
Aspects, Dependencies and Interactions

Report on the WS ADI at ECOOP 2007

Frans Sanen1, Ruzanna Chitchyan2, Lodewijk Bergmans3,
Johan Fabry4, Mario Sudholt5, and Katharina Mehner6

1K.U.Leuven, Leuven, Belgium, frans.sanen (at) cs.kuleuven.be
2Lancaster University, Lancaster, UK, rouza (at) comp.lancs.ac.uk

3University of Twente, Enschede, The Netherlands, L.M.J.Bergmans (at) ewi.utwente.nl
4INRIA Futurs, LIFL, France, johan.fabry (at) lifl.fr

5Ecole des Mines de Nantes, Nantes, France, Mario.Sudholt (at) emn.fr
6Siemens, Germany, Katharina.Mehner (at) siemens.com

Abstract. The topics on aspects, dependencies and interactions are among the
key remaining challenges to be tackled by the Aspect-Oriented Software Devel-
opment (AOSD) community to enable a wide adoption of AOSD technology.
This second workshop, organized and supported by the AOSD-Europe project,
aimed to continue the wide discussion on aspects, dependencies and interactions
started at ADI 2006.

Keywords. Aspects, dependencies, interactions

1 Introduction

Aspects are crosscutting concerns that exist throughout the software development life
cycle - from requirements through to implementation. While crosscutting other con-
cerns, aspects often exert broad influences on these concerns, e.g., by modifying their
semantics, structure or behaviour. These dependencies between aspectual and non-
aspectual elements may lead to either desirable or (more often) unwanted and unex-
pected interactions. The goal of this second workshop was to continue the wide discus-
sion on aspects, dependencies and interactions started at ADI 2006, thus investigating
the problems of aspects, dependencies and interactions and handling them at all levels:

– starting from the early development stages (i.e., requirements, architecture, and
design), looking into dependencies between requirements (e.g., positive/negative
contributions between aspectual goals) and interactions caused by aspects (e.g.,
quality attributes) in requirements, architecture, and design;

– analyzing these dependencies and interactions both through modeling and formal
analysis;

– considering language design issues which help to handle such dependencies and
interactions (e.g., ’declare precedence’ mechanism of AspectJ);

– studying such interactions in applications.

In the rest of this workshop report, we present the main topics that were discussed
at the workshop, including a comparative overview of the main topics of the accepted
papers, a summary of the keynote speech by Gary T. Leavens on ”Concerning efficient
reasoning in AspectJ-like languages, a summing-up of the debates hold in the different
discussion breakout groups and a synthesis of the panel chaired by Awais Rashid on
“Does AO equal quantification and obliviousness?”



2 Accepted Papers

Papers accepted to the workshop covered a broad spectrum of problems related to
aspects, dependencies and interactions. We have clustered these papers into three sets,
with each set briefly summarized below.

2.1 Requirements, Analysis and Design

This set of papers focuses mainly on the early stages of AOSD: requirements engineer-
ing, analysis and design modeling.

In [3], a method is proposed that supports the identification of functional require-
ments that crosscut other functional requirements. In addition, guidelines about how to
generate derived or modified requirements are provided. The authors of the paper use
actions as the primary means for identifying match-points between functional require-
ments. The authors propose to manually define a list of all actions that are directly used
by each action, i.e., the implied actions. These implied actions are then used to check
whether requirements crosscut each other. Modes or states of the different entities in
the system are also important for determining whether requirements crosscut: require-
ments related to the same mode crosscut while requirements with mutually exclusive
modes do not crosscut each other. Next to implied actions and modes, action modifiers
are described to help to decide whether two requirements crosscut each other. The
authors distinguish between three action modifiers: restrict, unconditional and none.
If a requirement restricts the use of an action X, then all actions that imply action X
are also restricted. A similar observation is made for requirements that can be used
unconditionally.

In [19], the authors argue that currently it is difficult to verify whether a base
model is correctly structured and if the weaving reflects the intention of a modeler.
They propose a verification method for weaving in AspectM: an extensible aspect-
oriented modeling language [20, 21]. The paper focuses on the verification of the base
model. AspectM provides not only major join point mechanisms but also a mechanism
called meta-model access protocol that allows a modeler to modify the meta-model,
which is an extension of the UML meta-model. Prototype tool support for the reflective
model editor and model weaver has been developed. The tool consists of a meta-model
checker for verifying whether a base model conforms to the meta-model, a module
structure checker for detecting the aspect interference and an assertion checker.

2.2 Language-level Problems

This set of papers looks at novel AO language concepts regarding aspect interaction
management and issues of interaction between aspects written in different AO domain-
specific languages.

In [4], novel concepts regarding aspect interaction management are defined. The
paper proposes some extensions to the AspectJ [2] language for detecting unintended
aspect interactions. These extensions are aspect and advice cardinality, and meta-
aspects. The authors start off by providing a classification of seven different types of
aspect interactions. Some fundamental causes of undesired interactions also are dis-
cussed. Next, aspect and advice cardinality is defined to represent the absolute and
relative proportions of aspect use and advice weaving. Aspect cardinality is the measure



of the expected number of aspect bindings to an application while advice cardinality
represents the expected number of advice weavings per aspect binding. It’s the devel-
oper’s responsibility to ensure that multiple weavings at the same join point behave
coherently depending on a certain applicable execution order. Finally, meta-aspects
are generic, abstract specifications of concrete aspects with a number of advantages.
These concrete aspects usually can be derived automatically with all generic pointcut
definitions being instantiated into specific, narrow-scoped expressions.

In [14], the authors focus on understanding interactions between foreign aspects,
i.e., aspects written in different aspect domain-specific languages. They distinguish
between two categories: co-advising and foreign advising. Co-advising is the application
of multiple pieces of advice to the same join point while foreign advising captures the
situation where an aspect also advises aspects written in languages other than the
base. A classification and comparison of a set of composition approaches according to
whether these resolve the interactions at the language level or at the program level is
covered in the paper. In order to understand why resolving these interactions at the
language level is fundamentally different than resolving them at the program level, the
authors elaborate on both the Reflex [18] and Awesome [13] frameworks. The latter
handles both foreign advising and co-advising interactions.

2.3 Contract-based Approaches

This set of papers addresses contract-based approaches for managing aspect interac-
tions in an AO middleware or for controlling use of aspects without constraining the
power of AOSD.

In [9], the authors aim to manage interaction issues in an aspect-oriented middle-
ware platform by allowing interaction contracts to be specified which then are enforced
at runtime. Explicitly specifying these contracts improves the management and control
of such interactions. The work focuses on two broad categories of aspect interactions:
conflicts (two aspects being incompatible) and dependencies (one aspect requiring an-
other). The solution in the paper includes a component model with a well-defined inter-
action model that supports a variety of relationships. These relationships are specified
using interaction contracts that are evaluated at runtime to ensure conflicts do not oc-
cur and dependencies are fulfilled. The interaction model is based on shared elements
(such as a common join point, a component instance or the base application). It’s pos-
sible to specify both basic (requires and provides) and advanced (conflict, precedence
and resolution) interaction contracts. The approach has been validated by applying it
to a series of interaction issues that occurred when implementing services for a flexible
and customizable AO middleware platform, CustAOMWare.

In [16], an overview is given of approaches that address two important challenges
for AOSD’s mainstream adaption: the evolution paradox problem and the invasive
nature of aspects. The evolution paradox encompasses the difficulties that arise when
an application created using AOSD tries to evolve and is hampered by the fragile
pointcut problem. Invasive aspects enable us to specify harmful advice that breaks
encapsulation. As a consequence, aspects can invalidate some of the already existing
desirable properties of a system resulting in, among others, security problems. Current
approaches that solve or reduce one or both of these problems are categorized according
to the means they use: guidelines, code-based, analysis, model-based and contract-
based. Next, a solution to deal with these problems is sketched. The aim is not to



constrain the power of AOSD, but rather control aspect invasiveness and fit aspects to
better support evolution.

3 Keynote Speech by Gary T. Leavens on “Concerning
Efficient Reasoning in AspectJ-like Languages”

The work presented in this keynote was concerned with efficient forms of reasoning.
The approach taken was based on static analysis of source code that is annotated
with meta-information, to determine (non-)interference of the aspect with the base
code. What was specified in this approach is object state and method preconditions,
heap effects and control effects. Heap effects include postconditions such as changes to
static variables. Control effects treat how the control flow of the method is changed.
Specification is done by the developer through annotations of the source code. Some
of these annotations are deducible, however no support for automatic deduction is
provided. Implementation verification is performed by a conservative static analysis.
The reasoner accumulates facts as the program is processed, and verifies these with
regard to the given specifications.

The innovative part of this approach over existing reasoning with contracts ap-
proaches was that it has been effectively tailored towards aspects. This is because the
classical subtyping relationships used in these approaches are not applicable to as-
pects. Around advice can be considered like an overriding method, but is often used to
change the behavior in different ways than what an overriding method would do. For
example, advice introduces a number of control effects, such as running the original
method multiple times. The existing specification approaches cannot reflect this, and
their verification steps are not designed for it.

Multiple possible and existing approaches for specification of advice were then dis-
cussed. The first approach was using the semantics directly, which is maximally expres-
sive, but implies re-verification for all changes, and provides no abstraction. A second
approach is considering functional advice, which has no heap or control effects, which
does not affect reasoning over the base code. This advice cannot do anything however,
and is therefore useless. Third, the concept of harmless advice [6] was discussed. Here
no information flows from the advice to the base code, which has as benefits that no
heap effects on the base occur. The downsides are that this does not address control
effects, there is a loss of expressiveness and inference amongst advice is not addressed.
A fourth approach is a refinement of behavioral subtyping, using an object-oriented
analogy of around advices as overriding methods, and proceed as a super call. This
allows the base code to be verified independent of the advice. This has a number of
downsides such as that quantification is limited, and that much advice falls outside of
this paradigm, as said above. In general the downsides are too important to make this
feasible. A fifth approach is specifying at the language level which join points can be
advised, as proposed by multiple authors. This poses no limits on expressive power, but
has as downside, amongst others, that interference amongst advices is not considered.

The last approach discussed was reasoning about the level of specifications, written
in the aspect, that are woven. The presenter expects that this is the direction that the
community is taking. If successful, this has the benefits that it is at a more abstract
level than code, and will allow changes in methods and advice without the need for
re-verification. The downsides are that there is less expressiveness and that the weaving



of specifications is difficult and expensive. However, there are some optimizations that
are possible, e.g., ignoring inapplicable advice and spectator advice, which do not affect
the heap nor has control effects. A second form of optimization is via effect analysis:
an advice heap interferes with base code if it writes a field that is read in the base
code. This is efficient because it only needs to look at signatures, and furthermore the
analysis can also apply to two pieces of advice.

The last part of the talk then gave an overview of concern domains. It follows the
specification weaving approach above, by declaring concern domains, i.e., partitions of
the heap, in which write effects are declared. A form of type and effect analysis is then
used to detect potential interference. This has been proven to be sound for checking
possible heap interference. A further benefit is that spectators can be ignored in the
verification phase. Downsides are the cost incurred by manually declaring the effects
of methods and advice, and a number of restrictions placed on assertions.

4 Discussion Topics

A large part of the afternoon sessions of the workshop was devoted to group discussions.
Four main discussion topics were discussed. These group discussions are summarized
below.

4.1 Discussion Group 1: Aspects, Dependencies and Interactions Due to
and/or Prohibited by Languages

The goal of this discussion group was to investigate the role of programming language
design as a cause or a means to avoid unwanted interactions. The idea behind this
topic was that (a) the features of programming languages, such as aspects, can be the
enabler for certain interactions, both desired and undesired, and (b) hence there are
trade-offs to be made such as expressiveness versus interactions. Some examples are
listed next:

– If there were no join points within advice code, there would be no undesired infinite
loops caused by advice that is called while executing itself.

– Allowing for pointcuts or advice to ignore the regular OO encapsulation rules,
creates potential for unwanted dependencies between aspects and base code.

– The ability to affect the control flow of the base code (e.g., by omitting a pro-
ceed() statement within around advice) is powerful, but can also easily destroy the
correctness of the application.

One of the first issues that was discussed was whether or not a language should allow
to specify interactions, and/or avoid conflicts. Avoiding conflicts in general is very hard,
though, without severely reducing the expressiveness of the language. Hence, the group
considered that additional specifications would be necessary to allow for the static
detection (and hence avoidance) of interference: for example in the form of contracts
or relation specifications.

It was questioned by Shigeru Chiba that many new features for AOP are proposed,
often without convincing cases to motivate them, and raising the question whether
these features are not merely useful for certain applications or application domains
only. In particular, he suggested that many examples of aspects were the codification



of program idioms, where there might be other, more conventional ways, such as mix-
ins, generics or C++ templates, to express the same behavior.

Further, the group discussed the kind of interferences that are caused by AOP.
First, it was proposed that these must be strongly related to the identifying properties
AOP, such as obliviousness and quantification. However, it was concluded that in fact,
AOP does not introduce new types of interference, but only makes it easier to create
them. The reason is that AOP offers new and more powerful composition mechanisms,
but in the end, these result in the same types of behavioral combination that can be
created manually in procedural or object-oriented languages.

4.2 Discussion Group 2: Aspects, Dependencies and Interactions in
Applications

People that joined this discussion group came from two different backgrounds: soft-
ware product lines and middleware services. Discussion started by agreeing on the fact
that a feature in the product line world matches a service in a middleware context.
In addition, all discussion participants believed that the true power of AOSD lies in
quantification (i.e., composition) rather than in obliviousness. One of the main prob-
lems with complete obliviousness is that the aspect developer needs to be aware of the
entire system. We refer the reader for the remainder of this discussion topic to Section
5.

Second topic within this discussion group was crosscutting programming interfaces,
XPI’s, work from Griswold et al. [10] It was concluded that these XPI’s would be a
very nice idea especially in the context of feature development because a more safe
evolution and composition becomes possible. The discussants highlighted the issue
of defining such a crosscutting programming interface. At first sight, the base code
developer seems more appropriate to define this interface because he/she knows the
code the best. But it’s hard to imagine that the base code developer knows of all
other pieces of code that will cooperate with the base code. Obviously, one of the real
problems in specifying pointcuts is that they are mainly syntax-based, which gives
rise to the fragile pointcut problem. The group concluded that domain-specific aspect
languages might be used as a source of inspiration when trying to raise the level of
abstraction.

The next discussion topic in this group consisted of the notion of two-sided contracts
as in [16]. The group considered this to be a very interesting idea. The idea of aspect
categories and explicitly stating which categories are allowed at a certain point seems
a useful thing to do. In addition, the approach enables manageability and safety at the
same time. However, the question was posed if the contracts as proposed in [16] are
expressive enough.

The group ended this discussion session by reflecting on what should be expressed?
On the one hand, expressing what is allowed depends on the specific requirements
within a particular application context while expressing what is not allowed seems to
pose difficulties taking evolution into account.

4.3 Discussion Group 3: State and Future of Formal Methods for Aspects

A lively discussion on the state and future for formal methods focused on two main
questions:



1. What kind of properties are of particular interest for AOSD?
2. What methods can be used to analyze and ensure such properties?

Aspect interactions were discussed as a prime example of properties relevant to AOSD.
The current notion of interactions between aspects that are applied to the same join-
point was identified as a major stumbling block for the handling of interactions among
aspects. This coarse notion of interactions forbids the analysis of the frequent case
where interactions are caused by two aspects manipulating a common state at different
joinpoints. As a second group of aspect-relevant properties, security properties at dif-
ferent levels of abstraction (e.g., on the heap level, on the level of calls to higher-level
services) have been discussed.

The discussion on formal methods for the analysis and verification of aspect-relevant
properties centered on the need for easy to use, robust and scalable tools. Currently,
almost no existing tool supports more than one of those criteria. A major underlying
cause for this state of affairs is a lack of modular analysis and verification methods for
aspects: specifications of formal properties therefore are rather unwieldy and require
time-consuming whole-program analyses. Approaches that restrict aspects on the basis
of traditional module boundaries as well as pre-computation of analysis information for
program parts that can be reused in the context of analyses on larger programs were
discussed as potential solutions to these problems.

4.4 Discussion Group 4: A Classification of Aspect Dependencies and
Interactions

The topic of this discussion group was classifications for aspect dependencies and inter-
actions. As it was clear that the group would not be able to provide such a classification
or a classification framework, it looked into the characteristics of classifications for as-
pect dependencies and interactions.

The discussion started from the following question: “Why are there so many classifi-
cations for aspect dependencies and interactions?” By this question, the group referred
to the situation that in ADI there are relatively many different classifications given
that it is still a small community and compared to the overall number of papers on
ADI. Some of the noteworthy classifications are [17, 5, 7] but this list is by no means
complete.

Firstly, the group agreed on the fact that classifications are useful because they
are a means for understanding the problem space, i.e., the possible dependencies and
interactions among aspects or among aspects and other kind of modules. Classifica-
tions are also a means to classify the solution space, i.e., the approaches to detect or
handle such dependencies. Classifications help with building tools and allow comparing
different approaches and tools. A useful classification should cover commonalities and
variabilities. Lastly, a useful classification should have been successfully used more than
once.

Classifications for aspect dependencies and interactions differ in the following di-
mensions. These dimensions apply to the problem space that is introduced above. The
group considered these dimensions as orthogonal to each other.

– Development phases of the software development life cycle, i.e., requirements engi-
neering, architecture, design modeling, implementation, and testing.

– Expressive power of aspect languages.



– Level of abstraction.

It equally makes sense to think of classifications for the solution space, i.e., for the
approaches that detect or even solve aspect dependencies and interactions. These ap-
proaches will use theoretical foundations. Therefore, the solution space can be classified
according to the complexity and limitations of the theoretical foundations used.

Getting back to the question that the group asked itsef at the beginning of the
discussion, our conclusion is that there is potential for harmonization and unification
of classifications.

5 Panel on “Does AO Equal Quantification and
Obliviousness?”

The workshop hosted a panel that discussed the question “Does AO equal quantification
and obliviousness?” [8]. In particular, the panelists had to formulate an answer to the
following three questions.

1. Are quantification and obliviousness fundamental to AO?
2. If yes, why should we embrace them?
3. If no, then what is AO about?

We first elaborate on the different panel positions in which each of the four panelists
presented his personal view on the matter. Next, an overview is given from the panel
discussion based on questions from the workshop attendants.

5.1 Panel Positions

Michael Haupt started by declaring that we shouldn’t be dogmatic: AOSD is about
getting some constructs to modularize crosscutting concerns. There are some concerns
we can modularize with OO, others we can’t. For these, we introduced the term aspects
and that’s also what AO should be about: modularizing those crosscutting concerns.
W.r.t. obliviousness, concerns are already there even before any code is being written.
They are an inherent part of a system instead of imposed on (part of) a system. In
addition, crosscutting concerns are crosscutting by nature: we can’t do anything about
it. Obliviousness, however, means in its original definition that aspects can just be
imposed on (parts of) a system. The analogy with patches was thrown, where modules
don’t know they are being patched similar to modules that are oblivious to the fact
if there is an aspects imposed on them. This clearly results in a contradiction with
crosscutting concerns being there from the start. Michael concluded his statement on
obliviousness with requiring that any part of the system should not be more oblivi-
ousness to any other part than in traditional OO. For the quantification part of the
questions, a very important question in his opinion regards what we should quantify
over? Nowadays, we are able to quantify over both static and dynamic parts of a sys-
tem. We definitely must not quantify over internals of modules, but over interfaces.
This way, modules are allowed to express themselves in terms of situations that may
be of interest to other modules without giving away too many details.

Klaus Ostermann doesn’t like the word obliviousness much because it refers to
code locations and as a result, an aspect refers to a module. But an aspect affects



a point in the dynamic flow of a program and not a module. Aspects should offer a
modular implementation of global invariants of the form: “whenever X happens, do Y”.
Otherwise, it is implied that we only can understand programs in a step-by-step manner
rather than having some higher level of understanding, while the latter is exactly what
we should aim for. Many examples have proven this to be true: thread yielding, garbage
collection, lazy evaluation, email filtering, etc. A major problem in AOSD so far is that
one aspect may destroy the higher-level invariant that is assumed by another aspect.
Therefore, in future work, more attention should go to the more controlled interaction
between the invariants, in such a way that the problem is composed of modules where
each module is responsible for maintaining one or more invariants.

Hidehiko Masuhara rephrased the title of the panel slightly to “AO = quantification
(+ obliviousness not necessary) + join point abstraction” because the latter is often
overlooked. AO mechanisms can be seen as means of identifying join points and affecting
the behavior at those join points, in parallel with the 3-part model that Masuhara
et al. have proposed at ECOOP 2003 [15]. When comparing both pieces of work,
quantification nicely matches with the means of identifying join points. On the other
hand, obliviousness more or less equals how the means of identifying and affecting
are modeled, which is not an essential part of the 3-part model. However, join point
abstraction, which is not explicitly mentioned in both models, should enable us to
capture multiple join points at once. This is often supported by giving a name to a set
of join points, so the details are hidden from the user. One of the other panelists asked
the speaker about the difference between quantification and join point abstraction.
This was countered by explaining that both are not the same thing. The speaker ended
with the open question “Is naming sufficient to provide abstraction?”

Wouter Joosen sketched the following historical perspective. When we moved from
procedural to OO programming, we went for localization. In this regard, encapsula-
tion can be considered as a first wave of modularization. When we moved to aspects,
this only happened because the modularization in OO was not enough: crosscutting
concerns still existed. But when going to a next, extended, paradigm, we should not
throw away OO ideas. Transactions, persistence and security are the three reusable
services that one wants to configure without re-implementing everything over and over
again. And, (un)fortunately, obliviousness here exactly is the crime for AO, such as for
instance motivated by [22, 12]. Due to the current context, we should choose another
term (suggestion: dependencies) and take it from there. Finally, some observations
were given to the audience. Firstly, the time to ship a software product is essential and
makes shifting to components necessary. Aspect should be combined with components
if they want to be useful in production environments. Secondly, quantification needs to
be over interfaces. Last, but not least, the idea to document the effect of advice next
to the effect of aspects [5] is a very valuable one.

5.2 Panel Discussion

Discussions were centered around three more specific topics: obliviousness, interfaces
and abstraction. Summaries for each of these discussions are provided below.

Obliviousness At the beginning of the discussion, the workshop participants agreed
that the developer of a module best knows what the module can expose and what
not. This should not be influenced by aspects. This is exactly what was pointed out



before by some of the panelists. Hidehiko Masuhara complemented this line of thinking,
which is similar to Aldrich’s open modules [1], by pointing out that the abstraction
itself is important, no matter who defines the abstraction where. Hidehiko Masuhara
reminded us of the meta-level programming world of computational reflection and
asked the question “How do we distinguish AO from meta-level programming?”. Klaus
Ostermann pointed out that meta-level programming goes about a program with its
syntax while AO, at least, tries to talk about the semantics of a program.

According to the panelists, obliviousness seems to be a negative thing. Is there any
idea about how to design AO technologies without obliviousness? Given the fact that
AspectJ has built in some property of obliviousness, is it possible to take it away? In
other words, are quantification and obliviousness truly essential? For obliviousness, the
answer would be that it is not essential, but useful. Obviously, not all AO technologies
must have obliviousness mechanisms. One example would be using AspectJ only with
pointcuts on annotations. As a consequence, obliviousness is not essential, since AO
technologies can do without it. Languages of course also carry more or less obliviousness
than others with different degrees of coupling and cohesion. Klaus Ostermann comple-
mented this with stating that, in his opinion, a pointcut can involve private methods as
long as the implementation details are kept hidden. To illustrate, if an aspect depends
on the name of a method in AspectJ, one would interpret this as anti-modular because
changing implementation details can invalidate aspects. However, pointcuts can either
be formulated by referring to method names or by using higher level pointcuts. The
latter clearly does not break encapsulation.

Interfaces A member of the audience also pointed out that the revised definitions of
quantification and obliviousness have been overlooked in the discussion so far. Wouter
Joosen responded that obliviousness stays a crime and in essence is all about depen-
dencies. Looking at the base code, do we have to know there are dependencies? XPI’s
[10] and Open Modules [1] are about specifying points that you cannot see in code.
We certainly do not want annotations everywhere and a limited form of obliviousness
sounds appealing. In any case, we need a mechanism to express what we expect. If you
say in an AO composition that you imposed behaviour, then there should be contracts
that say which compositions are allowed or not. We can be more precise about what
we may want in terms of aspect composition. But if we don’t want to be that precise,
then we should not violate existing contracts and break encapsulation of, e.g., private
elements. Michael Haupt illustrated this further by indicating that there exist differ-
ent ways in AspectJ to interact with a module ending up with something not being a
module any longer if encapsulation gets broken.

An audience member acknowledged Michael Haupt’s suggestion that we should
plan ahead. However, he claimed that some crosscutting concerns arise because of
requirements changes, often after the code is in place. Aspects were compared to patches
in this regard. Immediately, the panel intervened by declaring we have a choice. For
instance, if there is something in an OO system that doesn’t fit my needs, I ask the
developer of the module to create a new abstraction. The audience questioned how that
developer then could create that new abstraction? One would think using obliviousness,
probably. Michael Haupt responded that another option is to have the ability in future
AO languages for a module to expose its own interface, and not have an external entity
responsible for this. Since, the base module developer has full control over the code,
he is the best person in place to provide such an abstraction. Another member of



the audience raised the concern that you have component programming on the one
side and component assembly on the other. At the assembly-level, you absolutely need
contracts in a non-oblivious manner. Wouter Joosen complemented this with noting
that oblivousness is of little value when the programmer has full control over the code.
The latter is very important from the perspective of software industry where things
need to be shipped that won’t break. Everybody agreed on the following conclusion
of this discussion topic. We should differentiate between obliviousness w.r.t. interfaces
and obliviousness w.r.t. implementation. We should avoid the former while the latter
is acceptable.

Abstraction On a question what makes AO different, Hidehiko Masuhara answered
with join point abstraction. Klaus Ostermann’s view on this matter regards the ability
to declaratively describe interesting events and to use this mechanism to implement
invariants. Among others, the parallel with macros was drawn. The position of the panel
was that an aspect is exposed as a first-class construct dynamically while a macro is
done completely statically. The power of using proceed() to manipulate the control
flow of the program dynamically is not available when working with macros. At the
moment, aspects seem to be a sort of swiss army knife doing everything from replacing
a byte code rewriter to implementing different crosscutting concerns. This highlights
the importance to recognise different needs for obliviousness instead of discouraging
obliviousness all together.

The audience started another discussion from the viewpoint of long term main-
tenance of a product. What happens if changes are required in the next release of a
product? If in the previous release the base programmers weren’t aware, then in this
next release they should be. The relevance is clear if changes to the base code are
needed of which the base programmers know that it would affect the aspects that rely
on it. Wouter also pointed out the relevance of verifying any interaction that is modeled
in a contract, such as for instance in [9], by the compiler or a dedicated verifier. This
relates to the ideas in [19].

Finally, Awais Rashid challenged the panel asking what abstraction is essentially?
Is naming a sufficient property for abstraction? Hidehiko Masuhara acknowledged the
fact that, nowadays, the only property we have at our disposal is naming. Klaus Oster-
mann completed the position of the panel by stating that naming alone probably will
not be enough. Everyone agreed that join point abstraction will be one of the key dif-
ferentiating factors. A join point definition is abstract if and only if it is in terms of the
domain at hand rather than a projection to the code. An audience member asked if it
was realistic to try to abstract the pointcut specifications from the code and turn that
into an interface and then find an aspect that matches that interface? Would this be
sufficient? Hidehiko Masuhara emphasized the resemblance with XPI’s [10]. Whether
the AspectJ pointcut language suffices to achieve this is another question. Klaus Os-
termann also referred to a paper of Kiczales et al. about aspect-aware interfaces [11]
at ICSE 2005.

6 Conclusion

This second workshop on Aspects, Dependencies and Interactions provided an oppor-
tunity for presentations and lively discussion between researchers working on AOSD,



dependencies and interactions from all over the world. The workshop continued the
wide discussion on aspects, dependencies and interactions that was started at last
years’ ADI 2006. It is our intention to continue encouraging the challenging work on
this topic by further organizing a number of follow-up workshops.

7 Workshop Organizers and Participants

7.1 List of Organizers

The workshop organizing committee consisted of the following five members.

– Frans Sanen, K.U.Leuven, Belgium (co-chair)
Email: frans.sanen (at) cs.kuleuven.be

– Ruzanna Chitchyan, Lancaster University, UK (co-chair)
Email: rouza (at) comp.lancs.ac.uk

– Lodewijk Bergmans, University of Twente, The Netherlands
Email: L.M.J.Bergmans (at) ewi.utwente.nl

– Johan Fabry, INRIA Futurs, France
Email: johan.fabry (at) lifl.fr

– Mario Sudholt, Ecole des Mines de Nantes, France
Email: mario.sudholt (at) emn.fr

7.2 List of Attendees

The list of attendees officially registered for the workshop is presented alphabetically
below. It should be noted that a number of unregistered attendees also participated,
but these are not listed here.

1. Zaid Altahat (Illinois Institute of Technology, USA)
2. Mourad Badri (Universit du Qubec Trois-Rivires, Canada)
3. David Bar-On (Open University of Israel, Israel)
4. Jorge Barreiros (Instituto Politecnico de Coimbra, Portugal)
5. Benoit Baudry (IRISA, France)
6. Alexandre Bergel (University of Potsdam, Germany)
7. Lodewijk Bergmans (University of Twente, The Netherlands)
8. Julien Charles (INRIA, France)
9. Shigeru Chiba (Tokyo Institute of Technology, Japan)

10. Johan Fabry (INRIA Futurs, France)
11. Gael Fraeteur (PostSharp, Czech Republic)
12. Birgit Grammel (SAP AG, Germany)
13. Phil Greenwood (Lancaster University, UK)
14. Florian Heidenreich (Dresden University of Technology, Germany)
15. Kevin Hoffman (Purdue University, USA)
16. Atsushi Igarashi (Kyoto University, Japan)
17. Jendrik Johannes (Dresden University of Technology, Germany)
18. Wouter Joosen (K.U.Leuven, Belgium)
19. Bert Lagaisse (K.U.Leuven, Belgium)
20. Gary T. Leavens (IOWA State University, USA)
21. Hidehiko Masuhara (University of Tokyo, Japan)



22. Katharina Mehner (Siemens, Germany)
23. Klaus Ostermann (Technical University of Darmstadt, Germany)
24. Meir Ovadia (Cadence Design Systems, USA)
25. Marco Piccioni (ETH Zurich, Switserland)
26. Awais Rashid (Lancaster University, UK)
27. Frans Sanen (K.U.Leuven, Belgium)
28. Hans Schippers (University of Antwerp, Belgium)
29. Sergio Soares (Universidade de Pernambuco, Brazil)
30. Guido Soldner (FAU Erlangen, Germany)
31. Fredrik Sorensen (University of Oslo, Norway)
32. Mario Sudholt (Ecole des Mines de Nantes, France)
33. Shmuel Tyszberowicz (Open University of Israel, Israel)
34. Naoyasu Ubayashi (Kyushu Institute of Technology, Japan)

References

1. J. Aldrich. Open modules: Modular reasoning about advice. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming, LNCS 3586, pages 144–168, 2005.

2. Aspectj. http://www.eclipse.org/aspectj.
3. D. Bar-On and S. Tyszberowicz. Derived requirements generation. In Proceedings of

the Second International Workshop on Aspects, Dependencies and Interactions (held at
ECOOP), pages 5–10, 2007.

4. J. Barreiros and A. Moreira. Aspect interaction management with meta-aspects and
advice cardinality. In Proceedings of the Second International Workshop on Aspects, De-
pendencies and Interactions (held at ECOOP), pages 11–16, 2007.

5. C. Clifton and G. T. Leavens. Spectators and assistants: Enabling modular aspect-oriented
reasoning. Technical Report TR02-10, Iowa State University, 2002.

6. D. S. Dantas and D. Walker. Harmless advice. 33rd ACM SIGPLAN - SICACT Sympo-
sium on Principles of Programming Languages (POPL06), 41(1):383–396, 2006.

7. R. Douence, P. Fradet, and M. Südholt. Composition, reuse, and interaction analysis of
stateful aspects. In Proceedings of the 3rd international Conference of Aspect-oriented
Software Development, Lancaster, UK, 2004. ACM.

8. R. Filman and D. Friedman. Aspect-oriented programming is quantification and
obliviousness. In Proceendings of Workshop on Advanced Separation of Concerns,
OOPSLA 2000, 2000. October 2000, Minneapolis. http://ic-www.arc.nasa.gov/ic/
darwin/oif/leo/filman/text/oif/aop-is.pdf.

9. P. Greenwood, G. Coulson, A. Rashid, B. Lagaisse, F. Sanen, E. Truyen, and W. Joosen.
Interactions in aspect-oriented middleware. In Proceedings of the Second International
Workshop on Aspects, Dependencies and Interactions (held at ECOOP), pages 17–22,
2007.

10. W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and H. Rajan.
Modular software design with crosscutting interfaces. IEEE Software, 23(1):51–60, 2006.

11. G. Kiczales and M. Mezini. Aspect-oriented programming and modular reasoning. In
ICSE ’05: Proceedings of the 27th international conference on Software engineering, pages
49–58, New York, NY, USA, 2005. ACM Press.

12. J. Kienzle and S. Gélineau. Ao challenge - implementing the acid properties for trans-
actional objects. In Proceedings of the 5th International Conference on Aspect-Oriented
Software Development, pages 202–213, New York, NY, USA, 2006. ACM Press.

13. S. Kojarski and D. H. Lorenz. Awesome: A co-weaving system for multiple aspect-oriented
extensions. In Proceedings of the 22nd Annual Conference on Object-Oriented Program-
ming Systems, Languages and Applications, ACM Press, 2007.



14. D. H. Lorenz and S. Kojarski. Understanding aspect interactions, co-advising and foreign
advising. In Proceedings of the Second International Workshop on Aspects, Dependencies
and Interactions (held at ECOOP), pages 23–28, 2007.

15. H. Masuhara and G. Kiczales. Modeling crosscutting in aspect-oriented mechanisms. In
Proceedings of European Conference on Object-Oriented Programming, LNCS 2743, pages
2–28, 2003.

16. F. Munoz, O. Barais, and B. Baudry. Vigilant usage of aspects. In Proceedings of the Sec-
ond International Workshop on Aspects, Dependencies and Interactions (held at ECOOP),
pages 29–35, 2007.

17. M. Rinard, A. Sǎlcianu, and S. Bugrara. A classification system and analysis for aspect-
oriented programs. In Proceedings of SIGSOFT’04/FSE-12, pages 147–158, Newport
Beach, CA, USA, 2004. ACM.

18. É. Tanter and J. Noyé. A versatile kernel for multi-language AOP. In R. Glck and
M. Lowry, editors, Proceedings of the 4th ACM SIGPLAN/SIGSOFT Conference on Gen-
erative Programming and Component Engineering (GPCE 2005), volume 3676, pages 173–
188, Tallinn, Estonia, 2005.

19. N. Ubayashi, Y. Maeno, K. Noda, and G. Otsubo. A verification mechanism for weaving
in extensible aom languages. In Proceedings of the Second International Workshop on
Aspects, Dependencies and Interactions (held at ECOOP), pages 36–41, 2007.

20. N. Ubayashi, T. Tamai, S. Sano, Y. Maeno, and S. Murakami. Model compiler construction
based on aspect-oriented mechanisms. In R. Glck and M. R. Lowry, editors, GPCE, volume
3676 of Lecture Notes in Computer Science, pages 109–124. Springer, 2005.

21. N. Ubayashi, T. Tamai, S. Sano, Y. Maeno, and S. Murakami. Aspect-oriented and
collaborative systems metamodel access protocols for extensible aspect-oriented modeling.
In K. Zhang, G. Spanoudakis, and G. Visaggio, editors, SEKE, pages 4–10, 2006.

22. B. D. Win. Engineering application-level security through aspect-oriented software devel-
opment. PhD dissertation, 2004.


