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Dynamics
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Abstract. Ultrasound contrast agents are traditionally used in ultrasound-assisted
organ perfusion imaging. Recently the use of coated microbubbles has been proposed
for molecular imaging applications where the bubbles are covered with a layer of tar-
geting ligands to bind specifically to their target cells. In this chapter we describe
contrast agent microbubble behavior starting from the details of free bubble dynam-
ics leading to a set of equations describing the dynamics of coated microbubbles.
Experimentally, the dynamics of ultrasound contrast agent microbubbles is tempo-
rally resolved using the ultra-high speed camera Brandaris 128. The influence of
a neighboring wall is investigated by combining the Brandaris camera with optical
tweezers. It was observed that the presence of the wall can alter the bubble response.
A detailed description of the bubble-wall interaction may therefore lead to improved
molecular imaging strategies.

7.1 Introduction

Ultrasound is widely used in medical imaging in gynecology, cardiology, radiol-
ogy and urology. In cardiology for example ultrasound imaging is used to assess
the heart wall motion and the heart valves. Ultrasound Contrast Agents [22]
(UCA) are used to enhance endocardial border delineation and to assess per-
fusion. UCAs consist of small microbubbles with a radius of 1 to 5 μm. The
bubbles have a high scattering cross section because of their compressibility
giving rise to a strong echo. The microbubbles are coated with a phospholipid
monolayer, a polymeric shell or proteins to reduce the capillary pressure and
to prevent them from dissolving in the blood, see Figure 7.1.
An emerging application is the use of these type of microbubbles in molecu-

lar imaging. Here the bubbles contain targeting ligands which bind specifically
to their target cells, for diagnosis at a cellular level. For such molecular imag-
ing applications it is desirable to distinguish freely floating microbubbles from
targeted ones.
While the response of a bubble depends on the applied acoustic pressure,

it also depends strongly on the applied ultrasound frequency. At low acoustic
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Fig. 7.1. Schematic drawing of a microbubble with a phospholipid monolayer

driving the bubble response is maximum at its resonance frequency. The reso-
nance frequency of microbubbles with a radius of 1–5 μm is in the megahertz
range, which nicely (and for obvious reasons) coincides with the optimum
imaging frequencies used in medical ultrasound imaging. For higher acoustic
pressures the microbubbles show strong non-linear behavior, producing higher
harmonics. Most contrast-enhanced ultrasound imaging techniques, such as
power modulation [3] and pulse inversion [19], exploit the second harmonic
signal to distinguish tissue from contrast.
A targeted microbubble is a complex system containing a gas core, a shell

and targeting ligands. To understand the behavior of these targeted microbub-
bles we need to understand the dynamics of a gas bubble and the influence of
its shell and targeting ligands. There exists a full theoretical and experimen-
tal understanding of the behavior of uncoated gas bubbles in the mm-range
in free space [15, 17, 21, 24, 30, 31, 33, 35] and some of these models are also
used to describe the bubble behavior in the μm-range. The validation of these
models in the μm-range has been limited because of experimental complexity,
predominantly because of the rather short lifetime of the uncoated bubbles.
Several theoretical models have been developed for bubbles with a viscoelastic
coating [6, 7, 18, 36]. Recently, these models were extended to account also for
buckling and rupture of the shell [26]. Acoustical characterization of bubble
suspensions and acoustical and optical experiments for example with the Bran-
daris 128 camera [5], see Figure 7.2, performed on single bubbles confirm the
physical picture governed by the visco-elastic properties of the shell [16,26,38].
The change in dynamics between untargeted and targeted microbubbles has
been investigated by Zhao et al. [40, 41] and Lankford et al. [23].
In general, experiments on single UCA microbubbles are performed on

bubbles floating against a (capillary) wall. This may not represent the ideal
comparison to theory and numerical simulations, as in the models the bubble
is assumed to reside in an infinite medium. Garbin at al. [14] used an optical
tweezers setup to manipulate single UCA microbubbles and it was shown
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Fig. 7.2. Schematic drawing of the Brandaris 128 camera. The rotating mirror
sweeps the light beam projecting the microscope image on the CCD’s. The mirror
sweeps the image over the CCD’s with a minimum interframe time of 40 ns or
equivalent a framerate of 25 Mfps

experimentally that the UCA microbubbles’ dynamics is hampered by the
presence of a wall. A theory on the influence of a rigid wall exists for uncoated
gas bubbles and it includes translational oscillations [9, 27]. The influence of
the wall on the bubble response may prove to be useful for the discrimination
of targeted and freely floating microbubbles in molecular imaging applications.
In the following sections the current understanding of the dynamics of sin-

gle UCA microbubbles, both theoretically and experimentally, is discussed.
Section 7.2 starts with a description of the behavior of an uncoated bub-
ble using the non-linear Rayleigh-Plesset equation. Through linearization we
derive an expression for the resonance curve, the resonance frequency and the
damping. In section 7.3 we describe in more detail the influence of a viscoelas-
tic shell, while the influence of a rigid wall on the dynamics of microbubbles
is discussed in section 7.4. The chapter is concluded with a discussion and
conclusion in section 7.5.

7.2 Dynamics of a free gas bubble

The dynamics of an uncoated bubble in free space was first described by Lord
Rayleigh [35] and was later refined by Plesset [31], Noltingk & Neppiras [29,30]
and Poritsky [32] to account for surface tension and viscosity of the liquid.
A popular version of the equation of motion describing the bubble dynamics
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(often referred to as the Rayleigh-Plesset equation) is given by:
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Ṙ2
)
=

(
P0 +

2σw
R0

)(
R0
R

)3κ(
1− 3κṘ
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where ρ is the liquid density, ν the kinematic viscosity of the liquid, c the speed
of sound in the liquid, σw the surface tension of the gas-liquid system and κ
the polytropic exponent of the gas inside the bubble. P0 is the ambient pres-
sure and Pa(t) the applied acoustic pressure. R0 is the initial bubble radius, R
represents the time-dependent radius of the bubble, while Ṙ and R̈ represent
the velocity and the acceleration of the bubble wall, respectively. The bubble
is assumed to be surrounded by an infinite medium and it remains spheri-
cal during oscillations. The bubble radius is small compared to the acoustic
wavelength. The gas content of the bubble is constant. Damping of the bub-
ble dynamics is governed by viscous damping of the surrounding liquid and
by acoustic radiation damping, through sound radiated away from the bub-
ble [11, 12, 15, 17, 20, 21, 34, 37]. For the sake of simplicity thermal damping is
not included here. Finally, the density of the liquid is large compared to the
gas density.

7.2.1 Linearized equations

We often use the linearized equations to describe the bubble dynamics at
low driving pressures. For small amplitudes of oscillation the time-dependent
radius R can be written as R = R0 (1 + x (t)). Through a linearization of the
Rayleigh-Plesset equation around the initial radius R0 we obtain:

ẍ+ ω0δẋ+ ω
2
0x = F (t), (7.2)

with x its relative radial excursion, f0 = ω0/2π the eigenfrequency of the
system and δ the dimensionless damping coefficient. F (t) = F0sin(ωt) is the
acoustic forcing term. The eigenfrequency of the system follows from (7.1)
and (7.2).
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The total damping coefficient (δ) is given by the sum of the individual damping
coefficients. The contribution from the sound radiated by the bubble (δrad)
is:
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and the viscous contribution (δvis) is:

δvis =
4ν

ω0R20
. (7.5)

The resonance frequency of the system is then obtained from:

fres = f0

√
1− δ

2

2
. (7.6)

For a free gas bubble the damping coefficient is negligible. The surface
tension is negligible in the mm size range and the resonance frequency is
given by the Minnaert frequency [28]:

fres ≈ f0 =
1

2π

√
3κP0

ρR20
. (7.7)

For an air bubble in water we then recover the common rule of thumb for the
bubble resonance f0R0 ≈ 3 mm kHz. It should be noted that for bubbles
with a radius < 10 μm the surface tension cannot be neglected.
Assuming a steady-state response (t→∞), substitution into equation 7.2

gives the absolute relative amplitude of oscillation:

|x0| =
F0√

(ω20 − ω2)2 + (δωω0)2
. (7.8)

For small damping, as in the case of a free gas bubble, the amplitude of oscil-
lations of a bubble driven at a frequency well below its resonance frequency is
inversely proportional to the effective ‘mass’ and the eigenfrequency squared
of the system (stiffness-controlled). Well above the resonance frequency the
amplitude of oscillation is inversely proportional to the effective ‘mass’ of
the system (inertia-driven). Close to resonance the amplitude of oscillation is
inversely proportional to the damping coefficient, the eigenfrequency squared
and the effective ‘mass’ of the system [25].

7.3 Coated bubbles

Ultrasound contrast agents are encapsulated with a phospholipid, protein,
palmitic acid or polymer coating. The coating shields the water from the
gas, reducing the surface tension to prevent the bubbles from dissolution.
Several Rayleigh-Plesset type models have been derived for coated bubbles.
Church [6] derived a theoretical model for a coated bubble assuming that the
gas core is separated from the liquid by a layer of an incompressible, solid
elastic material. The shell has a finite thickness and the shell elasticity and
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the shell viscosity depend on the rigidity of the shell and the thickness of
the shell. Commercial 1st generation Albunex (Mallinckrodt) microbubbles
have an albumin shell and remain stable for an extended period of time at
atmospheric pressure. Therefore, in Church’s model it is assumed that the
elastic shell counteracts the capillary pressure (Pg0 = P0) which stabilizes
the bubble against dissolution.
The second generation contrast agents have a more flexible phospholipid

shell. The commercially available contrast agents Sonovue R© (Bracco), Defin-
ity (Lantheus Medical Imaging) and Sonazoid (GE) consist of a monolayer of
phospholipids with a thickness of a few nanometers. Various models account
for a (phospholipid) coating by assuming a viscoelastic thin shell, see for
example De Jong et al. [7], Hoff et al. [18] and more recently Sarkar et al. [36].
The Rayleigh-Plesset type models account for the shell by an effective surface
tension (σ (R)) and the addition of a friction term (Sfric) due to the shell
elasticity and viscosity, respectively.
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Hoff et al. [18] modified Church’s model to account for the thin shell by reduc-
ing the equation of Church to a form similar to that of equation 7.9. The effec-
tive surface tension and the shell viscosity in the various models are given in
Table 7.1. The effective surface tension changes as a function of the bubble
radius, see Figure 7.3 for a plot for the various shell models. The parameters
are chosen to be comparable in the models (Sp = 2Es = 6Gsdsh0 = 1.1 N/m)
for the shell elasticity and (Sf = 16πκs = 48πμsdsh0 = 2.7 ·10−7 kg/s) for the
shell viscosity, as reported by Gorce et al. [16]. In this regime, the slope of the
effective surface tension as a function of the bubble radius is similar for the

Table 7.1. Values for the initial gas pressure in the bubble (Pg0), the effective
surface tension σ (R) and the shell viscosity Sfric for three elastic shell models. For
comparison the values for an uncoated bubble (Rayleigh-Plesset) are also given

Model Pg0
[
N/m2

]
σ (R) [N/m] Sfric [kg/s]

Rayleigh-Plesset P0 +
2σw
R0

σw –

Church [6],
Hoff et al. [18]

P0 6Gsdsh0
R20
R2

(
1− R0

R

)
3μsdsh0

R20
R2

De Jong et al. [7] P0 +
2σw
R0

σw + Sp

(
R

R0
− 1
)

Sf
16π

Sarkar et al. [36] P0 σ (R0) + ES

(
R2

R2E
− 1
)

κs
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Fig. 7.3. The effective surface tension as a function of the bubble radius (R0 = 2 μm)
for the different models accounting for a purely elastic shell

models by De Jong et al. [7] and Sarkar et al. [36]. The main difference between
the models is found for the effective surface tension at the initial bubble radius
(σ(R0)). It equals σw for the model by De Jong et al. [7] and it varies for the
model by Sarkar et al. [36]. In this example we choose σ(R0) = 0.036 N/m
for the model of Sarkar et al. [36]. The model of Church [6], modified by
Hoff et al. [18] for a thin shell, has a lower initial effective surface tension,
σ(R0) = 0 N/m, and has a different slope. Note that the effective surface
tension in these models is not bound and the effective surface tension can
become negative and larger than σw.
Marmottant et al. [26] introduced a model which seems to be more appli-

cable for high amplitude oscillations. The model accounts for an elastic shell
and also for buckling and rupture of the shell. When the shell is elastic, com-
pression of the bubble increases the phospholipid concentration. Therefore, in
the elastic regime the effective surface tension decrease is a linear function of
the area under compression. Further compression leads to such high phospho-
lipid concentrations that the shell tends to buckle and the effective surface
tension vanishes. On the other hand, expansion decreases the phospholipid
concentration and leads to rupture. It is assumed that the effective surface
tension will relax to σw. The effective surface tension using equation 7.9 for
the three regimes is given by:

σ (R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if R ≤ Rbuckling

χ

(
R2

R2buckling
− 1
)
if Rbuckling ≤ R ≤ Rbreakup

σw if ruptured and R ≥ Rbreakup

, (7.10)

with χ the shell elasticity andRbuckling and Rbreakup the buckling and breakup
radius, respectively. The effective surface tension as a function of the relative
radius for the Marmottant model is shown in Figure 7.4. The shell of a UCA
microbubble consists of a monolayer of phospholipids. The initial surface ten-
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Fig. 7.4. The effective surface tension as a function of the bubble radius (R0 = 2 μm)
for the model of Marmottant et al. (2005) including an elastic regime and buckling
and rupture of the shell

sion is chosen to be σ (R0) = 0.036 N/m similar to the example of the
Sarkar model. The choice of σ (R0) in combination with the value for the
shell elasticity χ = Sp/2 = 0.55 N/m results in Rbuckling = 0.97 R0 and
Rbreakup = 1.03 R0. In this example the bubble is assumed to rupture when
the surface tension reaches σw. The shell viscosity in equation 7.9 is given
by Sfric = κs. As will be shown in the following paragraph, the elasticity of
the shell increases the eigenfrequency of the bubble while the shell viscosity
increases the total damping of the system.

7.3.1 Linearized equations

The bubble resonance frequency and its corresponding damping coefficient
are derived in a similar way as in section 7.2.1. For the model of De Jong et
al. [7] the eigenfrequency and the total damping (δtot = δrad + δvis + δshell)
are given by:
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The eigenfrequency of a coated bubble has two contributions: one part that is
similar to the eigenfrequency of an uncoated bubble and an elastic shell con-
tribution. The shell viscosity Sf increases the damping for a coated bubble.
Figure 7.5 shows the eigenfrequency and resonance frequency for an uncoated
and coated bubble. The resonance frequency and the eigenfrequency of the
uncoated bubble agree to within graphical resolution. The eigenfrequency of
a coated bubble in comparison to an uncoated microbubble is higher due to
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Fig. 7.5. The resonance frequency as a function of the initial bubble radius (R0)
for an uncoated (dotted black line) and coated microbubble (dashed black line). For
comparison the eigenfrequency is plotted (grey). The resonance frequency and the
eigenfrequency of the uncoated bubble agree to within graphical resolution

the shell elasticity. The damping has a negligible influence on the resonance
frequency for an uncoated bubble and for coated bubbles with R0 > 1 μm.
Figure 7.6 shows the resonance curve of an uncoated and coated microbubble
with a resting radius of 2 μm. The amplitude of oscillation and the resonance
frequency are normalized to the maximum amplitude of oscillation and the
resonance frequency of the uncoated bubble, respectively. Both the damp-
ing and eigenfrequency increase for a coated microbubble, while the effective
‘mass’ stays the same. The amplitude of oscillation at resonance is therefore
lower when the bubble has a shell, see Figure 7.6. Below resonance, neglecting
the influence of the damping, the system is stiffness driven. The shell increases
the stiffness of the system and the amplitude of oscillation below resonance is
therefore lower for a coated microbubble. Far above resonance the amplitude
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Fig. 7.6. The amplitude of oscillation for an uncoated and coated bubble with
R0 = 2 μm, normalized with the maximum amplitude of oscillation of the uncoated
microbubble. The driving frequency is normalized to the resonance frequency of the
uncoated microbubble
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of oscillation is inversely proportional to the effective ‘mass’ of the system.
Consequently above resonance the amplitude of oscillation does not depend
on the shell properties.

7.3.2 Optical and acoustical characterization

The theoretical models are validated through experiments on single bubbles.
Acoustical and optical experiments reveal the response of UCA microbubbles
and both have there own particular advantages and disadvantages. In acousti-
cal experiments, the scattered pressure or pressure-time P-t curve is recorded.
Acoustic characterization is relatively inexpensive and has the advantage of
a high sampling rate using long pulse sequences. The scattered pressure of
a single bubble however is limited (order 1 Pa) and close to the noise level
of our detection system. The transducer focus is in the order of the acoustic
wavelength and a bubble must be isolated in the in vitro setup. In optical
experiments high-speed cameras are used to record the radial response or
radius-time R-t curve of single bubbles. Such a camera should be able to tem-
porally resolve the dynamics of the microbubbles which is driven at MHz
frequencies. The required framerates makes the construction of such a camera
expensive. The recording time is limited by the number of frames. Optical
characterization of single microbubbles is relatively easy. The Brandaris 128
camera, see Figure 7.2, was especially designed for this purpose [5]. The cam-
era uses a fast rotating mirror (max 20,000 rps) to sweep the image across
128 highly sensitive CCDs. At maximum speed an interframe time of 40 ns,
which corresponds to a framerate of 25 Mfps is obtained. Figure 7.7 shows
a sequence of 25 frames recorded with the Brandaris 128 camera at a fram-
erate of 13.5 Mfps. The applied acoustic pulse has a frequency of 2.7 MHz
and a pressure of 30 kPa. The accompanying R-t curve of the microbubble
from the Brandaris movie is shown in Figure 7.8. The maximum amplitude
of oscillation is 200 nm corresponding to a relative amplitude of 10%.
The first fitting of shell parameters for SonoVue R© were performed acous-

tically on a microbubble suspension [16]. Recently, optical R-t curves of single
UCA microbubbles (SonoVue R©) were recorded and fitted, to an elastic shell
model (Hoff’s model), by Chetty et al. [4]. In Chetty et al. [4] the shell thick-
ness and shell viscosity was fixed and it was found that the shell elasticity
increases with increasing bubble radius. The experiments were performed with
a single applied frequency (0.5 MHz) and pressure (40-80 kPa). No exper-
iments were performed to test the validity of the shell parameters for the
same bubble at different ultrasound frequencies and pressures. Van der Meer
et al. [38] insonified single UCA microbubbles (BR-14) consecutively with 11
ultrasound pulses, increasing the frequency for each pulse, near resonance.
A resonance curve was then obtained by plotting the amplitude of oscilla-
tion as a function of the applied frequency. A fit of the resonance curve to
the linearized shell model of Marmottant et al. [26] then resulted in the shell
elasticity and shell viscosity. In contrast to Chetty et al. [4], Van der Meer
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Fig. 7.7. Sequence of 24 frames of a 2.2 μm radius bubble recorded with the Bran-
daris 128 camera at a framerate of 13.5 Mfps
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Fig. 7.8. The R-t curve of the same bubble as in Figure 7.7. The bubble is insonified
with an ultrasound pulse with a frequency of 2.7 MHz and an acoustic pressure of
30 kPa

et al. [38] found that the shell elasticity was nearly constant while the shell

viscosity decreases with decreasing dilatation rate
(
Ṙ/R

)
. One should note

that all the above experiments were performed at or in close proximity to a
(capillary) wall. In the following section we will discuss the influence of a rigid
wall on bubble dynamics.
De Jong et al. [8] reported on an observation of coated microbubbles at low

applied acoustic pressures, where the bubbles compress, but hardly expand.
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This highly non-linear effect, referred to as compression-only behavior, occurs
for 40% of the bubbles even at pressures as low as 50 kPa. Remarkably all
bubbles with an initial radius less than 2 μm show compression only behav-
ior at a frequency of 1 MHz. Compression only behavior is not observed for
uncoated bubbles and cannot be described by a model accounting for purely an
elastic shell. Actually, the purely elastic shell models predict even a decrease
of the non-linear behavior of the coated microbubbles as compared to the
dynamics of an uncoated microbubble. The model of Marmottant et al. [26]
accounting for an elastic shell and for buckling and rupture of the shell pre-
dicts compression-only behavior. As stated by Marmottant et al. [26] the
compression modulus in the elastic state is much higher than in the buckled
or ruptured state. For a bubble where the resting radius is the buckling radius
it is much harder to expand than to compress and results in compression only
behavior of the bubble [26].
Emmer et al. [10] showed an oscillation threshold for coated microbubbles

with a radius smaller than 2.5 μm at a driving frequency of 1.7 MHz. Below
a certain pressure (30–120 kPa) the bubbles hardly oscillate while above this
threshold the amplitude of oscillation increases linear with the applied acoustic
pressure. This non-linear effect occurs at low acoustic pressures and is not yet
fully understood. The non-linear behavior of the UCA microbubbles can be
exploited to improve present contrast enhanced imaging techniques.

7.4 Bubble dynamics near a rigid wall

In this section we discuss the influence of a rigid wall on the bubble dynam-
ics. We start with the simplest approach, the so-called method of images, to
simulate the influence of a wall. We also study the system experimentally by
recording the radial bubble dynamics at the wall and in free space, away from
the wall.

7.4.1 Method of images

In the literature, several extensions to the bubble dynamics equations have
been made to account for the presence of a rigid wall. All the models described
here are based on the method of images depicted in Figure 7.9. If the wall is
rigid, the specific acoustic impedance Z = ρ c is infinite, and no energy crosses
the wall. To describe the acoustic (or equivalently the fluid-mechanical field)
the wall is replaced by an identical image bubble oscillating in-phase with
the real bubble and positioned at the mirrored image point. The real bubble
dynamics is influenced by the pressure emitted by the image bubble. The
dynamics of a coated bubble near a rigid wall is therefore described by a
Rayleigh-Plesset type equation including the radiated pressure of the image
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a b

Fig. 7.9. The method of images. In (a) the actual situation, where the bubble is
located at a distance d from the rigid wall, (b) shows the method of images in which
the wall is replaced by an image bubble

bubble:
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Ṙ

R2
− 2σ (R)

R
− ρ ∂
∂t

(
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where d represents the distance between the bubble and the wall. For a bubble
positioned directly at the wall, such as bubbles floating up against the capillary
wall, the distance d is simply given by the bubble radius R (t). In this case
the bubble dynamics equation becomes:
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)
= Pg0

(
R0

R

)3κ(
1− 3κṘ
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(7.14)

Note that all assumptions made previously for the Rayleigh-Plesset equa-
tion for an uncoated microbubble remain valid. Therefore the bubble must
remain spherical, which may not be strictly true in the experimental situa-
tion. For example we know that bubbles deform close to the wall at pressures
of 140 kPa [39].

7.4.2 Linearized equations

The rigid wall increases the effective ‘mass’ of the bubble 3/2 times (increased
prefactor of the inertial term) resulting in a decrease of the eigenfrequency
and damping. For an (un)coated bubble at a wall, the eigenfrequency and
damping are derived in a similar way as in section 7.2.1. The eigenfrequency
and damping for an uncoated bubble reduce to:

fwall0 =

√
2

3
ffree0 ≈ 0.8ffree0

δwall =

√
2

3
δfree ≈ 0.8δfree.

(7.15)
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Fig. 7.10. Resonance curves for an uncoated bubble with a initial radius of 2 μm in
free space (solid), at a rigid wall. The frequency and the amplitude are normalized
with the resonance frequency and amplitude of oscillation at resonance in the free
case

Figure 7.10 shows the resonance curve of a coated bubble in free space
(solid) and at the wall (dashed). The amplitude of oscillation and the applied
frequency are normalized to that of the bubble in free space. The amplitude
of oscillation at resonance is

√
3/2 larger for a bubble at a wall than for a

free bubble, see Figure 7.10. Below the resonance frequency the amplitude
of oscillations remains unchanged (stiffness-controlled) while above resonance
the amplitude of oscillation is 1.5 times smaller for a bubble at a wall because
of the increased effective ‘mass’ of the system.

7.4.3 Observations

Bubbles injected in an in vitro setup (e.g. capillary or flow cell) float up due
to buoyancy until they reach the top wall. Due to the limited focal depth
of the microscope objective the rising bubbles are difficult to capture in free
space. The radial bubble dynamics is therefore traditionally captured with
the bubbles positioned against the top wall of the capillary. In order to study
the influence of a wall on the bubble dynamics, the radial bubble response
should also be recorded in free space. To investigate the bubbles in free space
we trap the microbubbles and control their position in 3D space.
The pioneering work on particle trapping was that of Ashkin [1], who

showed the first optical trap for high-index particles
(
n = nparticle/ nmedium >

1
)
. Optical trapping has undergone rapid development, attracting special
attention from the life science discipline, as nanoparticles, cells, viruses and
bacteria can be micromanipulated and controlled. A high-index particle is
trapped in the intensity maximum of the laser beam focus. The optical gra-
dient force is directed towards the intensity maximum, while the scattering
force, away from the intensity maximum cancels out. Low-index particles, such
as the microbubbles studied here

(
n = nparticle/nmedium < 1

)
, are repelled

by both the scattering force and the gradient force. They can, however, be
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trapped in the intensity minimum in the center of a donut-shaped Laguerre-
Gaussian (LG) laser beam [13]. LG beams are obtained by modulating the
phase of a Gaussian beam, using diffractive optical elements (DOEs).
To investigate the influence of a wall on the dynamics of coated microbub-

bles, Garbin et al. [14] combined an optical tweezers setup with the ultra-high
speed Brandaris 128 camera. This enabled the micromanipulation of single
UCA microbubbles in 3D space, thereby temporally resolving bubble dynam-
ics, which as a result allowed for a detailed investigation of the influence of
the flow cell wall. Figure 7.11 shows the R-t curves of a single bubble with a
radius of 2.5 μm insonified with a frequency of 2.25 MHz and a pressure of
200 kPa. The top figure shows the R-t curve of the bubble at the flow cell
wall, while the middle figure shows the R-t curve of the very same bubble
positioned 50 μm away from the wall in free space. The bottom figure shows
the bubble response back at the wall and the amplitude of oscillation is sim-
ilar as in the first experiment where the bubble was also located at the wall.
Garbin et al. [14] reported a decrease in the amplitude of oscillations at the
flow cell wall by over 50%.
The following three possible explanations for the decrease in amplitude at

the wall were discussed in Garbin et al. [14]. First, a change in the resonance
frequency caused by the presence of the wall. This explanation is consistent
with the models described here, that show a decrease of the resonance fre-
quency by 20%. A viscous boundary layer formed near the wall inducing shear
stresses and additional dissipation was suggested as a second mechanism to
explain the observed behavior. Up to now simulations describing the boundary
layer approach have failed to predict the decrease of the amplitude of oscilla-

2
2.2
2.4
2.6

2
2.2
2.4
2.6

R
 (

μm
)

0 1 2 3 4 5 6
2

2.2
2.4
2.6

t (μs)

Wall

Free

Wall

Fig. 7.11. R-t curves for a single microbubble with a radius of 2.5 μm. The applied
ultrasound has a frequency of 2.25 MHz and a pressure of 200 kPa. The microbubble
is insonified at the wall (top), in free space 50 μm away from the wall (middle) and
again at the wall (bottom)
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tions near the wall. A third explanation that was given in Garbin et al. [14]
were non-spherical oscillations caused by the non-symmetrical interaction of
the oscillating bubble with the wall. In the setup by Garbin et al. [14] non-
spherical oscillations could not be observed due to the optical configuration
employed. The optical axis was perpendicular to the flow cell wall, i.e. it was
always observed in top-view. Voss et al. [39] showed, with a setup allowing
both, a side-view (optical axis parallel to the wall) and a top-view that the
oscillations of UCA microbubbles may appear spherical in top-view and can
be quite asymmetric in side-view.
Until now dissipation caused by translational oscillations due to secondary

Bjerknes force was not considered. A microbubble in an incident acoustic wave
will experience an acoustic radiation force. The force F depends on the volume
of the bubble V and the acoustic pressure gradient ∇P :

F = −V∇P. (7.16)

The force is called the (primary) Bjerknes force [2] if it is caused by the
incident acoustic wave. An oscillating microbubble radiates sound (pressure
waves) and thereby induces an acoustic radiation force on its neighboring
bubble, termed the secondary Bjerknes force. The Bjerknes force leads to an
alternating attractive and repulsive translation. Bubbles oscillating in phase
have a net attractive force while bubbles oscillating out of phase repel each
other. Consequently, a microbubble near a rigid wall will experience a net
attractive force towards the wall, as its image bubble oscillates in phase.
For the simulations described here the wall is considered as an infinitely

thick rigid wall. No energy passes the wall and the ultrasound will be fully
reflected at the wall. In our experiments the wall is acoustically transparent
to allow ultrasound to enter the flow cell and to prevent unwanted reflections.
For such a compliant wall the (complex) amplitude of the image bubble needs
to be adapted to the wall properties and this will be the subject of a future
study.

7.5 Conclusions

A phospholipid coating is accounted for by a thin viscoelastic layer. The shell
elasticity increases the eigenfrequency while a shell viscosity increases the
total damping and decreases the amplitude of oscillations of coated bubbles.
Most models, valid for low amplitude oscillations, describe the shell as fully
elastic [7,18,36] and predict a decrease in the linear and the non-linear behav-
ior of coated microbubbles. Experiments show non-linear behavior for coated
microbubbles at low applied acoustic pressure, for example, compression only
behavior and thresholding behavior. The model of Marmottant et al. [26]
including buckling and rupture of the shell is valid for high amplitude oscil-
lations and predicts the observed compression only behavior.
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With the method of images a decrease in the resonance frequency and an
increase of the amplitude at resonance is predicted for uncoated and coated
bubbles. These models do not include boundary layers and the oscillations are
assumed to remain spherical at all times.
The change in the dynamics of UCA microbubbles near a wall Garbin et

al. [14] is important for molecular imaging applications. The next step after
understanding the influence of a phospholipid shell and a wall is to understand
the influence of ligands on the coating, and targeting the wall. Optimization
of pulse-echo techniques can be done when there is a full understanding of the
complex systems.
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