified execution sequence or the execution invariant. If the
verification fails, a feedback algorithm outputs guidelines about the possible loca-
tion of the problem. In this way, the designer is able to verify whether the application
behaves in the desired way before/after reconfiguration at the design level without
any implementation. In summary, the contributions of our work to the existing liter-
ature are:

• Generic execution semantics: the execution semantics can be applied to any com-
plete UML model.

• No additional models are needed: The inputs to the model checker are UML
models with RMs. Thus, the designers can use the approach by just adding these
tags rather than re-modeling the whole system.

• The verification presents guidelines to the users: When the verification fails, our
approach goes one step further and reports possible locations of the problem.

13.1.3 Reconfiguration mechanisms and running example

In the context of UML models, a RM consists of sets of calls with the receiving
objects and configuration parameters. The reconfiguration is realized by the RM
selecting a set of calls depending on the values of the configuration parameters.

Figure 13.3 presents the design of a sorter software system, which supports sort-
ing of integer arrays. The clients use this software system by calling the method
Sorter.sort(). The implementation of this method consists of a call to the method
sortAlgorithm.sort() through the attribute f. Here, depending on the value of the
attribute f, one of the subclasses, namely quickSort and insertionSort, of the inter-
face sortAlgorithm receives the call. These subclasses implement different sorting
algorithms in the method sort().

The design of the sorter software system supports the reconfiguration of changing
the sorting algorithms. The call f.sort() is a polymorphic call (i.e. the receiver of

13 Verifying Runtime Reconfiguration Requirements on UML Models 5

Fig. 13.3 UML class diagram of the sorting software system.

the call can be changed) and depending on the value of the variable f, at runtime,
the different subclasses of the interface sortAlgorithm might receive the call. Here,
the RM polymorphism changes the structure and the call pattern by changing the
receiver of the call.

With the sorter software system, we need to ensure that it supports all the desired
reconfigurations. For example, a reconfiguration may require the sorter system to
run with the merge sort algorithm; however, since this algorithm is not in the design
the software system does not support this reconfiguration

13.2 Runtime Reconfiguration Mechanisms

The input to our approach is the UML models with the RMs. We designed exten-
sions to UML for specifying 3 frequently used reconfiguration requirements. These
extensions can be added to existing UML models; hence, the remodeling is not re-
quired. Below these mechanisms and their specifications in UML are detailed:

Polymorphic Reconfiguration: This RM has one configuration parameter
which is the reference variable of the call. Using polymorphism, the receiver of
the call changes according to the value of this variable. In a UML sequence dia-
gram, a call action that can be reconfigured using this mechanism should be tagged
as [PolymorphicReconfiguration(reference variable name)]. With this RM, the de-
signer specifies that a call action can be received by any object-type that is a sub-type
of the type of the reference variable. For the sorter system described in the previous
section, we want to be able to switch between the different sorting algorithms at
runtime. We can achieve this using polymorphic reconfiguration on the call action
f.sort(), where the variable f is the reference variable of the call action. Figure 13.4
shows how this call action is tagged reconfigurable using polymorphism. With this
tag, the design shows that the configuration system is able to change the object value
the variable f is holding at runtime. This change causes the call to the method sort()
to be received by other type-compatible objects.

Conditional Reconfiguration: This RM uses control-flow statements like if-else
to select the calls to be executed. The frames labeled ConditionalReconfiguration

6 Selim Ciraci, Pim van den Broek, and Mehmet Aksit

Fig. 13.4 The call f.sort() tagged as reconfigurable using polymorphism.

are used for modeling this RM in sequence diagrams. Similar to alternative frames,
the conditional reconfiguration frame contains frame fragments with guards. The
configuration parameters are the variables specified in the guards of the fragments.

Fig. 13.5 Dynamic type loading of the class Program.

Dynamic Type Loading: this is the RM where a class is loaded at runtime and
it’s configuration parameter is the name of the class to be loaded. In UML sequence
diagrams, this mechanism can be represented by alternative frames, where one frag-
ment shows the actions taken when the class is successfully loaded and another frag-
ment shows the actions taken when the loading fails. The fragment that shows the
successful load of the type has the guard DynamicTypeLoading(className) where
the parameter className is the name of the class to be loaded. The fragment show-
ing the actions taken when the load fails, on the other hand, has the guard Dynam-
icTypeLoading fail(className). Figure 13.5 depicts a sequence diagram with dy-
namic type loading. Here, the method loadProgram() of the class Main is invoked.
This invocation is received by the instance m of the same class, which in turn loads
and creates an instance of the class Program.

13 Verifying Runtime Reconfiguration Requirements on UML Models 7

13.3 Graph-based Model Checking of Reconfiguration
Requirements

13.3.1 Specialization of graph-based model checking

In graph-based model checking a runtime state of the system is modeled as a graph
and the execution semantics are modeled as graph transformation rules. Informally,
a graph transformation rule consists of two graphs: a left-hand side graph and a
right-hand side graph. A transformation rule is applied to a graph G, by recognizing
the left-hand side graph in G and replacing the recognized left-hand side with the
right-hand side graph. The graph production tool automatically applies all the appli-
cable transformation rules to a graph; this generates graphs that represent different
runtime states of the system. In this way, the graph production system generates all
the states of the system.

In our approach, we specialized graph-based model checking by defining a
graph-based modeling language that represents a runtime state of an OO software
system at UML’s level of abstraction. We call this modeling language Design Con-
figuration Modeling Language (DCML). With DCML, we modeled transformation
rules that simulate the execution of call, return and create actions of UML sequence
diagrams. An important aspect of these transformation rules is that they achieve a
simulation that is close to actual execution of OO software systems. For example,
the simulation of a call action involves finding the latest implementation of a method
in the inheritance hierarchy.

In addition to these execution semantics, we modeled the semantics of the 3 RMs
that are described in Section 13.2. These rules can be applied to a software system
when the simulation reaches an action that is tagged reconfigurable in the sequence
diagrams.

13.3.2 Simulation in detail

The verification process starts by the designer inputting the UML models. We pro-
grammed extensions to the open source UML diagram editor ArgoUML (arg, 2010),
where UML models can be imported and converted to DCML models. Once the
conversion is completed, the converter tool launches the GROOVE graph produc-
tion tool with the transformation rules used for simulating UML models. GROOVE
is an open source graph production tool that has been used in various research
projects (Kastenberg and Rensink, 2006).

DCML models are simulated by GROOVE, which automatically triggers the ap-
propriate graph transformation rules that represent the operational (execution and
reconfiguration) semantics of the UML models. This generates a state-space that
we call the execution tree of the input UML models. The nodes in this tree are the
various runtime states of the software system and the transitions are the applications

8 Selim Ciraci, Pim van den Broek, and Mehmet Aksit

of the transformation rules. The branching in the tree is caused by the simulation of
reconfiguration mechanisms. Each path from the root to a leaf node is an execution
sequence supported by the input models.

Fig. 13.6 The execution tree of the sorter software system.

As discussed in Section 13.1.3, the sorter software system supports the recon-
figuration of changing the sorting algorithm at runtime. The design of this software
system, as presented in Figure 13.3, includes two sorting algorithms. The execution
tree generated from the simulation is presented in Figure 13.6. Note the branching
after the state s9: it can be seen with the transition labeled executeMethod(sort, In-
sertionSort) that the insertion sort algorithm has been executed in the left branch.
In the right branch, on the other hand, the quick sort algorithm has executed, which
can be seen with the transition labeled executeMethod(sort, quickSort). The transi-
tion labeled PolymorphicConfiguration() between states s9 and s10 shows that the
transformation rule modeling the semantics of the polymorphic reconfiguration is
applied. This application, in turn, changed the value the attribute f is holding from
an instance of the class InsertionSort to an instance of the class quickSort. Thus, the
receiver of the call f.sort() is reconfigured

The verification involves finding an execution sequence in the execution tree that
conforms an execution sequence of the reconfiguration requirement. The input se-
quence involves the names of the executed methods and their execution order. Thus,
the names of the methods that are executed during simulation should also be in-
cluded in the execution tree to realize the verification. We have designed parameter-
ized transformation rules that output information about the executed methods and
classes for this. A parameterized rule specifies a set of node attributes that should
be output instead of the parameters. One of these rules is the rule executeMethod(),

13 Verifying Runtime Reconfiguration Requirements on UML Models 9

which outputs the names of the method and the class that started to execute. Other
rules are as follows:

• executes(O): object-type O has received a call.
• returnframe(M, O): method M of object-type O returns.
• conditionalExecutes(C): the simulation executes the operand with guard C.
• polymorphicReconfiguration(T,O): polymorphic reconfiguration has changed the

receiver of a call from object-type T to object-type O.
• dynamicTypeLoading(O): dynamic type loading mechanism has loaded the object-

type O.

It is important to note here that the user does not have to see the execution tree
generated by simulation. The user only needs to enter the execution sequence to be
verified as described in the next subsection.

13.3.3 Specification and verification of execution sequences

The execution sequence to be verified is expressed in terms of the executing/returning
methods and the applied reconfiguration mechanisms. For this, the names of the pa-
rameterized transformation rules are used, where the names of desired methods are
placed instead of the parameters. For example, the execution sequence of the quick
sort algorithm executing can be expressed as:

After executeMethod(sort, Sorter) eventually (After executeMethod(sort, quickSort
eventually returnframe(sort, Sorter)))

Here, the terms after and eventually are used for expressing the execution order
of the two methods. Formally, these terms can be expressed using temporal logic;
however, this requires some knowledge in formal specifications.

For our approach to be used by designers that are not knowledgeable in formal
specifications, we developed a visual state-based language (VSL). VSL is a state
machine with accept and reject states. The states are used for specifying actions
that need to be observed during simulation, like the execution of a method: exe-
cuteMethod. The transitions, on the other hand, are used for ordering the states. A
transition between two states means after eventually. The states can also be labeled
as accept or reject to show the property of the state. A sequence of states that ends
with an accept state is used for expressing an execution sequence that we are in-
terested in verifying: the simulation should generate this sequence. A sequence that
ends with a reject state means an execution sequence that we are not interested in:
the simulation can ignore generating this sequence. Figure 13.7 presents the execu-
tion sequence of quick sort executing as the sorting algorithm in VSL. Here, the last
state is an accept state because it is the last action in a desired execution sequence.
That is, we want to observe/verify an execution sequence where first the method
Sorter.sort() executes, then, eventually the method quickSort.Sort() executes, then,
eventually the method Sorter.sort() returns.

10 Selim Ciraci, Pim van den Broek, and Mehmet Aksit

Fig. 13.7 The reconfiguration requirement of quick sort executing as the sorting algorithm.

The requirement of quick sort executing as a sorting algorithm is a supported
reconfiguration requirement. Such requirements specify an execution sequence that
should be generated by the simulation. The verification of these requirements is re-
alized by the verification algorithm searching for the execution sequences (in the
execution tree) that satisfy the VSL specification. If at least one such execution se-
quence is located, then the VSL specification is supported by the UML models.
If, on the other hand, no such execution sequence can be located, then the verifi-
cation of the VSL specification fails. For example, if during the simulation of the

13 Verifying Runtime Reconfiguration Requirements on UML Models 11

UML models of the sorter system, after the execution of method quickSort.sort() the
method Sorter.sort() does not return, then the verification algorithm fails in locating
the sequence that satisfies the specification and, thus, the verification fails.

In addition to supported reconfiguration requirements, there are also reconfigu-
ration invariants, which are application constraints that should not be violated by
the reconfiguration. These requirements are expressed as execution sequences that
violate the invariant. Similar to the verification of supported reconfigurations, the
verification of the reconfiguration invariants is realized by searching for an exe-
cution sequence that satisfies the VSL specification. Since the VSL specification
expresses a violation of the invariant, the verification succeeds if the verification
algorithm cannot locate such an execution sequence.

13.3.4 Feedback mechanism

When the verification of a VSL specification fails, a feedback algorithm is exe-
cuted. The aim of the feedback algorithm is to provide guidelines to the designers
in finding the errors in the design. The feedback algorithm for supported reconfig-
uration requirements simply traces the execution sequences in the execution tree
and outputs the execution sequence that supports the longest initial fragment of the
specification. For example, if the VSL specification in Figure 13.7 is supported up
to the execution of the method quickSort.sort(), the feedback algorithm outputs the
VSL specification shown in Figure 13.8

Fig. 13.8 The output of the feedback mechanism showing that the design only supports up to the
execution of the method quickSort.sort().

This shows that after the method quickSort.sort() starts executing, there is an
error in UML models such that the method Sorter.sort() never returns.

For invariants, the VSL specification expresses an execution sequence that vi-
olates the invariant. The invariant is violated when there is at least one execution
sequence in the execution tree that satisfies the specification. Once such an execu-
tion sequence is located, the feedback algorithm outputs the whole execution trace
(from beginning to its end). The designer can, then, trace this execution sequence in
the UML models and locate the error causing the violation of the invariant.

12 Selim Ciraci, Pim van den Broek, and Mehmet Aksit

13.4 Evaluation of the Approach

We conducted two studies in evaluating our approach: in the first study, we veri-
fied the reconfiguration requirements of a software system belonging to the Philips
Healthcare MRI software framework and compared the verification with the actual
execution. In the second study, we conducted an experiment with computer science
master students to test the effectiveness of the feedback mechanisms.

13.4.1 Case study with the designer from industry

We have applied the process for verification of reconfiguration requirements on
UML models for verifying the reconfiguration requirements (current and expected
in the near future) of a software system called Data Monitoring Viewer (DMV)
which belongs to the Philips Healthcare MRI framework (see Chapter 1). This soft-
ware system is used for displaying the received signals of an MRI system and it
allows the user to manipulate certain parameters to display the effects on the signal.

The objective of this case study is to compare the verification results on the UML
models with the implemented software. This case study is conducted together with
the designer of the DMV. The DMV is written in C# (21K LOC, 139 classes) and
is designed to be functionally extendable; it can be extended with signal viewers
for specific signals, with user interface elements (e.g. buttons) that add extra func-
tionality (e.g. loading the waveform from a file). Although, the DMV is stand alone
software, there are also extensions that integrate the software to the MRI software
framework so that it can interact with the MRI system. These extensions are im-
plemented in a class and these classes are compiled as Dynamically Linked Library
(DLL) files. These DLL files are placed in a specific directory; when the DMV is
launched, before displaying the main window, it scans this directory and loads the
classes.

The DMV is designed such that the extensions communicate with the main pro-
gram through a set of event interfaces (similar to the observer pattern). Upon load
of an extension, the extension asks the DMV for a set of events and it registers its
handlers to the events it is interested in. Figure 13.9-(a) presents a sequence diagram
showing the loading of the extension Ext1 represented by the class with the same
name. The class Main is responsible from the loading of the extensions in the DMV.
The loading of an extension starts with the call Main.createProgram(). The object
p of the class PE is the event interface and the class Ext1 registers its handler for
the event WindowLoad() by calling the method PE.registerWindowLoader(). Here,
the event WindowLoad() is fired by the DMV when it completes preparing the main
window of the application. Handlers of this event can access the window and change
it. For example, the extension Ext1 adds a button to the main window. Figure 13.9-
(b) presents the sequence showing the notification of the event WindowLoad(). Here,
the class Extension represents any extension that has registered its handler for this
event.

13 Verifying Runtime Reconfiguration Requirements on UML Models 13

Fig. 13.9 a) Sequence diagram showing the load of the extension Ext1. b) Sequence diagram
showing the notification of the extensions

The loading of extensions is handled through a dynamic type loading reconfigu-
ration mechanism. In the current version of the DMV, 4 extensions are implemented
and, thus, dynamic type loading is executed 4 times. In each load, the DMV has
the option of loading one of the 4 extensions or failing. This in total makes 625 (54)
different execution sequences. In addition to this, the configuration system reconfig-
ures the DMV and is extensions through 5 conditional reconfiguration mechanisms
and 1 polymorphic reconfiguration mechanism; these mechanisms also change the
interactions in the DMV, causing new execution sequences. Obviously, the DMV
supports many execution sequences due to reconfiguration and it is hard for the de-
signer to know each one of these different execution sequences for verifying the
reconfiguration requirements.

For the case study, we used the class diagram of the DMV tool and 4 sequence
diagrams showing the successful execution of 4 extensions. The sequence diagrams
in total contain 66 call/return actions. The execution tree generated after the simu-
lation consists of 785 branches, 22579 states and 22578 transitions. The simulation
took 1.6 minutes and 23MB memory with Intel Centrino 1.7GHz processor, 1GB
memory and running Windows XP.

We verified 10 reconfiguration requirements of the DMV. In all the requirements
the verification and the manual evaluation by executing the DMV agreed. This
shows that the simulation can generate the right execution sequences. Below we

14 Selim Ciraci, Pim van den Broek, and Mehmet Aksit

provide two examples from the verified requirements in order to clarify the verifica-
tion process:

The DMV should be able to execute when the loading of an extension fails
– The DMV is designed to load extensions only when the dynamic type loading
succeeds; otherwise, it ignores the loading of the extension as shown in Figure 13.9-
(a). If there is an execution sequence where after a failing dynamic type load, none
of the events are fired, then, this requirement is violated. This is because the failure
in the type loading caused a problem in the DMV and it did not execute as it should.
This failure execution sequence is expressed in VSL and put into to the verification
algorithm. The verification algorithm did not find any execution sequence in the
execution tree that satisfies the VSL specification for this requirement, meaning the
requirement is supported by the DMV.

The tool should support extensions that are dependent on each other – In
the near future, it is expected that the DMV will be extended with extensions that
depend on other extensions. Currently, none of the implemented extensions is de-
pendent on any other. Thus, we modeled two extensions extV1 and extV2, where
extV2 is dependent on extV1. The reconfiguration requirement for these extensions
is that when both extV1 and extV2 are registered as the handlers of the event
WindowLoad(), then first extV1.WindowLoad() and, later on, extV2.WindowLoad()
should execute. If there is an execution sequence in the execution tree, where
extV2.WindowLoad() executes before extV1.WindowLoad() is executed, then the
requirement is not supported. We expressed this sequence in VSL. The verification
found an execution sequence in the execution tree where extV2.WindowLoad() is ex-
ecuted before extV1.WindowLoad(). Thus, the requirement is not supported by the
DMV.

From the 10 requirements, the verification and manual evaluation showed that 2
are not supported by the DMV tool. These 2 requirements are for features that are
planned for future releases of the tool. With our tool, we verified these requirements
by just adding a new sequence diagram which is a copy of an existing sequence di-
agram where a class is renamed. Manual evaluation, on the other hand, required us
to implement a new class by copying and adapting an existing class. More impor-
tantly, in a corporate environment, conducting such tests with implementation goes
through development processes. In addition to this, our simulation has shown the
designer that the execution orders of the extensions might change; the designers did
not know this and implemented to the DMV without specifying any loading order.
Although the design of the DMV contains only 66 actions, the simulation generated
many execution sequences because the number of reconfiguration options (e.g. num-
ber of possibilities of the dynamic type loading reconfiguration mechanism) in the
design is high. It may be argued that designs with a higher number of reconfigura-
tion options, the simulation may require too many resources (or may not complete at
all). GROOVE already implements techniques for detecting equal states and merg-
ing the branches that yield to the same state. Experiments on GROOVE have also
shown that it can easily handle simulations resulting 1.5 million states (Rensink,
2005).

13 Verifying Runtime Reconfiguration Requirements on UML Models 15

13.4.2 Experiment with students

The motivation of the experiment was to understand how effective the feedback
algorithm is in helping the designers to locate the problems. That is, we wanted to
know whether using this error diagnosis mechanism helps in correcting reconfigura-
tion errors. The experiment is conducted with 22 master computer science students.
Before the experiment the students were given a course on reconfiguration, UML
class and sequence diagrams and manually tracing VSL specifications. We used the
UML models of the DMV with three extensions; in total the students have received
4 sequence diagrams and 1 class diagram. To follow the non-disclosure agreements,
the names of the classes, attributes, and methods have been changed. Because there
are two types of requirements, the experiment is divided into two sub-experiments:
Experiment 1 (E1) tested the effectiveness of the tool with supported reconfiguration
requirements and Experiment 2 (E2) tested the effectiveness of the tool for reconfig-
uration invariants. The students were given 4 VSL specifications; two specifications
of supported reconfigurations and two specifications of reconfiguration invariants.
The students were randomly divided into two groups; the first group did all the
specifications about supported reconfigurations manually and the specifications of
reconfiguration invariants with tool support (i.e. with the feedback algorithm). The
second group evaluated the specifications of supported reconfigurations with tool
support and the specifications of reconfiguration invariants manually. For each re-
quirements type, the students have received one easy and one hard specification. We
injected errors into the UML sequence diagrams so that all 4 specifications were not
supported by the models. The students were asked to evaluate the specifications and
to correct only the UML sequence diagrams when the verification of the require-
ment fails. Here, correction involved removing the call action that is causing the
problem. Each specification referred to a distinct set of sequence diagrams.

The data analysis shows that the tool supported group in both groups made 0
errors, while the manual evaluation group on average made 1.25 errors in E1 and
1.12 errors in E2. For both experiments, we conducted formal statistical analysis;
interested readers on the analysis are referred to the thesis published about this
work (Ciraci, 2009). These analysis yielded a significance value that is lower than
the aimed significance value (p = 0.007 < paimed = 0.05) showing that the ex-
periment results of tool supported group and the manual evaluation group in both
experiments is significantly different. With this conclusion, we can state that using
the tool indeed affects the outcome of the evaluation and correction process. The
statistical power tests for E1 yielded 0.98 and for E2 yielded 0.87. These values are
greater than the minimum expected power 0.8 showing that the number of subjects
are sufficient and the results have strong power for acceptance.

The students were also asked to fill out a survey about the output of the tool. The
results of this survey show that 75% of the students found the trace provided by the
tool useful; however, 25% said that they did not use the trace. From this 25% of the
students the majority said that they wanted a better user interface for the tool.

16 Selim Ciraci, Pim van den Broek, and Mehmet Aksit

13.5 Conclusions

In this chapter, we described the process and the supporting tool set for verifying
the reconfiguration requirements on UML models. The major aspect of the process
is that the model checker and formal processes are hidden from the user. The in-
puts are UML models and an execution sequence conforming to a reconfiguration
requirement. The verification outputs whether the models support the provided the
execution sequence. In case, the execution sequence is not support, an execution se-
quence (with the names of the methods) providing guidelines on the location of the
problem is shown to the user.

The verification is realized by specializing the graph-based model checking. The
main reason for selecting this model checking method is that UML models can be
conveniently represented as graphs. For the specialization, we modeled graph trans-
formation rules that provide execution semantics for UML models that are close to
the actual execution of OO software systems. These rules are not application spe-
cific, enabling them to be used with any UML models that comply with the UML
standards.

We applied our approach to two case studies. In one case study, we verified the re-
configuration requirements of an industrial software system from Philips Healthcare
MRI framework (Section 13.4.1) and compared these results with manual execution
tests. For all these requirements, the manual execution test and verification yielded
the same result. This shows that the verification is able to generate the execution se-
quences correctly. We also evaluated two reconfiguration features that are planned
to be implemented in future releases of the industrial software system. The eval-
uation using the verification approach required modifications of the UML models
and the manual evaluation required changes in the implementation. In a corporate
environment, changing the implementation is carefully governed by organizational
processes. Conducting such tests on the implementation would also require these
processes to be executed; however, such processes may not be required for chang-
ing/experimenting on UML models. In the second case study (Section 13.4.2), we
conducted two experiments with computer science master students to test whether
the guidelines provided by the tool set help in finding the location of the problem.
These experiments showed that the tool set was indeed helpful to the students in
correcting the errors related to reconfiguration.

References

(2010) Argouml. URL http://argouml.tigris.org
(2010) Unified modeling language (uml), version 2.2. URL http://www.omg.
org/technology/documents/formal/uml.htm

Apvrille L, De Saqui-Sannes P, Sénac P, Lohr C (2004) Verifying service con-
tinuity in a dynamic reconfiguration procedure: Application to a satellite sys-

13 Verifying Runtime Reconfiguration Requirements on UML Models 17

tem. Automated Software Engg 11(2):167–191, DOI http://dx.doi.org/10.1023/B:
AUSE.0000017742.47984.6c

Becker B, Beyer D, Giese H, Klein F, Schilling D (2006) Symbolic invariant verifi-
cation for systems with dynamic structural adaptation. In: ICSE ’06, pp 72–81

Bucchiarone A, Galeotti JP (2008) Dynamic software architectures verification us-
ing dynalloy. In: ECEASST ’08, vol 10

Ciraci S (2009) Graph based verification of software evolution requirements. PhD
thesis, University of Twente

Giese H, Burmester S, Schäfer W, Oberschelp O (2004) Modular design and ver-
ification of component-based mechatronic systems with online-reconfiguration.
SIGSOFT Softw Eng Notes 29(6):179–188, DOI http://doi.acm.org/10.1145/
1041685.1029920

Grove D, DeFouw G, Dean J, Chambers C (1997) Call graph construction in object-
oriented languages. SIGPLAN Not 32(10):108–124, DOI http://doi.acm.org/10.
1145/263700.264352

Kastenberg H, Rensink A (2006) Model checking dynamic states in groove. In:
SPIN’06, Springer-Verlag, Berlin, vol 3925, pp 299–305

Kastenberg H, Kleppe AG, Rensink A (2006) Defining oo execution semantics using
graph transformations. In: 8th IFIP, LNCS, vol 4037, pp 186–201

Oreizy P, Medvidovic N, Taylor RN (1998) Architecture-based runtime software
evolution. In: ICSE ’98: Proceedings of the 20th international conference on Soft-
ware engineering, IEEE Computer Society, Washington, DC, USA, pp 177–186

Rensink A (2005) Time and space issues in the generation of graph transition sys-
tems. In: Mens T, Schürr A, Taentzer G (eds) GraBaTs 2004, Barcelona, Spain,
Elsevier, Amsterdam, Electronic Notes in Theoretical Computer Science, vol 127,
pp 127–139

Visser W, Havelund K, Brat G, Park S (2000) Model checking programs. In: ASE
’00: Proceedings of the 15th IEEE international conference on Automated soft-
ware engineering, IEEE Computer Society, Washington, DC, USA, p 3

