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12.1 Introduction

In a wide variety of research areas, analysts are often confronted with hier-
archically structured data. Examples of such data structures include longi-
tudinal data where several observations are nested within individuals, cross-
national data where observations are nested in geographical, political or ad-
ministrative units, data from surveys where respondents are nested under an
interviewer, and test data for students within schools (e.g., Longford, 1993).
The nested structures give rise to multilevel data and a major problem is to
properly analyze the data taking into account the hierarchical structures.

There are two often criticized approaches for analyzing variables from
di®erent levels in a single level. The ¯rst is to disaggregate all higher order
variables to the individual level. That is, data from higher levels are assigned
to a much larger number of units at Level 1. In this approach, all disag-
gregated values are assumed to be independent of each other, which is a
misspeci¯cation that threatens the validity of the inferences. In the second
approach, the data at the individual level are aggregated to the higher level.
As a result, all within group information is lost. This is especially serious be-
cause relations between the aggregated variables can be much stronger and
di®erent from the relations between non-aggregated variables (see Snijders &
Bosker, 1999, pp. 14). When the nested structure within multilevel data is
ignored, standard errors are estimated with bias.

A class of models that takes the multilevel structure into account and
makes it possible to incorporate variables from di®erent aggregation levels
is the class of so-called multilevel models. Multilevel models support ana-
lyzing variables from di®erent levels simultaneously, taking into account the
various dependencies. These models entail a statistically more realistic spec-
i¯cation of dependencies and do not waste information. The importance of a
multilevel approach is fully described by Burstein (1980). Di®erent methods
and algorithms have been developed for ¯tting a multilevel model, and these
have been implemented in standard software. For example, the EM algorithm
(Dempster et al., 1978), the iteratively reweighted least squares method of
Goldstein (1986), and the Fisher scoring algorithm (Longford, 1993), have be-
come available in specialized software for ¯tting multilevel models (e.g., HLM,
Raudenbush et al., 2000; MLwiN Goldstein et al., 1998; Mplus, Muth¶en &
Muth¶en, 1998; and VARCL, Longford, 1990).
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The ¯eld of multilevel research is broad and covers a wide range of prob-
lems in di®erent areas. In social and behavioural science research, the basic
problem is to relate speci¯c attributes of individuals and characteristics of
groups and structures in which the individuals function. For example, in so-
ciology multilevel analysis is a useful strategy for contextual analysis, which
focuses on the e®ects of the social context on individual behavior (Mason et
al., 1983). In the same way, relating micro and macro levels is an important
problem in economics (Baltagi, 1995). Moreover, with repeated measurements
of a variable on a subject, interest is focused on the relationship of the vari-
able to time (Bryk & Raudenbush, 1987; Goldstein, 1989; Longford, 1993).
Further, Bryk and Raudenbush (1987) have introduced multilevel models in
meta-analysis. The multilevel model has also been used extensively in educa-
tional research (e.g., Bock, 1989; Bryk & Raudenbush, 1987; Goldstein, 1987;
Hox, 1995). Finally, extensive overviews of multilevel models can be found in
Heck and Thomas (2000), HÄuttner and van den Eeden (1995), Kreft and de
Leeuw (1998), and Longford (1993).

In many research areas, studies may involve variables that cannot be
observed directly or are observed subject to error. For example, a person's
mathematical ability cannot be measured directly, only the performance on
a number of mathematical test items. Also, data collected from respondents
contain reponse error (i.e., there is response variation in answers to the same
question when repeatedly administered to the same person). Measurement
error can occur in both independent explanatory and dependent variables.
The reliability of explanatory variables is an important methodological ques-
tion. When reliability is known, corrections can be made (Fuller, 1987), or,
if repeated measurements are available, reliability can be incorporated into
the model and estimated directly. The use of unreliable explanatory variables
leads to biased estimation of regression coe±cients and the resulting statis-
tical inference can be very misleading unless careful adjustments are made
(Carroll et al., 1995; Fuller, 1987). To correct for measurement error, data
that allow for estimation of the parameters in the measurement error model
are collected. Measurement error models have been applied in di®erent re-
search areas to model errors-in-variables problems, incorporating error in the
response as well as in the covariates. For example, in epidemiology covariates,
such as blood pressure or level of cholesterol, are frequently measured with
error (e.g., Buonaccorsi, J., 1991; MÄuller & Roeder, 1997; Wake¯eld & Mor-
ris, 1999). In educational research, students' pre-test scores, socio-economic
status or intelligence are often used as explanatory variables in predicting stu-
dents' examination results. Further, students' examination results or abilities
are measured subject to error or cannot be observed directly. The measure-
ment errors associated with the explanatory variables or variables that cannot
be observed directly are often ignored or analyses are carried out using as-
sumptions that may not always be realistic (e.g., Aitkin & Longford, 1986;
Goldstein, 1987).
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Although the topic of modeling measurement error has received consider-
able attention in the literature, for the most part, this attention has focused
on linear measurement error models; more speci¯cally, the classical additive
measurement error model (e.g., Carroll et al., 1995; Fuller, 1987; Goldstein,
1987; Longford, 1993). The classical additive measurement error model is
based on the assumption of homoscedasticity, which entails equal variance of
measurement errors conditional on di®erent levels of the dependent variable.
Furthermore, it is often assumed that measurement error variance can be es-
timated from replicate measurements or validation data, or that it is a priori
known for identi¯cation of the model. Often the measurement error models
are very complex. For example, certain epidemiology studies involve nonlin-
ear measurement error models to relate observed measurements to their true
values (e.g., Buonaccorsi & Tosteson, 1993; Carroll et al., 1995). In educa-
tional testing, item response models relate achievements of the students to
their response patterns (e.g., Lord, 1980 or van der Linden & Hambleton,
1997).

Measurement error models are often calibrated using external data. To
correct for measurement error in structural modeling, the estimates from
the measurement error model are imputed in the estimation procedure for
the parameters of the structural model. This method has several drawbacks.
In case of a single measurement with a linear regression calibration curve
for the association of observed and true scores, and a homoscedastic nor-
mally distributed error term, the results are exact (Buonaccorsi, 1991). But
if a dependent or explanatory variable subject to measurement error in the
structural model has a nonconstant conditional variance, the regression cali-
bration approximation suggests a homoscedastic linear model given that the
variances are heteroscedastic (Carroll et al., 1995, pp. 63). Also, in case of
a nonlinear measurement error model and a nonlinear structural model, the
estimates can be biased (Buonaccorsi & Tosteson, 1993; Carroll et al., 1995,
pp. 62-69).

Until recently, measurement error received little attention in the Bayesian
literature (Zellner, 1971, pp. 114-161). Solutions for measurement error prob-
lems in a Bayesian analysis (e.g., Gelfand & Smith, 1990; Geman & Ge-
man, 1984) were mainly developed after the introduction of Markov Chain
Monte Carlo (MCMC) sampling (e.g., Bernardinelli et al., 1997; Mallick &
Gelfand, 1996; MÄuller & Roeder, 1997; Richardson, 1996; Wake¯eld & Mor-
ris, 1999). The Bayesian framework provides a natural way of taking into
account all sources of uncertainty in the estimation of the parameters. Also,
the Bayesian approach is °exible; di®erent sources of information are easily
integrated and the computation of the posterior distributions, which usually
involves high-dimensional integration, can be carried out straightforwardly
by MCMC methods.

This chapter deals with measurement error in both the dependent and
independent variables of a structural multilevel model. The observed data
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consist of responses to questionnaires or tests and contain measurement error.
It will be shown that measurement error in both dependent and independent
variables leads to attenuated parameter estimates of the structural multilevel
model. Therefore, the response error in the observed variables is modeled
by an item response model and a classical true score model to correct for
attenuation. The Gibbs sampler can be used to estimate all parameters of
both the measurement model and the structural multilevel model at once.
With the use of a simulation study both models are compared to each other.

The chapter is divided into several sections. The ¯rst section describes a
substantive example in which the model can be applied. Then, several dif-
ferent measurement error models for response error are discussed. After de-
scribing the combination of the structural model with di®erent measurement
error models, ¯tting these models is discussed. Finally, it is shown that the
parameter estimates of the structural multilevel model are attenuated when
measurement error is ignored. This is illustrated with an arti¯cial example.
The chapter concludes with a discussion.

12.2 School E®ectiveness Research

Monitoring student outcomes for evaluating teacher and school performance
has a long history. A general overview with respect to the methodological
aspects and ¯ndings in the ¯eld of school e®ectiveness research can be found
in Scheerens and Bosker (1997). Methods and statistical modeling issues in
school e®ectiveness studies can be found in Aitkin and Longford (1986) and
Goldstein (1997). The applications in this chapter focus on school e®ective-
ness research with a fundamental interest in the development of knowledge
and skill of individual students in relation to school characteristics. Data are
analyzed at the individual level and it is assumed that classrooms, schools,
and experimental interventions have an e®ect on all students exposed to
them. In school or teacher e®ectiveness research, both levels of the multilevel
model are important because the objects of interest are schools and teachers
as well as students. Interest may exist in the e®ect on student learning of
the organizational structure of the school, characteristics of a teacher, or the
characteristics of the student.

Multilevel models are used to make inferences about the relationships be-
tween explanatory variables and response or outcome variables within and
between schools. This type of model simultaneously handles student-level re-
lationships and takes into account the way students are grouped in schools.
Multilevel models incorporate a unique random e®ect for each organizational
unit. Standard errors are estimated taking into account the variability of the
random e®ects. This variation among the groups in their sets of coe±cients
can be modeled as multivariate outcomes which may, in turn, be predicted
from Level 2 explanatory variables. The most common multilevel model for
analyzing continuous outcomes is a two-level model in which Level 1 regres-
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sion parameters are assumed to be multivariate normally distributed across
Level 2 units. Here, students (Level 1), indexed ij (i = 1; : : : ; nj ; j = 1; : : : ; J)
, are nested within schools (Level 2), indexed j (j = 1; : : : ; J). In its general
form, Level 1 of the two level model consists of a regression model, for each
of the J Level 2 groups (j = 1; : : : ; J), in which the outcomes are modeled
as a function of Q predictor variables. The outcomes or dependent variables
in the regression on Level 1, such as, students' achievement or attendance,
are denoted by !ij (i = 1; : : : ; nj ; j = 1; : : : ; J). The Q explanatory variables
at Level 1 contain information on students' characteristics (e.g., gender and
age), which are measured without error. Level 1 explanatory variables can
also be latent variables (e.g., socio-economic status, intelligence, community
loyalty, or social consciousness). The unobserved Level 1 covariates are de-
noted by µ; the directly observed covariates by ¤. Level 1 of the model is
formulated as

!ij = ¯0j+¯1jµ1ij+: : :+¯qjµqij+¯(q+1)j¤(q+1)ij+: : :+¯Qj¤Qij+eij (12.1)

where the ¯rst q predictors correspond to unobservable variables and the
remaining Q ¡ q predictors correspond to directly observed variables. Ran-
dom error ej is assumed to be normally distributed with mean 0 and variance
¾2
j Inj : The regression parameters are treated as outcomes in a Level 2 model,

although, the variation in the coe±cients of one or more parameters could
be constrained to zero. The Level 2 model, containing predictors with mea-
surement error, ³, and directly observed covariates, ¡; is formulated as

¯qj = °q0+°q1³1qj+: : :+°qs³sqj+°q(s+1)¡(s+1)qj+: : :+°qS¡Sqj+uqj (12.2)

for q = 0; : : : ; Q; where the ¯rst s predictors correspond to unobservable
variables and the remaining S ¡ s correspond to directly observed variables.

The set of variables µ is never observed directly but supplemented infor-
mation about µ, denoted as X; is available. In this case, X is said to be a
surrogate, that is, X is conditionally independent of ! given the true covari-
ates µ: In the same way, Y and W are de¯ned as surrogates for ! and ³;
respectively. For item responses, the distribution of the surrogate response
depends only on the latent variable. All the information in the relationship
between X and the predictors, µ; is explained by the latent variable. This is
characteristic of nondi®erential measurement error (Carroll et al., 1995, pp.
16-17). Nondi®erential measurement error is important because parameters
in response models can be estimated given the true dependent and explana-
tory variables, even when these variables (!; µ; ³) are not directly observed.
The observed variables are also called manifest variables or proxies.
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12.3 Models for Measurement Error

A psychological or educational test is a device for measuring the extent to
which a person possesses a certain trait (e.g., intelligence, arithmetic and lin-
guistic ability). Suppose that a test is administered repeatedly to a subject,
that the person's properties do not change over the test period, and that suc-
cessive measurements are una®ected by previous measurements. The average
value of these observations will converge, with probability one, to a constant,
called the true score of the subject. In practice, due to the limited number of
items in the test and the response variation, the observed test scores deviate
from the true score. Let Yijk denote the test score of a subject ij on item
k; with an error of measurement "ijk: Then Yijk ¡ "ijk is the true measure-
ment or the true score. Further, let yijk denote the realization of Yijk: The
hypothetical distribution de¯ned over the independent measurements on the
same person is called the propensity distribution of the random variable Yijk:
Accordingly, the true score of a person; denoted again as µij , is de¯ned as
the expected value of the observed score Yijk with respect to the propensity
distribution. The error of measurement "ijk is the discrepancy between the
observed and the true score, formally,

Yijk = µij + "ijk (12.3)
A person has a ¯xed true score and on each occasion a particular observed

and error score with probability governed by the propensity distribution. The
classical test theory model is based on the concept of the true score and the
assumption that error scores on di®erent measurements are uncorrelated. An
extensive treatment of the classical test theory model can be found in Lord
and Novick (1968). The model is applied in a broad range of research areas
where some characteristic is assessed by questionnaires or tests (e.g., in the
¯eld of epidemiologic studies{Freedman et al., 1991; Rosner et al., 1989).

Another class of models to describe the relationship between an exami-
nee's ability and responses is based on the characteristics of the items of the
test. This class is labelled item response theory (IRT) models. The depen-
dence of the observed responses to binary scored items on the latent ability is
fully speci¯ed by the item characteristic function, which is the regression of
item score on the latent ability. The item response function is used to make
inferences about the latent ability from the observed item responses. The
item characteristic functions cannot be observed directly because the ability
parameter, µ; is not observed. But under certain assumptions it is possible
to infer information about examinee's ability from the examinee's responses
to the test items (Lord & Novick, 1968; Lord, 1980). One of the forms of the
item response function for a dichotomous item is the normal ogive,

P (Yijk = 1 j µij ; ak;bk) = © (akµij ¡ bk) (12.4)

where © (:) denotes the standard normal cumulative distribution function,
bk is the ability level at the point of in°exion, where the probability of a
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correct response equals :5 and ak is proportional to the slope of the curve
at the in°exion point. The parameters ak and bk are called the discrimina-
tion and di±culty parameters, respectively (for extensions of this model to
handle the e®ect of guessing or polytomously scored items, see Hambleton &
Swaminathan, 1985; van der Linden & Hambleton, 1997).

The true score,
KX

k=1

P (Yijk = 1 j µij) ; (12.5)

is a monotonic transformation of the latent ability underlying the normal
ogive model, Equation (12:4). Every person with similar ability has the same
expected number-right true score. Furthermore, the probability of a correct
score is an increasing function of the ability; thus, the number-right true
score is an increasing function of the ability. The true score, Equation (12:5) ;
and the latent ability are the same thing expressed on di®erent scales of
measurement (Lord & Novick, 1968, pp. 45-46). Since the true score and the
latent ability, are equivalent, the terms will be used interchangeably. Further,
the context of the model under consideration will reveal whether µ represents
a true score or a latent ability.

12.4 Multilevel IRT

The combination of a multilevel model with one or more latent variables
modeled by an item response model is called a multilevel IRT model. The
structure of the model is depicted with a path diagram in Figure 12.1. The
path diagram gives a representation of a system of simultaneous equations
and presents the relationships within the model. It illustrates the combination
of the structural model with the measurement error models. The symbols in
the path diagram are de¯ned as follows. Variables enclosed in a square box
are observed without error and the unobserved or latent variables are en-
closed in a circle. The error terms are not enclosed and presented only as
arrows on the square boxes. Straight single headed arrows between variables
signify the assumption that a variable at the base of the arrow `causes' vari-
able at the head of the arrow. The square box with a dotted line, around the
multilevel parameters, signi¯es the structural multilevel model. The upper
part is denoted as the within-group regression, that is, regression at Level
1, and the lower part is denoted as the regression at Level 2 across groups.
Accordingly, the regression at Level 1 contains two types of explanatory vari-
ables, observed or manifest and unobserved or latent variables and both are
directly related to the unobserved dependent variable. Also Level 2 consists
of observed and latent variables.

The model assumes that the latent variables within the structural multi-
level model determine the responses to the items. That is, the latent variables
!, µ and ³ determine the observed responses Y; X and W; respectively. The
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pair of a latent variable and an observed variable enclosed in an ellipse with
a dotted line de¯nes a measurement error model. In an IRT model item pa-
rameters also determine the responses to the items.

Fig. 12.1. A path diagram of a Multilevel IRT model, where item response models
measure the latent variables within the structural multilevel model.

The model in Figure 12.1 is not identi¯ed. Identi¯cation of the model
is possible by ¯xing the origin and scale of the latent variables. However,
the scale is associated with several variance components. Furthermore, in
multilevel modeling, one often ¯ts various models entailing di®erent decom-
positions of the ability variance, so ¯xing one of these components is not
practical. A more convenient way is to impose identifying restrictions on the
item parameters of each test. In the classical true score error model case, the
measurement error variances ought to be known, or estimated properly, to
identify the model. One could, for example, estimate the error variance from
repeated measurements.

Handling response error in both the dependent and independent variables
in a multilevel model using item response models has several advantages in
comparison to the use of the classical true score model (Fox & Glas, 2000,
2001). In IRT, measurement error can be de¯ned locally, for instance, as the
posterior variance of the ability parameter given a response pattern. This
results in a more realistic, heteroscedastic treatment of the measurement
error. Besides, the fact that in IRT reliability can be de¯ned conditionally on
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the value of the latent variable o®ers the possibility of separating the in°uence
of item di±culty and ability level, which supports the use of incomplete
test administration designs, optimal test assembly, computer adaptive testing
and test equating. Finally, the model is identi¯ed in a natural way, without
needing any prior knowledge.

12.4.1 Markov chain monte carlo (MCMC)

Analyzing the joint posterior distribution of the parameters of interest in the
model in (12:1) and (12:2) is infeasible. Computing expectations of marginal
distributions using, for example, Gauss-Hermite quadrature is also quite dif-
¯cult (Fox, 2000; Fox & Glas, 2001). Therefore, a sampling-based approach
using an MCMC algorithm to obtain random draws from the joint posterior
distribution of the parameters of interest given the data is considered. MCMC
is a simulation based technique for sampling from high dimensional joint dis-
tributions. From a practical perspective, the Markov chains are relatively
easy to construct and MCMC techniques are straightforward to implement.
They are also the only currently available techniques for exploring these high
dimensional problems. In particular, the Gibbs sampler (Gelfand & Smith,
1990; Geman & Geman, 1984) is a procedure for sampling from the complete
conditional distributions of all estimands.

The algorithm is described as follows. Consider a joint distribution ¼ de-
¯ned on a set µ ½ Rk (µ is used as a generic parameter of ¼; not an ability
parameter in an IRT model). The MCMC algorithm consists of specifying
a Markov chain with stationary distribution ¼: The elements of µ are par-
titioned into k components (µ1; : : : ; µk), and each component of µ may be a
scalar or a vector. One iteration of the Gibbs sampler is de¯ned as an updat-
ing of one component of µ. To obtain a sample from the target distribution ¼;
the Gibbs sampler creates a transition from µ(t) to µ(t+1). Updating the ¯rst
component, µ1; consists of sampling from the full conditional distribution

¼
³
µ1 j µ(t)

2 ; µ(t)3 ; : : : ; µ(t)k
´

which is the distribution of the ¯rst component of µ conditional on all other
components. Subsequently, µ(t+1)

2 is obtained as a draw from

¼
³
µ2 j µ(t+1)

1 ; µ(t)
3 ; : : : ; µ(t)k

´
;

and so on, until µ(t+1)
k is drawn from

¼
³
µk j µ(t+1)

1 ; µ(t+1)
2 ; : : : ; µ(t+1)

k¡1

´
;

which completes updating the components to µ(t+1).
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The order of updating the di®erent components is usually ¯xed, although
this is not necessary. Random permutations of the updating order are ac-
ceptable. The choice of updating scheme can e®ect the convergence of the
sampler (Roberts & Sahu, 1997). That is, a di®erent updating strategy can
make the algorithm converge faster. In some applications, a multivariate com-
ponent sampler is a more natural choice. This so-called blocking of the Gibbs
sampler by blocking highly correlated components into a higher-dimensional
component can improve the convergence of the Markov chain (Gelman et
al., 1995; Roberts & Sahu, 1997). On the other hand, updating in a block
or group is often computationally more demanding than the corresponding
componentwise updating scheme.

Running multiple chains reduces the variance of the parameter estimates
attributable to the Gibbs sampler. This is useful in obtaining independent
samples, but these are not required for estimating the parameters of interest.
A very long run gives the best chance of ¯nding new modes. However, in-
ference from a Markov chain simulation is always problematic because there
are areas of the target distribution that have not been covered by the ¯nite
chain. In practice, both methods are desirable, to check the behavior and
convergence of the Markov chain. There are several methods for monitoring
convergence, but despite much recent work, convergence diagnostics for the
Gibbs sampler remains a topic for further research. The source of the problem
is that the simulation converges to a target distribution rather than a target
point. Di®erent methods can be found in Brooks and Gelman (1998), Cowles
and Carlin (1996) and Gelman (1995). In the present analysis, convergence
diagnostics and multiple chains from di®erent starting points were used to
verify that the Markov chain had converged. In addition, a visual inspection
of the plot of random deviates against iteration was made to decide whether
the Markov chain had converged. A detailed description of the implementa-
tion of the Gibbs sampler to estimate the model in Figure 12.1 is not given
here. The full conditional distributions of the parameters of interest can be
found in Fox and Glas (2000, 2001). The Gibbs sampler is used to estimate
parameters of the model to illustrate the e®ects of response error in both the
dependent and independent variables of the structural multilevel model.

12.5 Ignorable and Non-Ignorable Measurement Error

This section focuses on problems associated with measurement error in the
dependent and independent variables of a structural multilevel model. In cer-
tain cases, measurement error does not play a role. That is, the model for
the latent variable also holds for the manifest variable with parameters un-
changed, except that a measurement error variance component is added to
the variance of the residuals (Carroll et al., 1995, pp. 229). An example is a
structural linear regression model with measurement error in the dependent
variable, where the measurement error is confounded with the residuals, re-
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sulting in greater variability of the parameter estimates. The measurement
error is called ignorable in these cases. If estimates of the regression coef-
¯cients are biased because measurement error in the manifest variable is
ignored, then the measurement error is called non-ignorable. For example, in
a linear regression model with measurement error in a covariate, the least
squares regression coe±cient is biased toward zero, that is, the regression
coe±cient is attenuated by measurement error (Fuller, 1987, pp. 3).

Here it will be shown that response error in the dependent, independent,
or both variables in a multilevel model is not ignorable. That is, the parame-
ter estimates of a multilevel model are a®ected by the presence of response
error in the manifest variables. It will be shown that disattenuated para-
meter estimates of the structural multilevel model are obtained by modeling
response error in the manifest variables with a classical true score model. The
generalization of the results from a multilevel true score model to a multilevel
IRT model is discussed at the end of this section.

Consider the linear regression model with the independent variable mea-
sured with error,

!ij = ¯0 + ¯1µij + eij ; (12.6)

where the equation errors are independent and normally distributed with
mean zero and variance ¾2: It is assumed that the distribution of true scores,
µij; in the population is standard normal, that is, the µij are unobservable
independent realizations of a standard normal random variable. For a given
person, the true score is a constant, but the observed score and error term
are random variables.

In the classical true score model, inferences about µij are made from the
responses xijk for k = 1; : : : ;K, which are related to µij via

Xij = µij + "(x)ij ; (12.7)

where xij is a realization of Xij ; the observed total score of person ij; and
"(x)ij an error term that is independent of µij and eij : The superscript x de-
notes the connection with the observed variable Xij : Further, it is assumed
that "(x)ij are independent normally distributed with mean zero and variance
'x; where, again, the subscript x denotes the connection with the observed
variable Xij . One of the consequences of the measurement error in the inde-
pendent variable can be seen in the posterior expectation of the regression
coe±cient ¯1 given the variables !ij; xij and the parameters ¯0; ¾2 and 'x.
This posterior expectation is derived from the conditional distribution of µij
given xij and 'x;

f (µij j xij ; 'x) _ f (xij j µij ; 'x) f (µij ; 0; 1) ; (12.8)

where the right-hand-side consists of a product of normal densities. Due to
standard properties of normal distributions (e.g., Box & Tiao, 1973; Lindley
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& Smith, 1972) the full conditional posterior density of µij given xij and 'x
is also normally distributed and is given by

(µij j Xij ; 'x) s N
µ

'¡1
x

1 + '¡1
x
xij ;

1
1 + '¡1

x

¶
: (12.9)

Below, '¡1
x =

¡
1 + '¡1

x
¢

is denoted by ¸x: The regression on Level 1 imposes
a density f

¡
!ij j ¯; µij ; ¾2

¢
that can be considered as a likelihood, and Equa-

tion (12:9) can be regarded as the prior for the unobserved µij : Accordingly,
it follows that the conditional posterior distribution of !ij is given by

f
¡
!ij j ¯; µij ; ¾2; xij ; 'x

¢
_ f

¡
!ij j ¯; µij ; ¾2¢ f (µij j xij ; 'x) :

Due to properties of normal distributions (Lindley & Smith, 1972), the con-
ditional distribution of !ij is also normally distributed, that is,

¡
!ij j ¯; ¾2; Xij; 'x

¢
s N

¡
¯0 + ¸x¯1xij ; ¾2 + ¯2

1 (1¡ ¸x)
¢
: (12.10)

In the same way it follows that, given a uniform prior for ¯1; the conditional
posterior of ¯1 given !; ¯0; ¾2;x and 'x is normal with expectation

E
£
¯1 j !;x; ¯0; ¾2; 'x

¤
= ¸¡1

x
b̄1; (12.11)

where b̄1 is the least squares estimator in the regression of ! ¡ ¯0 on x: Be-
cause of the measurement error in the explanatory variable, the least squares
regression coe±cient is biased toward zero, that is, the regression coe±cient
is attenuated by the measurement error. The ratio ¸x de¯nes the degree of
attenuation, which is a measure of the degree of true score variation relative
to observed score variation. This ratio is commonly called the reliability of
Xij . From Equation (12:11) it can be seen that if the ratio ¸x is known, it
is possible to construct an unbiased estimator of ¯1: Several techniques for
estimating this model, given ¸x, can be found in Fuller (1987). The e®ect of
errors in variables on ordinary least squares estimators is well known (e.g.,
Cochran, 1968; Fuller, 1987).

Next, suppose the intercept and slope of model (12:6) are random coe±-
cients, that is, the coe±cients vary over Level 2 groups. The coe±cients are
treated as outcomes in a Level 2 model given by

¯0j = °00 + °01³j + u0j (12.12)
¯1j = °10 + u1j ;

where the Level 2 error terms uj have a multivariate normal distribution
with mean zero and covariance matrix T: It is assumed that the errors on
Level 2 are uncorrelated. That is, the covariance matrix T consists of diagonal
elements var (u0j) = ¿2

0 andmboxvar (u1j) = ¿2
1 : Suppose that the dependent

variable !ij is not observed exactly, but its error-prone version Yij is available.
So

Yij = !ij + "(y)ij ; (12.13)
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where the measurement errors "(y)ij are independent of !ij and eij ; and in-
dependent normally distributed with mean zero and variance 'y: The su-
perscript and subscript y emphasize the connection with the observed total
score Yij : Again, the conditional posterior distribution of Yj ; the observed
scores of students in group j; given µj ; ¯j ; ¾2 and 'y follows from the standard
properties of normal distributions, that is,

f
¡
yj j µj ; ¯j ; ¾2; 'y

¢
_ f (yj j !j ; 'y) f

¡
!j j µj ; ¯j ; ¾2¢ ;

where the second factor on the right-hand side de¯nes the distribution of the
true scores !j in the population. As a result,

¡
Yj j µj ; ¯j ; ¾2; 'y

¢
s N

¡
¯0j + ¯1jµj ;

¡
'y + ¾2¢ Inj

¢
; (12.14)

where Inj is the identity matrix of dimension nj : Obviously, the measurement
error in the dependent variable results in an extra variance component 'y:
Combining this conditional distribution of Yj with the prior knowledge about
¯j ; in Equation (12:12) ; results in the conditional posterior distribution of
¯j given yj ; µj ; ¾2; °;T;³j and 'y: De¯ne §j =

¡
¾2 + 'y

¢ ¡
Ht
jHj

¢¡1, where
Hj =

£
1nj ; µj

¤
: Then

¡
¯j j Yj ; µj ; ¾2; °;T;³j ; 'y

¢
s N

Ã
§¡1
j
b̄j + T¡1A°

§¡1
j + T¡1

;
1

§¡1
j + T¡1

!
(12.15)

where A de¯nes the structure of the explanatory variables on Level 2. The
posterior expectation of ¯j is the well-known composite or shrinkage estima-
tor, where the amount of weight placed on the estimates depends on their
precision. Notice that the usual least squares estimator, b̄j ; based on the lin-
ear regression on Level 1 given µj and Yj ; is weighted by §¡1

j ; which contains
the measurement error in the dependent variable. Thus, the estimator of ¯j
is not equivalent to the standard least squares estimator of ¯; and as con-
sequence, the measurement error in the dependent variable of a structural
multilevel model is not ignorable. The estimates of the random regression
coe±cients are attenuated when the measurement error in the dependent
variable is ignored because the least squares estimator b̄j is attenuated by
the measurement error.

Next, it is shown that the posterior expectation of ¯j given the manifest
variables is a®ected by measurement error in the explanatory variable on
Level 1. From Equation (12:10) and (12:14) the conditional distribution of
Yj can be derived as

(Yj j Xj ; ¯j ; ¾2; 'y; 'x) s N
¡
¯0j + ¸x¯1jxj ;

¡
'y + ¾2 + ¯2

1j (1¡ ¸x)
¢
Inj
¢
:

(12.16)
The conditional posterior distribution of ¯j can be derived by considering this
conditional distribution of Yj as the likelihood and Equation (12:12) as the
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prior for its parameter vector ¯j : To obtain an analytical expression for this
conditional posterior distribution, it must be assumed that the variance in
Equation (12:16) is known. Denote this variance, for group j; as Cj . In prac-
tice, an empirical Bayes estimator could be used. De¯ne §j = Cj

¡
Ht
jHj

¢¡1,
where Hj = [1; ¸xxj ] : Then it follows that

(¯j j Yj ;Xj ; ¾2; °;T;³j ; 'y; 'x) s N

Ã
§¡1
j
b̄j + T¡1A°

§¡1
j + T¡1

;
1

§¡1
j + T¡1

!

(12.17)
where the other variables are de¯ned as in Equation (12:15) : The posterior
expectation is a shrinkage estimator where b̄j =

¡
Ht
jHj

¢¡1 Ht
jyj and the

variance of b̄j increases due to the measurement error in the dependent and
independent variables. Besides the measurement error in the dependent vari-
able, the reliability ratio ¸x further in°uences the least squares regression
coe±cients b̄j .

Finally, assume that the explanatory variable on Level 2, ³, is unobserved
and instead a variable W is observed with measurement error variance 'w;
that is,

Wj = ³j + "(w)
j ;

where the measurement errors "(w)
j are independent of ³j and u0j ; and inde-

pendently normally distributed with mean zero and variance 'w: Further, it
is assumed that the true scores, ³j ; in the population are standard normally
distributed. Analogous to the derivation of (12:10) ; it follows that

(¯0j jWj ; °; ¿2
0 ; 'w) s N

¡
°00 + ¸w°01wj ; ¿2

0 + °2
01 (1¡ ¸w)

¢
(12.18)

where ¸w = '¡1
w =

¡
1 + '¡1

w
¢
: Again, the posterior expectation of ¯j can be

derived by combining the prior information for ¯0j and the standard prior
information for ¯1j ; from Equation (12:12), with the likelihood in Equation
(12:16). Hence the conditional posterior distribution of ¯j is equivalent to
Equation (12:17) ; except that the ¯rst diagonal-element of T is increased
by °2

01 (1¡ ¸w) ; and the ¯rst row of A = (1; ¸wWj ; 0). Accordingly, the
shrinkage estimator is a combination of two weighted estimators, where both
parts are in°uenced by measurement error in the dependent and independent
variables. As a consequence, the measurement error is not ignorable and
ignoring it leads to attenuated estimates of the random regression coe±cients.

Besides the e®ect of measurement error on the estimates of random regres-
sion coe±cients, a perhaps less well-recognized e®ect is the increased variance
of the observed dependent variable given the observed explanatory variables.
Without measurement error in the explanatory variables the residual variance
of Yij is

var (Yij j µij ; ³j) = ¿2
0 + ¿2

1 µ
2
ij + ¾2 + 'y:
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By taking into account the measurement error in the independent variables,
the residual variance of the manifest variable, Yij ; increases to

var (Yij j xij ; wj) = Cij+HijT¡1Ht
ij ;

where Cij =
¡
'y + ¾2 + ¯2

1j (1¡ ¸x)
¢
; Hij = [1; ¸xxij ] and T is the diagonal

matrix with elements
¡
¿2
0 + °2

01 (1¡ ¸w) ; ¿2
1
¢
: Notice that the response vari-

ance in the dependent variable is just an extra variance component, but the
measurement error variance in the explanatory variables causes a complex
variance structure. The structure gets even more complex if the variables or
error terms are correlated (Schaalje & Butts, 1993).

This overview of non-ignorable measurement error is based on the classi-
cal true score model. The conditional distributions of the random regression
coe±cients are derived by using the standard properties of the normal dis-
tribution. If the response error is modeled by an IRT model, the conditional
distributions of these parameters can be found in the same way by introduc-
ing an augmented variable Z: Interpret the observation Zijk as an indicator
that a continuous variable with normal density is negative or positive. Denote
this continuous variable as Z(x)

ijk ; where the superscript x denotes the connec-
tion with the observed response variable Xijk: It is assumed that Xijk = 1
if Z(x)

ijk > 0 and Xijk = 0 otherwise. It follows that the conditional distri-

bution Z(x)
ijk given µij and »(x)k is normal. This distribution can be used to

obtain the conditional distributions of the random regression parameters in
the same way as above. Expanding the two parameter normal ogive model
to a three parameter normal ogive model to correct for guessing can be done
by introducing an extra augmented variable (Johnson & Albert, 1999, pp.
204-205). Further, observed ordinal data can be modeled by assuming that a
latent variable underlies the ordinal response (Johnson & Albert, 1999, pp.
127-133).

12.6 An Illustrative Example

In this section, the e®ects of measurement error in dependent and explanatory
variables at di®erent levels in a structural multilevel model are demonstrated
using simulations. A numerical example is also analyzed to compare the ef-
fects of modeling measurement error in dependent and independent variables
with an IRT model and a classical true score model. The model is given by

!ij = ¯0j + ¯1jµij + eij (12.19)
¯0j = °00 + °01³j + u0j

¯1j = °10 + u1j ;

where eij s N
¡
0; ¾2

¢
and uj s N (0;T) : Furthermore, it is assumed that

the surrogates Y;X and W are related to the latent predictors !; µ and ³;
respectively, through a two-parameter normal ogive model.
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Table 12.1. Parameter estimates of the multilevel model with measurement error
in the dependent variable.

Generated IRT Model Classical True Score Model
M1 Mc1

Fixed Coe®. Coe®. s.d. HPD Coe®. s.d. HPD
E®ects

°00 :000 ¡:032 :042 [¡:101; :039] ¡:056 :032 [¡:107;¡:007]
°01 :100 :082 :026 [:040; :124] :078 :026 [:038; :121]
°10 :100 :055 :034 [¡:002; :109] :054 :028 [:012; :103]

Random Var. Var. s.d. HPD Var. s.d. HPD
E®ects Comp. Comp. Comp.

¿2
0 :200 :234 :028 [:186; :287] :200 :022 [:165; :236]
¿2
1 :200 :201 :023 [:159; :247] :138 :016 [:115; :167]
¿2
01 :100 :169 :025 [:131; :211] :118 :015 [:094; :143]
¾2 :500 :513 :028 [:460; :573] :435 :010 [:418; :450]

For the simulations, both the latent predictors, µ and ³; were drawn from
the standard normal distribution. The latent dependent variable ! was gen-
erated according to the above model. Response patterns were generated ac-
cording to a normal ogive model for tests of 40 items. For tests related to
the dependent and independent variables at Level 1, 6; 000 response patterns
were simulated. The total number of groups was J = 200; each group or
class consisting of 20 and 40 individuals. For the test related to the latent
covariate ³ at Level 2, 200 response patterns were generated. The generated
values of the ¯xed and random e®ects, °; ¾2 and T; are shown under the label
\Generated" in Table 12.1.

12.6.1 Explanatory variables without measurement error

In the ¯rst simulation study, no response error in the explanatory variables on
Level 1 and Level 2 was present, that is, the latent predictors µ and ³ were ob-
served directly without an error. The dependent variable was unobserved but
information about !; denoted as Y; is available. The data were simulated by
the multilevel IRT model. The structural multilevel model with measurement
error in the dependent variable was estimated with the Gibbs sampler, using
the normal ogive model and the classical true score model as measurement
error models. Noninformative priors were used for the ¯xed e®ects and vari-
ance components in the multilevel model (Fox & Glas , 2000; 2001). Also, the
methods for computing starting values can be found there. After a burn-in
period of 1; 000 iterations, 20; 000 iterations were made to estimate the para-
meters of the structural model with the two-parameter normal ogive model.
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For the classical true score model, 500 iterations were necessary as a burn-in
period and 5; 000 iterations were used to estimate the parameters. Conver-
gence of the Gibbs sampler was investigated by running multiple chains from
di®erent starting points to verify that they yielded similar answers and by
plotting the MCMC iterations to verify convergence (for a comprehensive
discussion of convergence of the Gibbs sampler, see Cowles & Carlin, 1996).

In Table 12.1, the expected a posteriori estimates of the parameters of the
multilevel IRT model obtained from the Gibbs sampler are given under the
label \IRT Model", denoted as Model M1. Parameter estimates of the struc-
tural multilevel model using the classical true score model are given under
the label \Classical True Score Model", denoted as Model Mc1. The multi-
level IRT model M1 was identi¯ed by ¯xing a discrimination and a di±culty
parameter to ensure that the latent dependent variable was scaled the same
way as in the data generation phase. The structural model with the classical
true score model as measurement error model was identi¯ed by specifying
the parameters of the measurement error distribution. Therefore, the group
speci¯c error variance was a priori estimated. The unbiased estimates of the
error variances of individual examinees were averaged to obtain the group
speci¯c error variance (Lord & Novick, 1968). The group speci¯c error vari-
ance relating to the unweighted sums of item responses or test scores Yij ; 'y
was :118; for every individual ij. The observed sum scores were scaled in the
same way as the true latent dependent variable !ij : The reported standard
deviations are the posterior standard deviations. The 90% highest posterior
probability (HPD) intervals for parameters of interest were computed from
a sample from their marginal posterior distribution using the Gibbs sampler
(Chen & Shao, 1999).

The true parameter values were well within the HPD intervals obtained
from the multilevel IRT model, M1, except for the covariance of the Level
2 residuals, ¿2

01; which was too high. Further, the ¯xed e®ect, °10; was not
signi¯cantly di®erent from zero. The parameter estimates of the random and
¯xed e®ects are given under the label \Classical True Score Model", Model
Mc1. Here, more parameter estimates di®ered from the true parameter val-
ues. Speci¯cally, the variance at Level 1 and the variance of the residuals
of the random slope parameter were too low. As a result, the estimates of
the slope parameters corresponding to the di®erent groups were more alike
in comparison to the corresponding estimates resulting from the multilevel
IRT model and the true simulated values. In the ¯t of Model Mc1, the slope
parameter estimates varied less across groups. The estimates of the variance
components a®ected the estimate of the intraclass correlation coe±cient. This
is the proportion of the total residual variation that is due to variation in the
random intercepts, after controlling for the Level 1 predictor variable. The
simulating values implied an intraclass correlation coe±cient of ½ = :286; the
multilevel IRT estimate was ½ = :313; and the Model Mc1 estimate ½ = :314:
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Table 12.2. Parameter estimates of the multilevel model with measurement error
in both the dependent and independent variables.

Observed Scores IRT Model Classical True Score Model
Mo M2 Mc2

Fixed Coe®. s.d. Coe®. s.d. HPD Coe®. s.d. HPD
E®ects

°00 ¡:057 :032 ¡:048 :045 [¡:120; :027] ¡:058 :034 [¡:112; :000]
°01 :058 :026 :081 :030 [:032; :130] :058 :026 [:018; :103]
°10 :050 :026 :055 :034 [:000; :110] :049 :026 [:005; :091]

Random Var. s.d. Var. s.d. HPD Var. s.d. HPD
E®ects Comp. Comp. Comp.

¿2
0 :201 :023 :233 :030 [:184; :278] :200 :023 [:165; :238]
¿2
1 :126 :015 :200 :027 [:157; :241] :138 :014 [:098; :144]
¿2
01 :110 :015 :167 :024 [:128; :204] :118 :015 [:083; :131]
¾2 :560 :010 :515 :035 [:454; :562] :435 :010 [:416; :450]

These estimates were based on iterates of the variance components and were
not based on the posterior means of the variance components.

12.6.2 Explanatory variables with measurement error

In the second simulation, both the dependent and independent observed vari-
ables had measurement error. Table 12.2 presents the results of estimating the
parameters of the multilevel model using observed scores, denoted as Model
Mo; using a normal ogive model as measurement error model, denoted as
Model M2; and using the classical true score model as measurement error
model, denoted as Model Mc2, both for the dependent and independent vari-
ables. In the estimation procedure, all uncertainties were taken into account,
where the group speci¯c error variances for the sum scores relating to the
Level 1 and Level 2 predictors, 'x and 'w; were :103 and :109; respectively.
The multilevel IRT model, where measurement error in the covariates was
modeled by a normal ogive model, Model M2, was identi¯ed by ¯xing a dis-
crimination and a di±culty parameter of each test. Model Mc2 was identi¯ed
by specifying the response variance of the observed scores. The true para-
meters were the same as in Table 12.1. The true parameter values were well
within the HPD regions of the multilevel IRT estimates, Model M2: That is,
the parameter estimates were almost the same as the parameter estimates
resulting from Model M1; where the true parameter values were used for the
predictor variables instead of modeling the variables with an IRT model. The
same applied to the parameter estimates of Model Mc2 which were compa-
rable to the estimates of Model Mc1: Subsequently, the de¯ciencies of the ¯t
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of model Mc1 also applied to the ¯t of Model Mc2: The posterior variances
of the estimates of Model M2 and Mc2 were slightly higher in comparison to
Model M1 and Mc1 because the measurement errors in the predictor variables
were taken into account, but the di®erences were rather small. The estimates
given under the label \Observed Scores" resulted from estimating the mul-
tilevel model using observed scores for both the dependent and independent
variables, ignoring measurement error in all variables. It was veri¯ed that
taking account of measurement error in the observed variables resulted in
di®erent parameter estimates, especially for the variance components.

Fig. 12.2. Expected a posteriori estimates and predictions of the dependent values
given the true independent variables.
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Fig. 12.3. Expected a posteriori estimates and predictions of the dependent values
given that the explanatory variables at Level 1 and Level 2 are measured with an
error.

Tables 1 and 2 show that the estimates of the variance components were
attenuated because the measurement error was ignored. As seen in the pre-
ceeding section, the estimates of the random intercept and random slope
parameters were strongly in°uenced by the variance components. The e®ects
of measurement error in the dependent and independent variables were also
re°ected in the estimates of the random regression parameters. Figure 12.2
shows the expected a posteriori estimates of the dependent values in an ar-
bitrary group using Model M1 and Mc1: There was no horizontal shift in
the estimates because both models used the true independent variables. The
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estimates of both models were quite close to the true values, but the more
extreme values were better estimated by Model M1; where the normal ogive
model was the measurement model. The regression predicted by Model M1
resulted in a higher intercept, the slope parameter nearly equaled the true
slope parameter. The regression lines were based on posterior means of the
random regression coe±cients. The predicted regression slope, using Model
Mc1, was of opposite sign and resulted in di®erent conclusions. In the same
group as in Figure 12.2, the expected a posteriori estimates of the dependent
values based on dependent and independent variables measured with an error,
using the classical true score model and the normal ogive model, are given
in Figure 12.3. The horizontal shifts in the expected a posteriori estimates,
in relation to the estimates in Figure 12.2, were caused by the measurement
error in the independent variables. The estimates were shrunk towards the
mean of both variables. The estimates following from Model M2 were closer
to the more extreme true values. As a result, the predicted regression accord-
ing to Model M2 had a wider range, and was closer to the true regression.
As in Figure 12.2, the slope estimate of the predicted regression of Model
Mc2 was positive, even though the true parameter slope was negative. In this
group, the predicted regression based on observed scores, Model M0; followed
the regression of Model Mc2; and seemed to follow the true regression better.
Notice that the predictions are slightly better in Figure 12.3, where the ex-
planatory variables were modeled with the classical true score model or the
normal ogive model. It seemed that the more complex model, which takes
measurement error in all variables into account, was more °exible, resulting
in a better ¯t of the model. Both ¯gures indicate that the normal ogive model
for the measurement error model yielded better estimates of the outcomes,
especially, in case of the more extreme values. Further, the estimates of the
random regression coe±cients depended on the values of the variance compo-
nents and were sensitive to measurement error in the variables. As shown in
Figures 12.2 and 12.3, measurement error in the dependent and independent
variables may lead to incorrect conclusions.

12.7 Discussion

Errors in the dependent or independent variables of a multilevel model are
modeled by an item response model or a classical true score model. The
Gibbs sampler can be used to estimate all parameters. Other estimation
procedures, such as error calibration methods (Carroll et. al., 1995), do not
take all parameter variability into account.

A fully Bayesian approach accommodates both covariate and response
measurement error, and provides more reliable estimates of the variability of
the model parameters. On the other hand, the Bayesian approach is computer
intensive and still unrecognized in many working environments. Besides, the
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lack of programs for handling measurement errors in major statistical com-
puter packages further impedes the use of structural multilevel models.

In this chapter, the consequences of ignoring measurement error were ex-
amined to evaluate estimation methods that are able to handle measurement
error in both the explanatory and dependent variables of a structural mul-
tilevel model. It was shown that the estimates of the variance components
and random regression coe±cients are sensitive to measurement error in both
the dependent and explanatory variables. Simulations were used to exemplify
the impact of the measurement error. Other forms of measurement error can
be handled similarly, but information concerning the probability structure is
necessary. Notice that the classical true score error model requires a priori
estimates of the group speci¯c error variances. These estimates strongly a®ect
the parameter estimates (Fox & Glas, 2000). That is, a small change in the
a priori estimates can lead to di®erent conclusions (a detailed description of
the Bayesian estimation procedure can be found in Fox & Glas, 2000, 2001).
The procedure is °exible in the sense that other measurement error models,
and other priors can be used. This supports a more realistic way of model-
ing measurement error. Also, the estimation procedure can handle multilevel
models with three or more levels. It takes the full error structure into account
and allows for errors in both the dependent and independent variables.
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