
Chapter 10
Continuous Analysis of Affect from Voice
and Face

Hatice Gunes, Mihalis A. Nicolaou, and Maja Pantic

10.1 Introduction

Human affective behavior is multimodal, continuous and complex. Despite major
advances within the affective computing research field, modeling, analyzing, inter-
preting and responding to human affective behavior still remains a challenge for au-
tomated systems as affect and emotions are complex constructs, with fuzzy bound-
aries and with substantial individual differences in expression and experience [7].
Therefore, affective and behavioral computing researchers have recently invested
increased effort in exploring how to best model, analyze and interpret the subtlety,
complexity and continuity (represented along a continuum e.g., from −1 to +1) of
affective behavior in terms of latent dimensions (e.g., arousal, power and valence)
and appraisals, rather than in terms of a small number of discrete emotion categories
(e.g., happiness and sadness). This chapter aims to (i) give a brief overview of the
existing efforts and the major accomplishments in modeling and analysis of emo-
tional expressions in dimensional and continuous space while focusing on open is-
sues and new challenges in the field, and (ii) introduce a representative approach for
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multimodal continuous analysis of affect from voice and face, and provide exper-
imental results using the audiovisual Sensitive Artificial Listener (SAL) Database
of natural interactions. The chapter concludes by posing a number of questions that
highlight the significant issues in the field, and by extracting potential answers to
these questions from the relevant literature.

The chapter is organized as follows. Section 10.2 describes theories of emotion,
Sect. 10.3 provides details on the affect dimensions employed in the literature as
well as how emotions are perceived from visual, audio and physiological modali-
ties. Section 10.4 summarizes how current technology has been developed, in terms
of data acquisition and annotation, and automatic analysis of affect in continuous
space by bringing forth a number of issues that need to be taken into account when
applying a dimensional approach to emotion recognition, namely, determining the
duration of emotions for automatic analysis, modeling the intensity of emotions, de-
termining the baseline, dealing with high inter-subject expression variation, defining
optimal strategies for fusion of multiple cues and modalities, and identifying appro-
priate machine learning techniques and evaluation measures. Section 10.5 presents
our representative system that fuses vocal and facial expression cues for dimensional
and continuous prediction of emotions in valence and arousal space by employing
the bidirectional Long Short-Term Memory neural networks (BLSTM-NN), and in-
troduces an output-associative fusion framework that incorporates correlations be-
tween the emotion dimensions to further improve continuous affect prediction. Sec-
tion 10.6 concludes the chapter.

10.2 Affect in Dimensional Space

Emotions and affect are researched in various scientific disciplines such as neuro-
science, psychology, and cognitive sciences. Development of automatic affect ana-
lyzers depends significantly on the progress in the aforementioned sciences. Hence,
we start our analysis by exploring the background in emotion theory, perception and
recognition.

According to research in psychology, three major approaches to affect modeling
can be distinguished [31]: categorical, dimensional, and appraisal-based approach.
The categorical approach claims that there exist a small number of emotions that
are basic, hard-wired in our brain, and recognized universally (e.g. [18]). This the-
ory on universality and interpretation of affective nonverbal expressions in terms of
basic emotion categories has been the most commonly adopted approach in research
on automatic measurement of human affect. However, a number of researchers have
shown that in everyday interactions people exhibit non-basic, subtle and rather com-
plex affective states like thinking, embarrassment or depression. Such subtle and
complex affective states can be expressed via dozens of anatomically possible fa-
cial and bodily expressions, audio or physiological signals. Therefore, a single label
(or any small number of discrete classes) may not reflect the complexity of the af-
fective state conveyed by such rich sources of information [82]. Hence, a number
of researchers advocate the use of dimensional description of human affect, where
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Fig. 10.1 Russell’s
valence-arousal space. The
figure is by courtesy of [77]

affective states are not independent from one another; rather, they are related to one
another in a systematic manner (see, e.g., [31, 82, 86]). It is not surprising, therefore,
that automatic affect sensing and recognition researchers have recently started ex-
ploring how to model, analyze and interpret the subtlety, complexity and continuity
(represented along a continuum from −1 to +1, without discretization) of affective
behavior in terms of latent dimensions, rather than in terms of a small number of
discrete emotion categories.

The most widely used dimensional model is a circular configuration called Cir-
cumplex of Affect (see Fig. 10.1) introduced by Russell [82]. This model is based on
the hypothesis that each basic emotion represents a bipolar entity being a part of the
same emotional continuum. The proposed poles are arousal (relaxed vs. aroused)
and valence (pleasant vs. unpleasant), as illustrated in Fig. 10.1. Another well-
accepted and commonly used dimensional description is the 3D emotional space of
pleasure—displeasure, arousal—nonarousal and dominance—submissiveness [63],
at times referred to as the PAD emotion space [48] or as emotional primitives [19].

Scherer and colleagues introduced another set of psychological models, referred
to as componential models of emotion, which are based on the appraisal theory
[25, 31, 86]. In the appraisal-based approach emotions are generated through con-
tinuous, recursive subjective evaluation of both our own internal state and the state
of the outside world (relevant concerns/needs) [25, 27, 31, 86]. Despite pioneering
efforts of Scherer and colleagues (e.g., [84]), how to use the appraisal-based ap-
proach for automatic measurement of affect is an open research question as this
approach requires complex, multicomponential and sophisticated measurements of
change. One possibility is to reduce the appraisal models to dimensional models
(e.g., 2D space of arousal-valence).

Ortony and colleagues proposed a computationally tractable model of the cog-
nitive basis of emotion elicitation, known as OCC [71]. OCC is now established as
a standard (cognitive appraisal) model for emotions, and has mostly been used in
affect synthesis (in embodied conversational agent design, e.g. [4]).
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Each approach, categorical or dimensional, has its advantages and disadvantages.
In the categorical approach, where each affective display is classified into a single
category, complex mental states, affective state or blended emotions may be too dif-
ficult to handle [108]. Instead, in dimensional approach, observers can indicate their
impression of each stimulus on several continuous scales. Despite exhibiting such
advantages, dimensional approach has received a number of criticisms. Firstly, the
usefulness of these approaches has been challenged by discrete emotions theorists,
such as Silvan Tomkins, Paul Ekman, and Carroll Izard, who argued that the reduc-
tion of emotion space to two or three dimensions is extreme and resulting in loss
of information. Secondly, while some basic emotions proposed by Ekman, such as
happiness or sadness, seem to fit well in the dimensional space, some basic emo-
tions become indistinguishable (e.g., fear and anger), and some emotions may lie
outside the space (e.g., surprise). It also remains unclear how to determine the posi-
tion of other affect-related states such as confusion. Note, however, that arousal and
valence are not claimed to be the only dimensions or to be sufficient to differentiate
equally between all emotions. Nonetheless, they have already proven to be useful in
several domains (e.g., affective content analysis [107]).

10.3 Affect Dimensions and Signals

An individual’s inner emotional state may become apparent by subjective experi-
ences (how the person feels), internal/inward expressions (bio signals), and exter-
nal/outward expressions (audio/visual signals). However, these may be incongruent,
depending on the context (e.g., feeling angry and not expressing it outwardly).

The contemporary theories of emotion and affect consider appraisal as the most
significant component when defining and studying emotional experiences [81], and
at the same time acknowledge that emotion is not just appraisal but a complex mul-
tifaceted experience that consists of the following stages (in order of occurrence):

1. Cognitive Appraisal. Only events that have significance for our goals, concerns,
values, needs, or well-being elicit emotion.

2. Subjective feelings. The appraisal is accompanied by feelings that are good or
bad, pleasant or unpleasant, calm or aroused.

3. Physiological arousal. Emotions are accompanied by autonomic nervous system
activity.

4. Expressive behaviors. Emotions are communicated through facial and bodily ex-
pressions, postural and voice changes.

5. Action tendencies. Emotions carry behavioral intentions, and the readiness to act
in certain ways.

This multifaceted aspect of affect poses a true challenge to automatic sensing
and analysis. Therefore, to be able to deal with these challenges, affect research
scientists have ended up making a number of assumptions and simplifications while
studying emotions [7, 72]. These assumptions can be listed as follows.
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1. Emotions are on or off at any particular point in time. This assumption has im-
plications on most data annotation procedures where raters label a user’s ex-
pressed emotion as one of the basic emotion categories or a specific point in a
dimensional space. The main issue with this assumption is that the boundaries
for defining the expressed emotion as on or off are usually not clear.

2. Emotion is a state that the subject does not try to actively change or alleviate.
This is a common assumption during the data acquisition process where the sub-
jects are assumed to have a simple response to the provided stimulus (e.g., while
watching a clip or interacting with an interface). However, such simple passive
responses do not usually hold during daily human–computer interactions. Peo-
ple generally regulate their affective states caused by various interactions (e.g.,
an office user logging into Facebook to alleviate his boredom).

3. Emotion is not affected by situation or context. This assumption pertains to most
of the past research work on automatic affect recognition where emotions have
been mostly investigated in laboratory settings, outside of a social context. How-
ever, some emotional expressions are displayed only during certain context (e.g.,
pain).

Affect research scientists have made the following simplifications while studying
emotions [7, 72]:

1. Emotions do occur in asynchronous communication (e.g., via a prerecorded
video/sound from a sender to a receiver). This simplification does not hold in re-
ality as human nonverbal expressive communication occurs mostly face-to-face.

2. Interpersonal emotions do arise from communications with strangers (e.g., lab-
oratory studies where people end up communicating with people they do not
know). This simplification is unrealistic as people tend to be less expressive with
people they do not know on an interpersonal level. Therefore, an automatic sys-
tem designed using such communicative settings is expected to be much less
sensitive to its user’s realistic expressions.

Overall, these assumptions and simplifications are far from reality. However, they
have paved the initial but crucial way for automatic affect recognizers that attempt to
analyze both the felt (e.g., [9, 10, 59]) and the internally or the externally expressed
(e.g., [50, 54]) emotions.

10.3.1 Affect Dimensions

Despite the existence of various emotion models described in Sect. 10.2, in auto-
matic measurement of dimensional and continuous affect, valence (how positive or
negative the affect is), activation (how excited or apathetic the affect is), power (the
sense of control over the affect), and expectation (the degree of anticipating or being
taken unaware) appear to make up the four most important affect dimensions [25].
Although ideally the intensity dimension could be derived from the other dimen-
sions, to guarantee a complete description of affective coloring, some researchers
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include intensity (how far a person is away from a state of pure, cool rationality)
as the fifth dimension (e.g., [62]). Solidarity, antagonism and agreement have also
been in the list of dimensions investigated [13]. Overall, search for optimal low-
dimensional representation of affect remains open [25].

10.3.2 Visual Signals

Facial actions (e.g., pulling eyebrows up) and facial expressions (e.g., producing
a smile), and to a much lesser extent bodily postures (e.g., head bent backwards
and arms raised forwards and upwards) and expressions (e.g., head nod), form the
widely known and used visual signals for automatic affect measurement. Dimen-
sional models are considered important in this task as a single label may not reflect
the complexity of the affective state conveyed by a facial expression, body posture or
gesture. Ekman and Friesen [17] considered expressing discrete emotion categories
via face, and communicating dimensions of affect via body as more plausible.

A number of researchers have investigated how to map various visual signals
onto emotion dimensions. For instance, Russell [82] mapped the facial expressions
to various positions on the two-dimensional plane of arousal-valence, while Cowie
et al. [13] investigated the emotional and communicative significance of head nods
and shakes in terms of arousal and valence dimensions, together with dimensional
representation of solidarity, antagonism and agreement.

Although in a stricter sense not seen as part of the visual modality, motion capture
systems have also been utilized for recording the relationship between body posture
and affect dimensions (e.g., [57, 58]). For instance, Kleinsmith et al. [58] identified
that scaling, arousal, valence, and action tendency were the affective dimensions
used by human observers when discriminating between postures. They also reported
that low-level posture features such as orientation (e.g., orientation of shoulder axis)
and distance (e.g., distance between left elbow and right shoulder) appear to help in
effectively discriminating between the affective dimensions [57, 58].

10.3.3 Audio Signals

Audio signals convey affective information through explicit (linguistic) messages,
and implicit (acoustic and prosodic) messages that reflect the way the words are
spoken. There exist a number of works focusing on how to map audio expression to
dimensional models. Cowie et al. used valence-activation space (similar to valence-
arousal) to model and assess affect from speech [11, 12]. Scherer and colleagues
have also proposed how to judge emotional effects on vocal expression, using the
appraisal-based theory [31].

In terms of affect recognition from audio signals the most reliable finding is
that pitch appears to be an index into arousal [7]. Another well-accepted finding is



10 Continuous Analysis of Affect from Voice and Face 261

that mean of the fundamental frequency (F0), mean intensity, speech rate, as well as
pitch range [46], “blaring” timbre [14] and high-frequency energy [85] are positively
correlated with the arousal dimension. Shorter pauses and inter-breath stretches are
indicative of higher activation [99].

There is relatively less evidence on the relationship between certain acoustic pa-
rameters and other affect dimensions such as valence and power. Vowel duration
and power dimension in general, and lower F0 and high power in particular, appear
to have correlations. Positive valence seems to correspond to a faster speaking rate,
less high-frequency energy, low pitch and large pitch range [85] and longer vowel
durations. A detailed literature summary on these can be found in [87] and [88].

10.3.4 Bio Signals

The bio signals used for automatic measurement of affect are galvanic skin response
that increases linearly with a person’s level of arousal [9], electromyography (fre-
quency of muscle tension) that is correlated with negatively valenced emotions [41],
heart rate that increases with negatively valenced emotions such as fear, heart rate
variability that indicates a state of relaxation or mental stress, and respiration rate
(how deep and fast the breath is) that becomes irregular with more aroused emotions
like anger or fear [9, 41].

Measurements recorded over various parts of the brain including the amygdala
also enable observation of the emotions felt [79]. For instance, approach or with-
drawal response to a stimulus is known to be linked to the activation of the left or
right frontal cortex, respectively.

A number of studies also suggest that there exists a correlation between in-
creased blood perfusion in the orbital muscles and stress levels for human beings.
This periorbital perfusion can be quantified through the processing of thermal video
(e.g., [102]).

10.4 Overview of the Current Technology

This section provides a brief summary of the current technology by describing how
affective data are acquired and annotated, and how affect analysis in continuous
space is achieved.

10.4.1 Data Acquisition and Annotation

Cameras are used for acquisition of face and bodily expressions, microphones are
used for recording audio signals, and thermal (infrared) cameras are used for record-
ing blood flow and changes in skin temperature. 3D affective body postures or
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gestures can alternatively be recorded by utilizing motion capture systems (e.g.,
[57, 58]). In such scenarios, the actor is dressed in a suit with a number of markers
on the joints and body segments, while each gesture is captured by a number of cam-
eras and represented by consecutive frames describing the position of the markers
in the 3D space. This is illustrated in Fig. 10.2 (second and third rows).

In the bio signal research context, the subject being recorded usually wears a
headband or a cap on which electrodes are mounted, a clip sensor, or touch type
electrodes (see Fig. 10.2, last row). The subject is then stimulated with emotionally-
evocative images or sounds. Acquiring affect data without subjects’ knowledge is
strongly discouraged and the current trend is to record spontaneous data in more
constrained conditions such as an interview (e.g., [10]) or interaction (e.g., [62])
setting, where subjects are still aware of placement of the sensors and their locations.

Annotation of the affect data is usually done separately for each modality, as-
suming independency between the modalities. A major challenge is the fact that
there is no coding scheme that is agreed upon and used by all researchers in the field
that can accommodate all possible communicative cues and modalities. In general,
the Feeltrace annotation tool is used for annotating the external expressions (audio
and visual signals) with continuous traces (impressions) in the dimensional space.
Feeltrace allows coders to watch the audiovisual recordings and move their cursor,
within the 2-dimensional emotion space (valence and arousal) confined to [−1,+1],
to rate their impression about the emotional state of the subject [11] (see the illustra-
tion in Fig. 10.3(a)). For annotating the internal expressions (bio signals), the level
of valence and arousal is usually extracted from subjective experiences (subjects’
own responses) (e.g., [59, 79]) due to the fact that feelings, induced by an image
or sound, can be very different from subject to subject. The Self Assessment Man-
nequin (SAM) [60], illustrated in Fig. 10.3(b), is the most widely used means for
self assessment.

When discretized dimensional annotation is adopted (as opposed to continuous
one), researchers seem to use different intensity levels: either a ten-point Likert
scale (e.g., 0-low arousal, 9-high arousal) or a range between −1.0 and 1.0 (di-
vided into a number of levels) [37]. The final annotation is usually calculated as the
mean of the observers’ ratings. However, whether this is the best way of obtaining
ground-truth labels of emotional data is still being discussed. Overall, individual
coders may vary in their appraisal of what is happening in the scene, in their judg-
ment of the emotional behavior of the target individual, in their understanding of
the terms ‘positive emotion’ and ‘negative emotion’ and in their movement of the
computer mouse to translate their rating into a point on the onscreen scale. Fur-
thermore, recent findings in dynamic emotional behavior coding indicate that the
temporal pattern of ratings appears similar across cultures but that there exist signif-
icant differences in the intensity levels at which participants from different cultural
backgrounds rate the emotional behaviors [96]. Therefore, how to obtain and use
rich emotional data annotations, from multiple and multi-cultural raters, needs seri-
ous consideration.
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Fig. 10.2 Examples of sensors used in multimodal affective data acquisition: (1st row) camera
for visible imagery (face and body), (2nd & 3rd rows) facial and body motion capture, and audio
signals (used for animation and rendering), (4th row) infrared camera for thermal imagery, and (5th
row) various means for recording bio signals (brain signals, heart and respiration rate, etc.)

10.4.2 Automatic Dimensional Affect Prediction and Recognition

After affect data have been acquired and annotated, representative and relevant fea-
tures need to be extracted prior to the automatic measurement of affect in dimen-
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Fig. 10.3 Illustration of (a) the Feeltrace annotation tool [11], and (b) the Self Assessment Man-
nequin (SAM) [60]

sional and continuous space. The feature extraction techniques used for each com-
municative source are similar to the previous works (reviewed in [40]) adopting a
categorical approach to affect recognition.

In dimensional affect analysis emotions are represented along a continuum. Con-
sidering this, systems that target automatic dimensional affect measurement should
be able to predict the emotions continuously. However, most of the automatic recog-
nition systems tend to simplify the problem by quantizing the continuous labels into
a finite number of discrete levels. Hence, the most commonly employed strategy in
automatic dimensional affect prediction is to reduce the continuous prediction prob-
lem to a two-class recognition problem (positive vs. negative or active vs. passive
classification; e.g., [66, 92]) or a four-class recognition problem (classification into
the quadrants of 2D V-A space; e.g., [8, 26, 29, 47, 106]).

For example, Kleinsmith and Bianchi-Berthouze discriminate between high–low,
high–neutral and low–neutral affective dimensions [57], while Wöllmer et al. quan-
tize the V-A dimensions of the SAL database into either 4 or 7 levels, and then
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use Conditional Random Fields (CRFs) to predict the quantized labels [105]. At-
tempts for discriminating between more coarse categories, such as positive vs. neg-
ative [66], and active vs. passive [8] have also been attempted. Of these, Caridakis et
al. [8] uses the SAL database, combining auditive and visual modalities. Nicolaou et
al. focus on audiovisual classification of spontaneous affect into negative or positive
emotion categories using facial expression, shoulder and audio cues, and utilizing 2-
and 3-chain coupled Hidden Markov Models and likelihood space classification to
fuse multiple cues and modalities [66]. Kanluan et al. combine audio and visual cues
for affect recognition in V-A space by fusing facial expression and audio cues, using
Support Vector Machines for Regression (SVR) and late fusion with a weighted lin-
ear combination [50]. The labels used have been discretized on a 5-point scale in the
range of [−1,+1] for each emotion dimension. The work presented in [106] utilizes
a hierarchical dynamic Bayesian network combined with BLSTM-NN performing
regression and quantizing the results into four quadrants (after training).

As far as actual continuous dimensional affect prediction (without quantization)
is concerned, there exist a number of methods that deal exclusively with speech
(i.e., [33, 105, 106]). The work by Wöllmer et al. uses the SAL Database and Long
Short-Term Memory neural networks and Support Vector Machines for Regression
(SVR) [105]. Grimm and Kroschel use the Vera am Mittag database [35] and SVRs,
and compare their performance to that of the distance-based fuzzy k-Nearest Neigh-
bor and rule-based fuzzy-logic estimators [33]. The work by Espinosa et al. also use
the Vera am Mittag database [35] and examine the importance of different groups
of speech acoustic features in the estimation of continuous PAD dimensions [19].

Currently, there are also a number of works focusing on dimensional and con-
tinuous prediction of emotions from the visual modality [39, 56, 69]. The work by
Gunes and Pantic focuses on dimensional prediction of emotions from spontaneous
conversational head gestures by mapping the amount and direction of head motion,
and occurrences of head nods and shakes into arousal, expectation, intensity, power
and valence level of the observed subject using SVRs [39]. Kipp and Martin in [56]
investigated (without performing automatic prediction) how basic gestural form fea-
tures (e.g., preference for using left/right hand, hand shape, palm orientation, etc.)
are related to the single PAD dimensions of emotion. The work by Nicolaou et al.
focuses on dimensional and continuous prediction of emotions from naturalistic fa-
cial expressions within an Output-Associative Relevance Vector Machine (RVM)
regression framework by learning non-linear input and output dependencies inher-
ent in the affective data [69].

More recent works focus on dimensional and continuous prediction of emotions
from multiple modalities. For instance, Eyben et al. [21] propose a string-based ap-
proach for fusing the behavioral events from visual and auditive modalities (i.e.,
facial action units, head nods and shakes, and verbal and nonverbal audio cues) to
predict human affect in a continuous dimensional space (in terms of arousal, ex-
pectation, intensity, power and valence dimensions). Although automatic affect an-
alyzers based on physiology end up using multiple signal sources, explicit fusion
of multimodal data for continuous modeling of affect utilizing dimensional models
of emotion is still relatively unexplored. For instance, Khalili and Moradi propose
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multimodal fusion of brain and peripheral signals for automatic recognition of three
emotion categories (positively excited, negatively excited and calm) [52]. Their re-
sults show that, for the task at hand, EEG signals seem to perform better than other
physiological signals, and nonlinear features lead to better understanding of the felt
emotions. Another representative approach is that of Gilroy et al. [28] that propose
a dimensional multimodal fusion scheme based on the power-arousal-PAD space
to support detection and integration of spontaneous affective behavior of users (in
terms of audio, video and attention events) experiencing arts and entertainment. Un-
like many other multimodal approaches (e.g., [8, 50, 66]), the ground truth in this
work is obtained by measuring Galvanic Skin Response (GSR) as an independent
measure of arousal.

For further details on the aforementioned systems, as well as on systems that
deal with dimensional affect recognition from a single modality or cue, the reader
is referred to [37, 38, 109].

10.4.3 Challenges and Prospects

The summary provided in the previous section reflects that automatic dimensional
affect recognition is still in its pioneering stage [34, 37, 38, 91, 105]. There are a
number of challenges which need to be taken into account when applying a dimen-
sional approach to affect prediction and advancing the current state of the art.

The interpretation accuracy of expressions and physiological responses in terms
of continuous emotions is very challenging. While visual signals appear to be bet-
ter for interpreting valence, audio signals seem to be better for interpreting arousal
[33, 68, 100, 105]. A thorough comparison between all modalities would indeed
provide a better understanding of which emotion dimensions are better predicted
from which modalities (or cues).

Achieving inter-observer agreement is one of the most challenging issues in
dimension-based affect modeling and analysis. To date, researchers have mostly
chosen to use self-assessments (subjective experiences, e.g. [41]) or the mean
(within a predefined range of values) of the observers’ ratings (e.g. [57]). Although
it is difficult to self-assess arousal, it has been reported that using classes gener-
ated from self-assessment of emotions facilitate greater accuracy in recognition
(e.g., [9]). This finding results from a study on automatic analysis of physiologi-
cal signals in terms of A-V emotion space. It remains unclear whether the same
holds independently of the utilized modalities and cues. Modeling inter-observer
agreement levels within automatic affect analyzers and finding which signals bet-
ter correlate with self assessment and which ones better correlate with independent
observer assessment remain unexplored.

The window size to be used to achieve optimal affect prediction is another is-
sue that the existing literature does not provide a unique answer to. Current affect
analyzers employ various window sizes depending on the modality, e.g., 2–6 sec-
onds for speech, 3–15 seconds for bio signals [54]. For instance, when measuring
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affect from heart rate signals, analysis should not be done on epochs of less than
a minute [6]. A time window of 50 s appears to be also necessary to accurately
monitor mental stress in realistic settings [83]. There is no consensus on how the
efficiency of such a choice should be evaluated. On one hand achieving real-time
affect prediction requires a small window size to be used for analysis (i.e., a few
seconds, e.g. [10]), while on the other hand obtaining a reliable prediction accuracy
requires long(er)-term monitoring [6, 83]. For instance, Chanel et al. [10] conducted
short-term analysis of emotions (i.e., time segments of 8 s) in valence and arousal
space using EEG and peripheral signals in a self-induction paradigm. They reported
large differences in accuracy between the EEG and peripheral features which may
be due to the fact that the 8 s length of trials may be too short for a complete activa-
tion of peripheral signals while it may be sufficient for EEG signals.

Measuring the intensity of expressed emotion appears to be modality dependent.
The way the intensity of an emotion is apparent from physiological data may be
different from the way it is apparent from visual data. Moreover, little attention has
been paid so far to whether there are definite boundaries along the affect continuum
to distinguish between various levels or intensities. Currently intensity is measured
by quantizing the affect dimensions into arbitrary number of levels such as neutral,
low and high (e.g., [57, 59, 105]). Separate models are then built to discriminate
between pairs of affective dimension levels, for instance, low vs. high, low vs. neu-
tral, etc. Generalizing intensity analysis across different subjects is a challenge yet
to be researched as different subjects express different levels of emotions in the
same situation. Moreover, recent research findings indicate that there also exist sig-
nificant differences in the intensity levels at which coders from different cultural
backgrounds rate emotional behaviors [96].

The Baseline problem is another major challenge in the field. For physiologi-
cal signals (bio signals) this refers to the problem of finding a condition against
which changes in measured physiological signals can be compared (a state of calm-
ness) [65]. For the audio modality this is usually achieved by segmenting the record-
ings into turns using energy based voice activity detection and processing each turn
separately (e.g., [105]). For visual modality the aim is to find a frame in which the
subject is expressionless and against which changes in subject’s motion, pose, and
appearance can be compared. This is achieved by manually segmenting the record-
ings, or by constraining the recordings to have the first frame containing a neutral
expression (see, e.g., [66, 67, 75]). Yet, as pointed out by Levenson in [61], emo-
tion is rarely superimposed upon a prior state of rest; instead, emotion occurs most
typically when the organism is in some prior activation. Hence, enforcing existence
of expressionless state in each recording or manually segmenting recordings so that
each segment contains a baseline expression are strong, unrealistic constrains. This
remains a great challenge in automatic analysis, which typically relies on existence
of a baseline for analysis and processing of affective information.

Generalization capability of automatic affect analyzers across subjects is still a
challenge in the field. Kulic and Croft [59] reported that for bio signal based af-
fect measurement, subjects seem to vary not only in terms of response amplitude
and duration, but for some modalities, a number of subjects show no response at all.
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This makes generalization over unseen subjects a very difficult problem. A common
way of measuring affect from bio signals is doing it for each participant separately
(without computing baseline), e.g. [10]. When it comes to other modalities, most of
the works in the field report mainly on subject-dependent dimensional affect mea-
surement and recognition due to limited number of subjects and limited amount of
data (e.g., [39, 68, 69, 105]).

Modality fusion refers to combining and integrating all incoming unimodal
events into a single representation of the affect expressed by the user. When it
comes to integrating multiple modalities, the major issues are: (i) when to integrate
the modalities (at what abstraction level to do the fusion), (ii) how to integrate the
modalities (which criteria to use), (iii) how to deal with the increased number of
features due to fusion, (iv) how to deal with the asynchrony between the modali-
ties (e.g., if video is recorded at 25 Hz, audio is recorded at 48 kHz while EEG is
recorded at 256–512 Hz), and (v) how to proceed with fusion when there is con-
flicting information conveyed by the modalities. Typically, multimodal data fusion
is either done at the feature level (in a maximum likelihood estimation manner) or
at the decision level (when most of the joint statistical properties may have been
lost). Feature-level fusion is obtained by concatenating all the features from mul-
tiple cues into one feature vector which is then fed into a machine learning tech-
nique. In the decision-level data fusion, the input coming from each modality/cue is
modeled independently, and these single-cue and single-modality based recognition
results are combined in the end. Since humans display multi-cue and multimodal
expressions in a complementary and redundant manner, the assumption of condi-
tional independence between modalities and cues in decision-level fusion can result
in loss of information (i.e. mutual correlation between the modalities). Therefore,
model-level fusion has been proposed as an alternative approach for fusing multi-
modal affect data (e.g., [75]). Despite such efforts in the discrete affect recognition
field (reviewed in [40, 109]), these issues remain yet to be explored for dimensional
and continuous affect prediction.

Machine learning techniques used for dimensional and continuous affect mea-
surement should be able to produce continuous values for the target dimensions.
Overall, there is no agreement on how to model dimensional affect space (con-
tinuous vs. quantized) and which machine learning technique is better suited for
automatic, multimodal, continuous affect analysis using a dimensional represen-
tation. Recognition of quantized dimensional labels is obtained via classification
while continuous prediction is achieved by regression. Conditional Random Fields
(CRF) and Support Vector Machines (SVM) have mostly been used for quantized
dimensional affect recognition tasks (e.g., [105]). Some of the schemes that have
been explored for the task of prediction are Support Vector Machines for Regres-
sion (SVR) (e.g., [39]) and Long Short-Term Memory Recurrent Networks (LSTM-
RNN). The design of emotion-specific classification schemes that can handle mul-
timodal and spontaneous data is one of the most important issues in the field. In
accordance with this, Kim and Andre propose a novel scheme of emotion-specific
multilevel dichotomous classification (EMDC) using the property of the dichoto-
mous categorization in the 2D emotion model and the fact that arousal classification
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yields a higher correct classification ratio than valence classification (or direct mul-
ticlass classification) [55]. They apply this scheme on classification of four emotions
(positive/high arousal, negative/high arousal, negative/low arousal and positive/low
arousal) from physiological signals recorded while subjects were listening to music.
How to create such emotion-specific schemes for dimensional and continuous pre-
diction of emotions from other modalities and cues should be investigated further.

Evaluation measures applicable to categorical affect recognition are not directly
applicable to dimensional approaches. Using the Mean Squared Error (MSE) be-
tween the predicted and the actual values of arousal and valence, instead of the
recognition rate (i.e., percentage of correctly classified instances) is the most com-
monly used measure by related work in the literature (e.g., [50, 105]). However,
using MSE might not be the best way to evaluate the performance of dimensional
approaches to automatic affect measurement and prediction. Therefore, the corre-
lation coefficient that evaluates whether the model has managed to capture patterns
inhibited in the data at hand is also employed by several studies (e.g., [50, 67])
together with MSE. Overall, however, how to obtain optimal evaluation metrics for
continuous and dimensional emotion prediction remains an open research issue [37].
Generally speaking, the performance of an automatic analyzer can be modeled and
evaluated in an intrinsic and an extrinsic manner (as proposed for face recognition
in [103]). The intrinsic performance and its evaluation depend on the intrinsic com-
ponents such as the dataset chosen for the experiments and the machine learning
algorithms (and their parameters) utilized for prediction. The extrinsic performance
and evaluation instead depend on the extrinsic factors such as (temporal/spatial)
resolution of the multimodal data and recording conditions (e.g., illumination, oc-
clusions, noise, etc.). Future research in continuous affect prediction should analyze
the relevance and prospects of the aforementioned performance components, and
how they could be applied to continuous prediction of affect.

10.4.4 Applications

Various applications have been using the dimensional (both quantized and contin-
uous) representation and prediction of emotions, ranging from human–computer
(e.g., Sensitive Talking Heads [45], Sensitive Artificial Listeners [89, 90], spatial
attention analysis [95], arts installations [104]) and human–robot interaction (e.g.,
humanoid robotics [5, 51]), clinical and biomedical studies (e.g., stress/pain moni-
toring [36, 64, 101], autism-related assistive technology), learning and driving en-
vironments (e.g., episodic learning [22], affect analysis in the car [20]), multimedia
(e.g, video content representation and retrieval [53, 98] and personalized affective
video retrieval [97]), and entertainment technology (e.g., gaming [80]). These indi-
cate that affective computing has matured enough to have a presence and measurable
impact in our lives. There are also spin off companies emerging out of collaborative
research at well-known universities (e.g., Affectiva [1] established by R. Picard and
colleagues of MIT Media Lab).
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10.5 A Representative System: Continuous Analysis of Affect
from Voice and Face

The review provided in the previous sections indicates that currently there is a shift
toward subtle, continuous, and context-specific interpretations of affective displays
recorded in naturalistic settings, and toward multimodal analysis and recognition of
human affect. Converging with this shift, in this section we present a representative
approach that: (i) fuses facial expression and audio cues for dimensional and contin-
uous prediction of emotions in valence and arousal space, (ii) employs the bidirec-
tional Long Short-Term Memory neural networks (BLSTM-NNs) for the prediction
task, and (iii) introduces an output-associative fusion framework that incorporates
correlations between the emotion dimensions to further improve continuous predic-
tion of affect.

The section starts with the description of the naturalistic database used in the
experimental studies. Next, data pre-processing, audio and facial feature extraction
and tracking procedures, as well as the affect prediction process are explained.

10.5.1 Dataset

We use the Sensitive Artificial Listener Database (SAL-DB) [16] that contains spon-
taneous data collected with the aim of capturing the audiovisual interaction between
a human and an operator undertaking the role of a SAL character (e.g., an avatar).
The SAL characters intend to engage the user in a conversation by paying atten-
tion to the user’s emotions and nonverbal expressions. Each character has its own
emotionally defined personality: Poppy is happy, Obadiah is gloomy, Spike is angry,
and Prudence is pragmatic. During an interaction, the characters attempt to create an
emotional workout for the user by drawing her/him toward their dominant emotion,
through a combination of verbal and nonverbal expressions.

The SAL database contains audiovisual sequences recorded at a video rate of
25 fps (352 × 288 pixels) and at an audio rate of 16 kHz. The recordings were
made in a lab setting, using one camera, a uniform background and constant light-
ing conditions. The SAL data have been annotated manually. Although there are
approximately 10 hours of footage available in the SAL database, V-A annotations
have only been obtained for two female and two male subjects. We used this portion
for our experiments.

10.5.2 Data Pre-processing and Segmentation

The data pre-processing and segmentation stage consists of (i) determining ground
truth by maximizing inter-coder agreement, (ii) detecting frames that capture the
transition to and from an emotional state, and (iii) automatic segmentation of spon-
taneous audiovisual data. We provide a brief summary of these in the following
sections. For a detailed description of these procedures the reader is referred to [67].
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10.5.2.1 Annotation Pre-processing

The SAL data have been annotated by a set of coders who provided continuous
annotations with respect to valence and arousal dimensions using the Feeltrace an-
notation tool [11], as explained in Sect. 10.4.1. Feeltrace allows coders to watch
the audiovisual recordings and move their cursor, within the 2-dimensional emotion
space (valence and arousal) confined to [−1,+1], to rate their impression about the
emotional state of the subject.

Annotation pre-processing involves dealing with the issue of missing values
(interpolation), grouping the annotations that correspond to one video frame to-
gether (binning), determining normalization procedures (normalization) and extract-
ing statistics from the data in order to obtain segments with a baseline and high
inter-coder agreement (statistics and metrics).

Interpolation In order to deal with the issue of missing values, similar to other
works reporting on data annotated in continuous dimensional spaces (e.g., [105]),
we interpolated the actual annotations at hand. We used piecewise cubic interpola-
tion as it preserves the monotonicity and the shape of the data.

Binning Binning refers to grouping and storing the annotations together. As a
first step the measurements of each coder c are binned separately. Since we aim at
segmenting video files, we generate bins which are equivalent to one video frame f .
This is equivalent to a bin of 0.04 seconds (SAL-DB was recorded at a rate of
25 frames/s). The fields with no annotation are assigned a ‘not a number’ (NaN)
identifier.

Normalization The A-V measurements for each coder are not in total agreement,
mostly due to the variance in human coders’ perception and interpretation of emo-
tional expressions. Thus, in order to deem the annotations comparable, we need to
normalize the data. We experimented with various normalization techniques. After
extracting the videos and inspecting the superimposed ground-truth plots, we opted
for local normalization (normalizing each coder file for each session). This helps us
avoid propagating noise in cases where one of the coders is in large disagreement
with the rest (where a coder has a very low correlation with respect to the rest of
the coders). Locally normalizing to zero mean produces the smallest mean squared
error (MSE) both for valence (0.046) and arousal (0.0551) dimensions.

Statistics and Metrics We extract two useful statistics from the annotations: cor-
relation and agreement. We start the analysis by constructing vectors of pairs of
coders that correspond to each video session, e.g., when we have a video session
where four coders have provided annotations, this gives rise to six pairs. For each
of these pairs we extract the correlation coefficient between the valence (val) values
of each pair, as well as the level of agreement in emotion classification in terms of
positive or negative. We define the agreement metric by

AGR =
∑n

f =0 e(ci(f ).val, cj (f ).val)

|frames| , (10.1)
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where ci(f ).val stands for the valence value annotated by coder ci at frame f .
Function e is defined as

e(i, j) =
{

1 if (sign(i) = sign(j)),

0 else.

In these calculations we do not consider the NaN values to avoid negatively af-
fecting the results. After these metrics are calculated for each pair, each coder is
assigned the average of the results of all pairs that the coder has participated in. We
choose the Pearson’s Correlation (COR) as the metric to be used in the automatic
segmentation process as it appears to be stricter than agreement (AGR) providing
better comparison amongst the coders.

10.5.2.2 Automatic Segmentation

The segmentation stage consists of producing negative and positive audiovisual seg-
ments with a temporal window that contains an offset before and after (i.e., the base-
line) the displayed expression. For instance, for capturing negative emotional states,
if we assume that the transition from non-negative to negative emotional state oc-
curs at time t (in seconds), we would have a window of [t − 1, t, t ′, t ′ + 1] where t ′
seconds is when the emotional state of the subject turns to non-negative again. The
procedure is completely analogous for positive emotional states.

Detecting and Matching Crossovers For an input coder c, the crossing over
from one emotional state to the other is detected by examining the valence values
and identifying the points where the sign changes. Here a modified version of the
sign function is used, it returns 1 for values that are higher than 0 (a value of 0
valence is never encountered in the annotations), −1 for values that are less than
zero, and 0 for NaN values. We accumulate all crossover points for each coder, and
return the set of crossovers to-a-positive and to-a-negative emotional state. The set
of crossovers is then used for matching crossovers across coders. For instance, if a
session has annotations from four coders, the frame (f ) where each coder detects the
crossover is not the same for all coders (for the session in question). Thus, we have
to allow an offset for the matching process. This procedure searches the crossovers
detected by the coders and then accepts the matches where there is less than the
predefined offset (time) difference between the detections. When a match is found,
we remove the matched crossovers and continue with the rest. The existence of
different combinations of crossovers which may match using the predefined offset
poses an issue. By examining the available datasets, we decided to maximize the
number of coders participating in a matched crossover set rather than minimizing
the temporal distances between the participating coders. The motivations for this
decision are as follows: (i) if more coders agree on the crossover, the reliability of
the ground truth produced will be higher, and (ii) the offset amongst the resulting
matches is on average quite small (<0.5 s) when considering only the number of
participating coders. We disregard cases where only one coder detects a crossover
due to lack of agreement between coders.
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Segmentation Driven by Matched Crossovers In order to illustrate how the
crossover frame decision (for each member of the set) is made, let us assume that
for to-a-negative transition a coder detects a crossover at frame 2, while the other
coder detects a crossover at frame 4. If the frames are averaged to the nearest inte-
ger, then we can assume that the crossover happens at frame 3. In this case we have
only 2 coders agreeing, we use the correlation metric in order to weight their deci-
sion and determine the crossover point. This provides a measurement of the relative
importance of the annotations for each coder and propagates information from the
other two coders not participating in the match. In order to capture 0.5 s before the
transition window, the number of frames corresponding to the predefined offset are
subtracted from the start frame. The ground-truth values for valence are retrieved
by incrementing the initial frame number where each crossover was detected by the
coders. Again, following the previous example, this means that we consider frame 2
of coder 1 and frame 4 of coder 2 to provide ground-truth values for frame 3 (the av-
erage of 2 and 4). This gives us an averaged valence value. Then, the frame 4 valence
value (ground truth) would be the combination of frame 3 of coder 1 and frame 5
of coder 2. The procedure of determining combined average values continues until
the valence value crosses again to a non-negative valence value. The endpoint of
the audiovisual segment is then set to the frame including the offset after crossing
back to a non-negative valence value. The ground truth of the audiovisual segment
consists of the arousal and valence (A-V) values calculated.

Typically, an automatically produced segment or clip consists of a single inter-
action of the subject with the avatar (operator), starting with the final seconds of
the avatar speaking, continuing with the subject responding (and thus reacting and
expressing an emotional state audiovisually) and concluding where the avatar starts
responding.

10.5.3 Feature Extraction

Our audio features include Mel-frequency Cepstrum Coefficients (MFCC) [49] and
prosody features (the energy of the signal, the Root Mean Squared Energy and
the pitch obtained by using a Praat pitch estimator [74]). Mel-frequency Cepstrum
(MFC) is a representation of the spectrum of an audio sample which is mapped onto
the nonlinear mel-scale of frequency to better approximate the human auditory sys-
tem’s response. The MFCC coefficients collectively make up the MFC for the spe-
cific audio segment. We used six cepstrum coefficients, thus obtaining six MFCC
and six MFCC-Delta features for each audio frame. We have essentially used the
typical set of features used for automatic affect recognition (e.g., [75]). Along with
pitch, energy and RMS energy, we obtained a set of features with dimensionality
d = 15 per audio frame. Note that we used a 0.04 second window with a 50% over-
lap (i.e. first frame 0–0.04, second from 0.02–0.06 and so on) in order to obtain
a double frame rate for audio (50 Hz) compared to that of video (25 fps). This is
an effective and straightforward way to synchronise the audio and video streams
(similarly to [75]).
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Fig. 10.4 Examples of the data at hand from the SAL database along with the extracted 20 points,
used as features for the facial expression cues

To capture the facial motion displayed during a spontaneous expression we track
20 facial feature points (FFP), as illustrated in Fig. 10.4. These points are the corners
of the eyebrows (4 points), eyes (8 points), nose (3 points), the mouth (4 points) and
the chin (1 point). To track these facial points we used the Patras–Pantic particle
filtering tracking scheme [73]. For each video segment containing n frames, we
obtain a set of n vectors containing 2D coordinates of the 20 points tracked in n

frames (Trf = {Trf 1 . . .Trf 20} with dimensions n ∗ 20 ∗ 2).

10.5.4 Dimensional Affect Prediction

This section describes how dimensional affect prediction from voice and face
is achieved using the Bidirectional Long Short-Term Memory Neural Networks
(BLSTM-NN). It first focuses on single-cue prediction from voice or face, and then
introduces the model-level and output-associative fusion using the BLSTM-NNs.

10.5.4.1 Bidirectional Long Short-Term Memory Neural Networks

The traditional Recurrent Neural Networks (RNN) are unable to learn temporal
dependencies longer than a few time steps due to the vanishing gradient problem
[42, 43]. LSTM Neural Networks (LSTM-NNs) were introduced by Graves and
Schmidhuber [32] in order to overcome this issue. The LSTM structure introduces
recurrently connected memory blocks instead of traditional neural network nodes
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Fig. 10.5 Illustration of (a) the simplest LSTM network, with a single input, a single output, and
a single memory block in place of the hidden unit, and (b) a typical implementation of an LSTM
block, with multiplication units (�), an addition unit (�) maintaining the cell state and typically
non-linear squashing function units

(Fig. 10.5(a)). Each memory block contains memory cells and a set of multiplica-
tive gates. In its simplest form, a memory block contains one memory cell.

As can be seen from Fig. 10.5(b), there are three types of gates: the input, output
and forget gates. These gates are estimated during the training phase of an LSTM-
NN.

The input, output and forget gates can be thought of as providing write, read and
reset access to what is called a cell state (σ ), which represents temporal network
information. This can be seen from examining the state updates at time t :

σ(t) = yφ(t)σ (t − 1) + yig(t)gin(t).

The next state σ(t) is defined as the sum of the forget gate at time t (yφ(t)) multi-
plied by the previous state, σ(t − 1) and the squashed input to the cell gin(t) multi-
plied by the input gate yig(t). Thus, the forget gate can reset the state of the network,
i.e. when yφ ≈ 0 then the next state does not depend on the previous one:

σ(t) ≈ yig(t)gin(t).

This is similar when the input gate is near zero. Then, the next state depends only on
the previous state and the forget gate value. The output of the cell is the cell state, as
regulated by the value of the output gate (Fig. 10.5(b)). This configuration enforces
constant error flow and overcomes the vanishing gradient problem.

In addition, traditional RNNs process input in a temporal order, thus learning in-
put patterns by relating only to past context. Bidirectional RNNs (BRNNs) [3, 94]
instead modify the learning procedure to overcome the latter issue of the past and
future context: they present each of the training sequences in a forward and a back-
ward order (to two different recurrent networks, respectively, which are connected
to a common output layer). In this way, the BRNN is aware of both future and
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past events in relation to the current timestep. The concept is directly expanded
for LSTMs, referred to as Bidirectional Long Short-Term Memory neural networks
(BLSTM-NN). BLSTM-NN have been shown to outperform unidirectional LSTM-
NN for speech processing (e.g., [32]) and have been used for many learning tasks.
They have been successfully applied to continuous emotion prediction from speech
(e.g., [105, 106]) proving that modeling the sequential inputs and long range tem-
poral dependencies appear to be beneficial for the task of automatic emotion predic-
tion.

10.5.4.2 Single-Cue Prediction

The first step in continuous affect prediction task consists of prediction based on
single cues. Let D = {V,A} represent the set of emotion dimensions, C the set of
cues consisting of the facial expressions, shoulder movement and audio cues. Given
a set of input features xc = [x1c , . . . ,xnc] where n is the training sequence length
and c ∈ C , we train a machine learning technique fd , in order to predict the relevant
dimension output, yd = [y1, . . . , yn], d ∈ D .

fd : x �→ yd . (10.2)

This step provides us with a set of predictions for each machine learning technique,
and each relevant dimension employed.

10.5.4.3 Model-Level Fusion

As already explained in Sect. 10.4.2, since humans display multi-cue and multi-
modal expressions in a complementary and redundant manner, the assumption of
conditional independence between modalities and cues in decision-level fusion can
result in loss of information (i.e. mutual correlation between the modalities). There-
fore, we opt for model-level fusion of the continuous predictions as this has the
potential of capturing correlations and structures embedded in the continuous out-
put of the predictors/regressors (from different sets of cues). This is illustrated in
Fig. 10.6(a).

More specifically, during model-level fusion, a function learns to map predictions
to a dimension d from the set of cues as follows:

fmlf : fd(x1) × · · · × fd(xm) �→ yd, (10.3)

where m is the total number of fused cues.

10.5.4.4 Output-Associative Fusion

In the previous section, we have treated the prediction of valence or arousal as a
1D regression problem. However, psychological evidence shows that valence and
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Fig. 10.6 Illustration of (a) model-level fusion and (b) output-associative fusion using facial ex-
pression and audio cues. Model-level fusion combines valence predictions from facial expression
and audio cues by using a third network for the final valence prediction. Output-associative fusion
combines both valence and arousal values predicted from facial expression and audio cues, again
by using a third network, which outputs the final prediction.

arousal dimensions are correlated [2, 70, 107]. In order to exploit these correlations
and patterns, we propose a framework capable of learning the dependencies that
exist amongst the predicted dimensional values.

Given the setting described in Sect. 10.5.4.2, this framework learns to map the
outputs of the intermediate predictors (each BLSTM-NN as defined in (10.2)) onto
a higher (and final) level of prediction by incorporating cross-dimensional (output)
dependencies (see Fig. 10.6(b)). This method, which we call output-associative fu-
sion, can be represented by a function foaf :

foaf : fAr(x1) × fVal(x1) × · · · × fAr(xm) × fVal(xm) �→ yd . (10.4)

As a result, the final output, taking advantage of the temporal and bidirectional
characteristics of the regressors (BLSTM-NNs), depends not only on the entire se-
quence of input features xi but also on the entire sequence of intermediate output
predictions fd of both dimensions (see Fig. 10.6(b)).
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Table 10.1 Single-cue prediction results for valence and arousal dimensions

Dimension Modality RMSE COR SAGR

Arousal Voice 0.240 0.586 0.764

Face 0.250 0.493 0.681

Valence Voice 0.220 0.444 0.648

Face 0.170 0.712 0.841

10.5.5 Experiments and Analysis

10.5.5.1 Experimental Setup

Prior to experimentation, all features have been normalized to the range of [−1,+1],
except for the audio features which have been found to perform better with z-
normalization (i.e., normalizing to mean = 0 and standard deviation = 1).

As the main evaluation metrics we choose to use the root mean squared error
(RMSE) that evaluates the root of the prediction by taking into account the squared
error of the prediction from the ground truth, the correlation (COR) that provides
an evaluation of the linear relationship between the prediction and the ground truth,
and subsequently, an evaluation of whether the model has managed to capture lin-
ear structural patterns inhibited in the data at hand, and the sign agreement metric
(SAGR) that measures the agreement level of the prediction with the ground truth
by assessing the valence dimension as being positive (+) or negative (−), and the
arousal dimension as being active (+) or passive (−).

For validation purposes we use a subset of the SAL-DB that consists of 134
audiovisual segments (a total of 30,042 video frames) obtained by the automatic
segmentation procedure (proposed in [67]). As V-A annotations have only been
provided for two female and two male subjects, for our experiments we employ
subject-dependent leave-one-sequence-out cross-validation. More specifically, the
evaluation consists of 134 folds where at each fold one sequence is left out for test-
ing and the other 133 sequences are used for training. The prediction results are then
averaged over 134 folds.

The parameter optimization for BLSTM-NNs refers to mainly determining the
topology of the network along with the number of epochs, momentum and learning
rate.

10.5.5.2 Results and Analysis

Single-cue results are presented in Table 10.1, while results obtained from fusion
are presented in Table 10.2.

We initiate our analysis with the single-cue results (Table 10.1) and the valence
dimension. Various automatic dimensional emotion prediction and recognition stud-
ies have shown that arousal can be much better predicted than valence using audio
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Table 10.2 Results for output-associative fusion (AOF) and model-level fusion (MLF). The best
results are obtained by employing output-associative fusion (shown in bold)

Dimension OAF MLF

RMSE COR SAGR RMSE COR SAGR

Arousal 0.220 0.628 0.800 0.230 0.605 0.800

Coders 0.145 0.870 0.840 0.145 0.870 0.840

Valence 0.160 0.760 0.892 0.170 0.748 0.856

Coders 0.141 0.850 0.860 0.141 0.850 0.860

cues (e.g., [33, 68, 100, 105]). Our experimental results also support these findings
indicating that the visual cues appear more informative for predicting the valence
dimension. The facial expression cues provide a higher correlation with the ground
truth (COR = 0.71) compared to the audio cues (COR = 0.44). This fact is also
confirmed by the RMSE and SAGR metrics. The facial expression cues also pro-
vide higher SAGR (0.84), indicating that the predictor was accurate in predicting
an emotional state as positive or negative for 84% of the frames. For prediction of
the arousal dimension the audio cues appear to be superior to the visual cues. More
specifically, audio cues provide COR = 0.59, whereas the facial expression cues
provide COR = 0.49.

Fusing facial and audio cues using model-level fusion outperforms the single-cue
prediction results. Model-level fusion appears to be much better for predicting the
valence dimension rather than the arousal dimension. This is mainly due to the fact
that the single-cue predictors for valence dimension perform better, thus containing
more correct temporal dependencies and structural characteristics (while the weaker
arousal predictors contain fewer of these dependencies). Model-level fusion also re-
confirms that visual cues are more informative for valence dimension than the audio
cues. Finally, the newly proposed output-associative fusion provides the best results,
outperforming both single-cue analysis and model-level fusion results. We denote
that the performance increase of output-associative fusion is higher for the arousal
dimension (compared to the valence dimension). This could be justified by the fact
that the single-cue predictors for valence perform better than for arousal (Table 10.1)
and thus, more correct valence patterns are passed onto the output-associative fusion
framework. An example of the output-associative valence and arousal prediction
from face and audio is shown in Fig. 10.7.

Based on the experimental results provided in Tables 10.1–10.2, we conclude the
following.

• Facial expression cues are better suited to the task of continuous valence pre-
diction compared to audio cues. For arousal dimension, instead, the audio cues
appear to perform better. This is in accordance with the previous findings in the
literature.

• The inherent temporal and structured nature of continuous affective data appears
to be highly suitable for predictors that can model temporal dependencies and re-
late temporally distant events. To evaluate the performance of such frameworks,
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the use of not only the RMSE but also the correlation coefficient appears to be
very important. Furthermore, the use of other emotion-specific metrics, such as
the SAGR (used in this work), is also desirable as they contain valuable informa-
tion regarding emotion-specific aspects of the predictions.

• As confirmed by the psychological theory, valence and arousal are correlated.
Such correlations appear to exist in our data where fusing predictions from both
valence and arousal dimensions (output-associative fusion) improves the results
compared to using predictions from either valence or arousal dimension alone (as
in the model-level fusion case).

• In general, audiovisual data appear to be more useful for predicting valence than
for predicting arousal. While arousal is better predicted by using audio features
alone, valence is better predicted by using audiovisual data.

Overall, our output-associative fusion framework (i) achieves RMSE = 0.160,
COR ≈ 0.760 and SAGR ≈ 0.900 for the valence dimension, compared to the hu-
man coder (inter-coder) RMSE ≈ 0.141, COR ≈ 0.850, and SAGR ≈ 0.860, and
(ii) provides RMSE = 0.220, COR ≈ 0.628 and SAGR ≈ 0.800 for the arousal di-
mension, compared to the human coder (inter-coder) RMSE ≈ 0.145, COR ≈ 0.870
and SAGR ≈ 0.840.

In our experiments we employed a subject-dependent leave-one-sequence-out
cross-validation procedure due to the small number of annotated data available. As
spontaneous expressions appear to have somewhat person-dependent characteris-
tics, subject-independent experimentation is likely to be more challenging and affect
our prediction results.

10.6 Concluding Remarks

The review provided in this chapter suggests that the automatic affect sensing field
has slowly started shifting from categorical (and discrete) affect recognition to di-
mensional (and continuous) affect prediction to be able to capture the complexity of
affect expressed in naturalistic settings. There is a growing research interest driven
by various advances and demands (e.g., real-time representation and analysis of
naturalistic and continuous human affective behavior for emotion-related disorders
like autism), and funded by various research projects (e.g., European Union FP 7,
SEMAINE1). To date, despite the existence of a number of dimensional emotion
models, the two-dimensional model of arousal and valence appears to be the most
widely used model in automatic measurement of affect from audio, visual and bio
signals.

The current automatic measurement technology has already started dealing with
spontaneous data obtained in less-controlled environments using various sensing
devices, and exploring a number of machine learning techniques and evaluation
measures. However, naturalistic settings pose many challenges to continuous affect

1http://www.semaine-project.eu

http://www.semaine-project.eu
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Fig. 10.7 Valence and arousal ground truth (gTruth) compared to predictions (pred) from out-
put-associative fusion of facial expressions and audio cues

sensing and prediction (e.g., when subjects are not restricted in terms of mobility, the
level of noise in all recorded signals tends to increase), as well as affect synthesis and
generation. As a consequence, a number of issues that should be addressed in order
to advance the field remain unclear. These have been summarized and discussed in
this chapter.

As summarized in Sect. 10.4.2 and reviewed in [37], to date, only a few sys-
tems have actually achieved dimensional affect prediction from multiple modali-
ties. Overall, existing systems use different training/testing datasets (which differ in
the way affect is elicited and annotated), they differ in the underlying affect model
(i.e., target affect categories), as well as in the employed modality or combination of
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modalities, and the applied evaluation method. As a consequence, it remains unclear
which recognition and prediction method is suitable for dimensional affect predic-
tion from which modalities and cues. These challenges should be addressed in order
to advance the field while identifying the importance, as well as the feasibility, of
the following issues:

1. Among the available remotely observable and remotely unobservable modalities,
which ones should be used for automatic dimensional affect prediction? Should
we investigate the innate priority among the modalities to be preferred for each
affect dimension? Does this depend on the context (who the subject is, where she
is, what her current task is, and when the observed behavior has been shown)?

Continuous long-term monitoring of bio signals (e.g., autonomic nervous sys-
tem) appears to be particularly useful and usable for health care applications
(e.g., stress and pain monitoring, autism-related assistive technology). Using bio
signals for automatic measurement is especially important for applications where
people do not easily express themselves outwardly with facial and bodily expres-
sions (e.g., people with autism spectrum disorders) [24]. As stated before, various
automatic dimensional emotion prediction and recognition studies have shown
that arousal can be much better predicted than valence using audio cues (e.g., [33,
68, 100, 105]). For the valence dimension instead, visual cues (e.g., facial ex-
pressions and shoulder movements) appear to perform better [68]. Whether such
conclusions hold for different contexts and different data remains to be evalu-
ated. Another significant research finding is that when multiple modalities are
available during data annotation, both speed and accuracy of judgments increase
when the modalities are expressing the same emotion [15]. How such findings
should be incorporated into automatic dimensional affect predictors remains to
be researched further.

2. When labeling emotions, which signals better correlate with self assessment and
which ones correlate with independent observer assessment?

When acquiring and annotating emotional data, there exist individual differ-
ences in emotional response, as well as individual differences in the use of rating
scales. We have mentioned some of these differences before, in Sect. 10.4.1. Re-
search also shows that affective state labeling is significantly affected by factors
such as familiarity of the person and context of the interaction [44]. Even if the
emotive patterns to be labeled are fairly similar, human perception is biased by
context and prior experience. Moreover, Feldman presented evidence that when
individuals are shown emotional stimulus, they differ in their attention to valence
and arousal dimensions [23]. We have also mentioned cross-cultural intensity dif-
ferences in labeling emotional behaviors [96]. If such issues are ignored and the
ratings provided by the human annotators are simply averaged, the measure ob-
tained may be useful in certain experimental contexts but it will be insensitive to
individual variations in subjective experience. More specifically, this will imply
having a scale that assumes that individual differences are unimportant or nonex-
istent. An implication of this view is that for an ideal representation of a subject’s
affective state, labeling schemes and rating scales should be clearly defined (e.g.,
by making the subjective distances between adjacent numbers on every portion
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of the scale equal) and contextualized (e.g., holding the environmental cues con-
stant), both self assessment and external observer assessment (preferably from
observers who are familiar with the user to be assessed) should be obtained and
used, and culture-related issues should be taken into consideration.

3. How does the baseline problem affect prediction? Is an objective basis (e.g.,
a frame with an expressionless display) strictly needed prior to computing the
dimensional affect values? If so, how can this be obtained in a fully automatic
manner from naturalistic data?

Determining the baseline in naturalistic affective displays is challenging even
for human observers. This is particularly the case for the visual modality which
constitutes of varying head pose and head gestures (like nods and shakes),
speech-related facial actions, and blended facial expressions. The implications
for automatic analysis can initially be addressed by training predictors that pre-
dict baseline (or neutrality) for each cue and modality separately.

4. How should intensity be modeled for dimensional and continuous affect pre-
diction? Should the aim be personalizing systems for each subject, or creating
systems that are expected to generalize across subjects?

Modeling the intensity of emotions should be based on the task-dependent
environment and target user group. A common way of measuring affect from bio
signals is doing it for each participant separately (without computing baseline),
e.g., [10]. Similarly to the recent works on automatic affect prediction from the
audio or the visual cues (e.g., [69]), better insight may be obtained by comparing
subject-dependent vs. subject-independent prediction results. Customizing the
automatic predictors to specific user needs is usually desired and advantageous.

5. In a continuous affect space, how should duration of affect be defined? How can
this be incorporated in automated systems? Will focusing on shorter or longer
observations affect the accuracy of the measurement process?

Similarly to modeling the emotional intensity level, determining the affect du-
ration should be done based on the task-dependent environment and target user
group. Focusing on shorter or longer durations appears to have an effect on the
prediction accuracy. Achieving real-time affect prediction requires a small win-
dow size to be used for analysis (i.e., a few seconds, e.g., [10]), while on the other
hand obtaining a reliable prediction accuracy requires long(er)-term monitoring
[6, 83]. Therefore, analysis duration should be determined as a trade-off between
reliable prediction accuracy and real-time requirements of the automatic system.

Finding comprehensive and thorough answers to the questions posed above, and
fully exploring the terrain of the dimensional and continuous affect prediction, de-
pends on all relevant research fields (engineering, computer science, psychology,
neuroscience, and cognitive sciences) stepping out of their labs, working side-by-
side together on real-life applications, and sharing the experience and the insight
acquired on the way, to make affect research tangible for realistic settings and lay
people [76]. Pioneering projects representing such inter-disciplinary efforts have
already started emerging, ranging, for instance, from publishing compiled books
of related work (e.g., [30]) and organizing emotion recognition challenges (e.g.,
INTERSPEECH 2010 Paralinguistic Challenge featuring the affect sub-challenge
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with a focus on dimensional affect [93]) to projects as varied as affective human-
embodied conversational agent interaction (e.g., European Union FP 7 SEMAINE
[89, 90]), and affect sensing for autism (e.g., [76, 78]).

10.7 Summary

Human affective behavior is multimodal, continuous and complex. Despite major
advances within the affective computing research field, modeling, analyzing, inter-
preting and responding to human affective behavior still remains a challenge for au-
tomated systems as affect and emotions are complex constructs, with fuzzy bound-
aries and with substantial individual differences in expression and experience [7].
Therefore, affective and behavioral computing researchers have recently invested
increased effort in exploring how to best model, analyze and interpret the subtlety,
complexity and continuity (represented along a continuum e.g., from −1 to +1) of
affective behavior in terms of latent dimensions (e.g., arousal, power and valence)
and appraisals, rather than in terms of a small number of discrete emotion categories
(e.g., happiness and sadness). This chapter aimed to (i) give a brief overview of the
existing efforts and the major accomplishments in modeling and analysis of emo-
tional expressions in dimensional and continuous space while focusing on open is-
sues and new challenges in the field, and (ii) introduce a representative approach for
multimodal continuous analysis of affect from voice and face, and provide exper-
imental results using the audiovisual Sensitive Artificial Listener (SAL) Database
of natural interactions. The chapter concluded by posing a number of questions that
highlight the significant issues in the field, and by extracting potential answers to
these questions from the relevant literature.

10.8 Questions

1. What are the major approaches used for affect modeling and representation?
How do they differ from each other?

2. Why has the dimensional affect representation gained interest?
3. What are the dimensions used for representing emotions?
4. Affect research scientists usually make a number of assumptions and simplifica-

tions while studying emotions. What are these assumptions and simplifications?
What implications do they have?

5. How is human affect sensed and measured? What are the signals measured for
analyzing human affect?

6. How are affective data acquired and annotated?
7. What is the current state of the art in automatic affect prediction and recogni-

tion?
8. What are the challenges faced in automatic dimensional affect recognition?
9. List a number of applications that use the dimensional representation of emo-

tions.
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10. What features are extracted to represent an audio-visual affective sequence?
How are the audio and video streams synchronized?

11. What is a Bidirectional Long Short-Term Memory Neural Network? How does
it differ from a traditional Recurrent Neural Network?

12. What is meant by the statement ‘valence and arousal dimensions are corre-
lated’? What implications does this have on automatic affect prediction?

13. What is output-associative fusion? How does it compare to model-level fusion?
14. How are the root mean squared error, correlation, and sign agreement used for

evaluating the automatic prediction of emotions?

10.9 Glossary

• Categorical description of affect: Hypothesizes that there exist a small number of
emotion categories (i.e., anger, disgust, fear, happiness, sadness and surprise) that
are basic, hard-wired in our brain, and recognized universally (e.g. [18]).

• Dimensional description of affect: Hypothesizes that affective states are not inde-
pendent from one another; rather, they are related to one another in a systematic
manner.

• Circumplex Model of Affect: A circular configuration introduced by Russell [82],
based on the hypothesis that each basic emotion represents a bipolar entity being
a part of the same emotional continuum.

• PAD emotion space: The three dimensional description of emotion in terms of
pleasure–displeasure, arousal–nonarousal and dominance–submissiveness [63].

• Dimensional and continuous affect prediction: Analyzing and inferring the sub-
tlety, complexity and continuity of affective behavior in terms of latent dimen-
sions (e.g., valence and arousal) by representing it along a continuum (e.g., from
−1 to +1) without discretization.

• Long Short-Term Memory neural network: A Bidirectional Recurrent Neural Net-
work that consists of recurrently connected memory blocks, and uses input, out-
put and forget gates to represent and learn the temporal information and depen-
dencies.

• Output-associative fusion: A fusion approach that uses multi-layered prediction,
i.e. the initial features extracted from each modality are used for intermediate
(output) prediction, and these are further used for a higher (and final) level of
prediction (by incorporating cross-dimensional dependencies).
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