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Abstract. This paper surveys the language Modest, a Modelling and
Description language for Stochastic and Timed systems, and its accom-
panying tool-environment MOTOR. The language and tool are aimed to
support the modular description and analysis of reactive systems while
covering both functional and non-functional system aspects such as hard
and soft real-time, and quality-of-service aspects. As an illustrative ex-
ample, the modeling and analysis of a device-absence detecting protocol
in plug-and-play networks is described and is shown to exhibit some
undesired behaviour.

1 Introduction

Background and motivation. The prevailing paradigm in computer science to
abstract from physical aspects is gradually being recognized to be too limited
and too restricted. Instead, classical abstractions of software that leave out “non-
functional” aspects such as cost, efficiency, and robustness need to be adapted
to current needs. In particular this applies to the rapidly emerging field of “em-
bedded” software [14, 32].

Embedded software controls the core functionality of many systems. It is
omnipresent: it controls telephone switches and satellites, drives the climate
control in our offices, runs pacemakers, is at the heart of our power plants, and
makes our cars and TVs work. Whereas traditional software has a rather trans-
formational nature mapping input data onto output data, embedded software
is different in many respects. Most importantly, embedded software is subject
to complex and permanent interactions with their – mostly physical – environ-
ment via sensors and actuators. Typically software in embedded systems does
not terminate and interaction usually takes place with multiple concurrent pro-
cesses at the same time. Reactions to the stimuli provided by the environment
should be prompt (timeliness or responsiveness), i.e., the software has to “keep
up” with the speed of the processes with which it interacts. As it executes on
devices where several other activities go on, non-functional properties such as
efficient usage of resources (e.g., power consumption) and robustness are impor-
tant. High requirements are put on performance and dependability, since the
embedded nature complicates tuning and maintenance.

Embedded software is an important motivation for the development of mod-
eling techniques that on the one hand provide an easy migration path for design
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engineers and, on the other hand, support the description of quantitative system
aspects. This has resulted in various extensions of light-weight formal notations
such as SDL (System Description Language) and the UML (Unified Modeling
Language), and in the development of a whole range of more rigorous formalisms
based on e.g., stochastic process algebras, or appropriate extensions of automata
such as timed automata [1], and probabilistic automata [41]. Light-weight nota-
tions are typically closer to engineering techniques, but lack a formal semantics;
rigorous formalisms do have such formal semantics, but their learning curve is
typically too steep from a practitioner’s perspective and they mostly have a
restricted expressiveness.

The modeling formalism Modest. This paper surveys Modest, a description
language that has a rigid formal basis (i.e., semantics) and incorporates several
ingredients from light-weight notations such as exception handling1, modular-
ization, atomic assignments, iteration, and simple data types, and illustrates the
accompanying tool support Motor by modeling and analyzing a device-absence
detecting protocol in plug-and-play embedded networks.

Modest is based on classical process algebra like CSP and CCS, and counts
therefore as a compositional specification formalism: the description of complex
behaviour is obtained by combining the descriptions of more simple components.
Inherent to process algebra is the elegant way of specifying concurrent compu-
tations. Modest is enhanced with convenient language ingredients like simple
data-structures and a notion of exception handling. It is capable to express a
rich class of non-homogeneous stochastic processes and is therefore most suitable
to capture non-functional system aspects. Modest may be viewed as an over-
arching notation for a wide spectrum of prominent models in computer science,
ranging from labeled transition systems, to timed automata [1, 13] (and proba-
bilistic variants thereof [31] and stochastic processes such as Markov chains and
(continuous-time and generalised) Markov decision processes [22, 24, 35, 41].

Approach. With Modest, we take a single-formalism, multi-solution approach.
Our view is to have a single system specification that addresses various aspects
of the system under consideration. Analysis thus refers to the same system spec-
ification rather than to different (and potentially inconsistent) specifications of
system perspectives like in the UML. Analysis takes place by extracting simpler
models from Modest specifications that are tailored to the specific property of
interest. For instance, for checking reachability properties, a possible strategy
is to “distill” an automaton from the Modest specification and feed it into an
existing model checker such as Spin [28] of CADP [19]. On the other hand, for
carrying out an evaluation of the stochastic process underlying a Modest spec-
ification, one may resort to discrete-event simulation, as, for instance, offered by
the Möbius tool environment.

1 Exception handling in specification languages has received scant attention. Notable
exceptions are Enhanced-LOTOS [21] and Esterel [6].
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The tool-environment MOTOR. In order to facilitate the analysis of Modest
specifications, the tool MOTOR [11] has been developed. Due to the enormous
expressiveness of Modest, ranging from labeled transition systems to Markov
decision processes and timed automata, there is no generic analysis method at
our disposal that is able to cover all possible models. Instead, Motor aims
at supporting a variety of analysis methods tailored to a variety of tractable
sub-models. Our philosophy is to connect Motor to existing tools rather than
implementing successful analysis techniques anew. Currently, connections to the
CADP toolbox [19] and the multi/formalism - multi/solution Möbius tool envi-
ronment [18] have been established. The former is aimed at assessing qualitative
properties, whereas the latter is a performance evaluation tool supporting numer-
ical methods and discrete-event simulation techniques. The case study described
in this paper exploits the simulation facilities of Möbius.

Organization of this survey. Section 2 introduces the main syntactical constructs
of Modest by means of modeling some example mutual exclusion protocols and
presents its semantics by means of some examples. Section 3 briefly describes
the Motor tool environment. Section 4 presents the modeling and analysis
of a protocol in highly dynamic networked embedded systems and shows how
this analysis reveals an undesired phenomenon. Section 5 finally concludes and
gives some directions for future work. This paper is intended as a tutorial and
does neither provide details of the syntax and semantics of Modest, nor the
implementation details of Motor and the full details of the case study. Pointers
to relevant papers where such details can be found are given in the various
sections.

2 The Modeling Language MoDeST

2.1 Syntax

This section introduces the main syntactical constructs of Modest by means
of modeling some example mutual exclusion protocols. The first one is a typical
mutual exclusion algorithm where global variables are used to regulate the access
to the critical section. The second algorithm uses timing to synchronize this
access, whereas the latter is a randomized algorithm and does only guarantee
mutual exclusion with a certain probability (that differs from one). A more
detailed description of the Modest language can be found in [16].

Pnueli’s mutual exclusion algorithm. The first example is a mutual exclusion
protocol for two processes, called P and Q, due to Pnueli [38]. There is a single
shared variable s which is either 0 or 1, and initially 1. Besides, each process
has a local Boolean variable y that initially equals 0 and that may be inspected
by the other process. The Modest specification of this algorithm is given be-
low. Actions and assignments are the most elementary syntactical constructs in
Modest. The global declaration part (cf. the first two lines) contains action,
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variable and constant (if any) declarations. In this paper, we adopt the conven-
tion that action names consist of two parts connected by an underscore. The
model consists of the parallel composition of two processes as specified by the
par-construct in the last four lines. Although in this example there is no commu-
nication between the processes via actions, the principle of par is that processes
execute actions in common synchronously, and other actions autonomously. Such
communication mechanism is rather common in process algebras such as CSP
[27] and is a convenient mechanism for compositional modeling. A process de-
scription consists of an optional declaration part (absent in this example) of
local actions and variables and a behaviour description, in this example consist-
ing of a simple do-iteration for both P and Q. The statement s = false, y0 =
true is a multiple assignment in which variable y0 is set to true and s to false in a
single, atomic step. The when-statement
may be read as “wait until”. The other
statements have the obvious meaning.
The intuition behind this protocol is as
follows. The variables y0 and y1 are
used by each process to signal the other
process of active interest in entering
the critical section. On leaving the non-
critical section, a process sets its own
local variable y to 1. In a similar way
this variable is reset to 0 once the criti-
cal section is left. The global variable s
is used to resolve a tie situation between
the processes. It serves as a logbook in
which each process that sets its y vari-
able to 1 signs at the same time. The
test at the third line says that process P
may enter its critical section if either y1
equals 0 – implying that its competitor
is not interested in entering its critical
section – or if s differs from 0 – imply-
ing that its competitor performed its as-
signment to y1 after P assigned 1 to y.

action enter_cs1, enter_cs2;

bool s = true, y0 = 0, y1 = 0;

process P() {

do {

:: {= s = false, y0 = true =};

when (!y1 || s)

enter_cs1; // CS

y0 = false // leave CS

}

}

process Q() {

do {

:: {= s = true, y1 = true =};

when (!y0 || !s)

enter_cs2; // CS

y1 = false

}

}

par {

:: P()

:: Q()

}

Fischer’s timed mutual exclusion algorithm. As a second example we treat the
mutual exclusion algorithm by Fischer [40] where time in combination with a
shared variable is used to avoid processes to be in their critical section simulta-
neously. This algorithm is probably the most well-known benchmark example for
real-time model checkers. Apart from the standard types bool, int and float
for data, variables of the type clock can be used to measure the elapse of time.
Clocks are set to 0 and advance implicitly, as opposed to ordinary data variables
that need to be changed by means of explicit assignments. In the sequel we will
use x and y to range over clock variables. All clocks run at the same pace. Clocks
are a kind of alarm clocks that expire once they meet a value of type float. Such
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values can be of the usual form or can be samples from probability distributions
(as we will see in the next example). Each process in Fischer’s protocol has a
single local clock x that is compared with the constant threshold values d and
k to grab a ticket and check whether it is still the ticket’s owner, respectively.
The Modest specification of the protocol is as follows.

int v; // ticket

action enter_cs, ... // action declarations

process P (int id) { // behaviour of a single thread

clock x; // P’s private timer

const float k = 2.0, d = 1.0;

do {

:: when (v == 0) x = 0; // once ticket is free, start timer

do {

:: when (x <= d) // wait for exactly k time units

take_ticket {= v = id, x = 0 =}; // grab the ticket

alt {

:: when (v != id) x = 0; // no longer own ticket

:: when (v == id && x >= k) // ticket is still yours

enter_cs;

break {= v = 0 =} // release ticket

}

}

}

}

par {

:: relabel { take_ticket, enter_cs } by {take_ticket1,enter_cs1 } in P(1)

:: relabel { take_ticket, enter_cs } by {take_ticket2,enter_cs2 } in P(2)

}

A few remarks are in order. The when-statement that may guard an action (or
assignment) may refer to data variables (like v) and clocks (e.g., x). In the
latter case, the guarded action becomes enabled as soon as the condition in the
when-clause becomes valid (and no other action becomes enabled at an earlier
time instant). Note that the evaluation of the guards in a when-statement, the
execution of the action and, if any, the mulitple assignments, is performed as
a single atomic step, i.e., without interference of other parallel threads. This is
similar to the well-known test-and-set principle [5][pp. 43] where the value of a
shared variable is tested (i.e., a guard) and set (i.e., the assignment associated
with an action) in a single step.

Remark 1. In this survey, we assume a maximal progress semantics that con-
forms to the semantics as taken by the discrete-event simulator of Motor-
Möbius. In case such maximal progress assumption is not adopted, an urgent
clause may be used to force actions to happen at some time. This is similar to
location invariants in timed automata [1, 13] and allows for the specification of
non-deterministic timing. For instance, the following Modest fragment:
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clock x = 0;
urgent (x >= 75)
when (x >= 20)
enter_cs;

specifies that action enter cs is enabled from 20 time units since resetting clock
x, and that it should ultimately happen when x equals 75, as indicated by the
urgent-clause. ��

In Fischer’s protocol, process P, for instance, waits until the global variable
v – modeling a ticket that is needed to enter the critical section – equals zero
and then sets the timer x. Subsequently, it waits exactly two time units before
assigning P’s id to v and is allowed to enter its critical section only when v still
equals its id. In case it does not own the ticket, it has to wait again. The choice
between v == 0 and v == id is syntactically represented by the alt-construct
that also allows for modeling non-deterministic choices. Recall that in case none
of these conditions is met, the process waits. On leaving the critical section,
the ticket is released and the entire procedure starts again. Note that the entire
system is composed of two processes that are obtained from the blueprint P
by instantiating it with the ids one and two and relabeling the actions in an
appropriate way in order to avoid unintended synchronizations. By means of
relabeling, actions are renamed in the behaviour expression, e.g., rename a by
b in P will result in a process that behaves like P except that any syntactic
occurrence of a in P is renamed into a.

Randomized Fischer’s mutual exclusion algorithm. The last example is a ran-
domized variant of Fischer’s algorithm due to Gafni and Mitzenmacher [20]. The
main difference is that the main activities in the protocol, such as inspecting the
global variable v, and entering the critical section, are governed by exponen-
tial (or gamma) distributions. A Modest specification of the case with gamma
distributions is as follows.

int v = 0; // ticket

process P (int id) {

clock x;

float k;

do {

:: when (v == 0) {= k = GAMMA(...), x = 0 =};

do {

:: when ( (x == k) && (v == 0) )

take_ticket; {= v = id, k = GAMMA(...), x = 0 =};

alt {

:: when ( (v != id) ) break

:: when ( (x == k) && (v == id) )

enter_cs {= k = GAMMA(...) =};

when (x == k) break {= v = 0 =}

}

}

}

}
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par {

:: relabel { take_ticket, enter_cs } by {take_ticket1, enter_cs1} in P(1)

:: relabel { take_ticket, enter_cs } by {take_ticket2, enter_cs2} in P(2)

}

Other randomizedmutual exclusion protocols in [20] can be obtained in a sim-
ilar way. Note that the value of variable k is determined by sampling a gamma-
distribution. By requiring x == k in the when-clauses, it is enforced that the
amount of time that has elapsed is indeed governed by a gamma-distribution.

Other syntactical constructs. It remains to explain the palt-construct that is
used to model probabilistic choice. A palt-statement is in fact an action that
has several alternative (multiple) assignments that can take place with accom-
panying successive statements. The likelihood of these alternatives is determined
by weights. For instance,

take_ticket palt {
:1: {= v = id, x = 0 =} P(v)
:3: {= v = 0, x = 0 =} P(v)
}

specifies that on the occurrence of action take ticket, v will be set to id with
probability 1

1+3 = 1
4 and to zero with probability 3

4 . In both cases, x is reset.
Note that the occurrence of the action, the resolution of the probabilistic choice,
and the multiple assignments are executed atomically. In fact, an ordinary action
occurrence with some multiple assignments can be viewed as syntactic sugar for
a palt-statement with a single alternative.

As the case study furtheron does not use exception handling, we refrain from
introducing this operator here.

Remark 2. The syntax of the control and data structures in Modest is very
similar to that of Promela, the protocol modeling language that is used as
input language to the model checker Spin [28]. For instance, similar constructs
to do, alt, when, multiple assignments and process exist in Promela. There
are, however, some differences. As Promela is aimed at describing protocols,
communication channels and primitives to send and receive messages along them
are first-class citizens in the language. In Modest such communication buffers
need to be modeled explicitly as separate processes. Promela incorporates an
atomic-statement in which a sequence of statements can be executed atomically,
i.e., without interference of other parallel processes; Modest only supports mul-
tiple assignments. The main add-ons in Modest are: the possibility of specifying
discrete probabilistic branching (using palt) 2, real-time, and randomizedtime
delays. Besides, the formal semantics of Modest (see below) provides an un-
ambiguous interpretation. ��
2 A similar construct has recently been suggested in a probabilistic variant of

Promela [3].
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2.2 Semantics

Stochastic timed automata. The Modest semantics is defined in terms of an
extension of timed automata. The extension is needed to accommodate for the
palt-construct and the random delays. Whereas timed automata are aimed to
finitely represent infinite-state real-time systems, our variant – baptized stochas-
tic timed automata – focuses on finitely representing stochastic timed systems.
(As for timed automata, the underlying interpretation of such models is indeed
an infinite-state, infinitely branching structure.) In case a Modest specification
does not cover any probabilistic choice, the semantics obtains the symbolic au-
tomata one intuitively expects (cf. Fig. 1). In these automata, transitions are
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Fig. 1. Automata for a single thread in (a) Pnueli’s, (b) Fischer’s and (c) randomized
Fischer’s mutex algorithm.

equipped with an action (that may be subject to interaction with other parallel
processes), a guard and a multiple assignment. All these attributes are optional
with the condition that either an action or an assignment is present. An action
is absent for statements like x = 0;, a guard is absent (i.e., true) in absence
of a when-statement, and a (multiple) assignment is absent for actions with-
out accompanying assignments. If actions synchronize, the resulting transition
is decorated with the common action, the joined multiple assignments (provided
they do not assign to the same variables), and the conjunction of guards.

To treat discrete probabilistic branching, the concept of transition is refined
cf. Fig. 2. A transition is a one-to-many edge labeled with an action and a guard
(as before), but where different multiple assignments are possible, and where each
alternative has an associated weight to determine the likelihood. The intuitive
interpretation of the simple stochastic timed automaton in Fig. 2, for instance, is
as follows. Once the conditions v != id and x == k hold (and the environment is
able to participate, if needed, in action take ticket), both outgoing transitions
of state s are enabled, and one of them is non-deterministically chosen. On
selecting the rightmost transition, action take ticket is performed, and there
are two possible successor states. With probability 1

4 the assignments v = id and
x = 0 are performed (atomically) and the automaton moves to state u, while
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with the remaining probability 3
4 , x and v are both reset to zero, and the next

state equals t. When the leftmost transition is chosen, there is a single alternative
(i.e., a probabilistic choice with one alternative that occurs with probability one).

v = 0, x = 0

v = id, x = 0

x = 0

v != id && x == k

take ticket

1
4

3
4

v != id && x == k

take ticket
v s

t

u

Fig. 2. A simple stochastic timed automaton.

Operational semantics. The mapping from Modest onto stochastic timed au-
tomata is defined by means of structured operational semantics [34]. This seman-
tics is a simple adaptation of the usual operational semantics of programming
languages and process calculi. The slight adaptation is needed to accommodate
probabilistic choices. Let us consider some examples. The standard inference rule
for actions

a a,tt−−−→√

states that action a can perform execute a at any time (i.e., guard is true),
and evolves into the successfully terminated behaviour

√
. Note that

√
is not

a syntactical entity, but is just used to define the semantics. For Modest, this
rule is written as:

a a,tt−−−→P
where P is a trivial distribution such that P(∅,

√
) = 1, i.e., the probability of

performing no assignments and evolving into
√

equals one. The inference rule for
Modest actions is thus a simple generalization of the standard inference rules
for actions. The target of a transition for Modest is no longer an expression
(like

√
) but a probability space with accompanying probability measure (e.g., a

trivial distribution). The same applies to the other operators. For instance, for
alternative composition, the standard inference rule

Pi
a,g−−−→P ′

i (1 � i � k)
alt{:: P1 . . . :: Pk} a,g−−−→P ′

i

stating that whenever the alternative Pi can make an a, g-move, then the alter-
native composition can do so as well, is generalized yielding:

Pi
a,g−−−→Pi (1 � i � k)

alt{:: P1 . . . :: Pk} a,g−−−→Pi

Note, again, that the target of an expression is a probability space, viz. Pi.
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The semantics of the new operators is defined as follows. For probabilistic
choice the inference rule is

a palt {:wi: Ai ; Pi}i∈I
a,tt−−−→P with P(Ai, Pi) =

wi∑
j∈I wj

where, for simplicity, it is assumed here that all Pi’s are distinct and where P
is the probability measure of probability space P . It is, in fact, an alternative
composition in which one of the alternatives (i.e., Pi) and the associated multi-
ple assignments (i.e., Ai) is chosen with a certain probability that is determined
by the weights. Here, it is assumed that all weights (i.e., wi) are strictly posi-
tive. Weights can either be constant, like in our examples, but may also be an
expression3. Guards as specified by when-statements can be handled easily:

P a,g−−−→P
when(b) P a,b∧ g−−−−−→P

where b is a boolean expression. Thus, if P can perform action a with guard
g, when(b) P can perform a with guard b ∧ g. The semantics of do-statements,
relabeling, breaks, and process instantiation are standard and omitted here. We
conclude with parallel composition. First, note that:

par{:: P1 . . . :: Pk} def= (. . . ((P1 ||B1 P2) . . .)) ||Bk−1 Pk

where ||B is CSP-like parallel composition [27] and

Bj =

(
j⋃

i=1

α(Pi)

)

∩ α(Pj+1)

where α(P ) denotes the set of actions that P can be involved in. This observation
allows us to define the semantics of the par-construct in terms of ||B where
B is the common alphabet of all processes put in parallel. The inference rule
for standard CSP parallel composition for executing autonomous actions, i.e.,
actions that are not subject to any interaction with other parallel processes, is
defined as follows:

P a,g−−−→P ′ and P ′ �= √
P ||B Q a,g−−−→P ′ ||B Q

and
P a,g−−−→√

P ||B Q a,g−−−→Q\B
where Q\B equals behaviour Q except that actions in the set B are prohibited.
This conforms to the idea that Q should synchronize on such actions with P ,
where P is impossible to do so. For Modest, these rules are generalized towards:

P a,g−−−→P a /∈ B

P ||B Q a,g−−−→R with
R(A, P ′ ||B Q) = P(A, P ′)

R(A, Q\B) = P(A,
√

)

3 The semantics of the latter case is more involved and omitted here.
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For synchronizations, the inference rule is readily obtained from the inference
rules for CSP-synchronization:

P a,g−−−→P Q a,g′−−−→Q a ∈ B

P ||B Q a,g ∧g′−−−−−→R
where the probability space R is the product of P and Q defined by

R(A ∪ A′, P ′ ||B Q′) = P(A, P ′) ·Q(A′, Q′)

in case both P and Q do not successfully terminate and A and A′ do not assign
values/expressions to the same variables. If one of these processes successfully
terminates, a slight modification of this equation applies, cf. [16]. In case P and
Q perform (possibly inconsistent) assignments, an exception is raised.

Interpretation of stochastic automata. The interpretation of timed automata is
typically defined in terms of infinite-state timed transition systems. For stochas-
tic timed automata this is done in a similar way. A configuration in such tran-
sition system records the current state of the stochastic timed automaton and
the valuation of all (data and clock) variables. If s a,g−−−→P and the current valua-
tion satisfies guard g, then with probability P(A, s′), where P is the probability
measure of P , the valuation is changed according to the sequence of assignments
A, and the next state is s′. Under the maximal progress assumption, time is
advanced with some positive amount d > 0 if in the current state no other out-
going transition is enabled at some time instant d′ < d. The advance of time
with d means that all values of clock variables are increased by d while letting
all other variables unchanged. Note that this interpretation yields a continu-
ous space model with infinitely many states and infinite branching. For a more
detailed description of this semantics we refer to [9].

3 The Tool Environment MOTOR

The case study assessed in this paper has been analyzed by means of the Modest
tool environment Motor and the performance evaluation environment Möbius.
In this section, we will briefly discuss these two tools.

Möbius. This is a performance evaluation tool environment developed at the
University of Illinois at Urbana-Champaign, USA [18]. Möbius supports multi-
ple input formalisms and several evaluation approaches for these models. Fig. 3
(a) shows an overview over the Möbius architecture. Atomic models are spec-
ified in one of the available input formalisms. Atomic models can be composed
by means of state-variable sharing, yielding so called composed models. Notably,
atomic models specified in different formalisms can be composed in this way. This
allows to specify different aspects of a system under evaluation in the most suit-
able formalism. Along with an atomic or composed model, the user specifies a
reward model, which defines a reward structure on the overall model.
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On top of a reward model, the tool provides support to define experiment
series, called Studies, in which the user defines the set of input parameters for
which the composed model should be evaluated. Each combination of input pa-
rameters defines a so-called experiment. Before analyzing the model experiments,
a solution method has to be selected: Möbius offers a powerful (distributed)
discrete-event simulator, and, for Markovian models, explicit state-space gener-
ators and numerical solution algorithms. It is possible to analyze transient and
steady-state reward models. The solver solves each experiment as specified in
the Study. Results can be administered by means of a database.

The different components constituting a solvable model are specified by
means of a series of editors written in Java. Transparent to the user, models
are translated into C++ code, compiled and linked together with the neces-
sary supporting libraries, building an executable. The control over build and
run of the solver is again done from a Java component. Möbius currently sup-
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Fig. 3. Möbius Architecture and Motor integration.

ports four input formalisms: Bucket and Balls (an input formalism for Markov
Chains), SAN (Stochastic Activity Networks) [33, 39], and PEPA (a Markovian
Stochastic process algebra) [26]. Recently, the Modest modeling language has
been integrated into the Möbius framework.

Motor. In order to facilitate the analysis of Modest models, we have devel-
oped the prototype tool Motor [11]. Modest is a very expressive language,
covering a wide range of timed, probabilistic, nondeterministic, and stochastic
models. The spectrum of covered models includes ordinary labeled transition
systems, discrete and continuous time Markov chains and decision processes,
generalized semi-Markov processes, and timed and probabilistic timed automata.
These submodels play a crucial role in the context of Motor. The enormous



280 J.-P. Katoen et al.

expressiveness of Modest implies that no generic analysis algorithm is at hand.
Instead, Motor aims at supporting a variety of analysis algorithms tailored
to the variety of analyzable submodels. The philosophy behind Motor is to
connect Modest to existing tools, rather than re-implementing existing anal-
ysis algorithms anew. The advantages of this approach are (i) that excellent
work of leading research groups is made available for the analysis of Modest
models, and (ii) that this is achieved with only moderate implementation effort.
This requires a well-designed interfacing structure of Motor, which is described
in [11].

The first tool Modest was connected to was the CADP toolbox [19]. The
latter is a widespread tool set for the functional design and verification of com-
plex systems.To complement the qualitative analysis of Modest specifications
using CADP we started joint efforts with the Möbius developers [8] to link to
the powerful solution techniques of Möbius for quantitative assessment. The
main objective was to simulate Modest models by means of the Möbius dis-
tributed discrete-event simulator, because a stochastic simulator can cope with
one of the largest class of models expressible in Modest.

Motor and Möbius. The integration of Modest into Möbius is done by
means of Motor. For this integration, Motor has been augmented with a
Modest-to-C++ compiler. From a user-perspective, the Möbius atomic model
interface to design Modest specifications is an ordinary text editor. Whenever
a new version of the Modest specification is saved to disk the Motor tool
is called automatically in order to regenerate all C++ files (cf. Fig. 3 (b)).
Additionally, a supporting C++ library has been written for Möbius, which
contains two components: first, a virtual machine responsible for the execution
of the Modest model, and second, an interface to the simulator of Modest.

As with all other types of atomic models of Möbius is it possible to define
reward models and studies on top of Modest models. The state variables which
are accessible for reward specification are the global variables of the Modest
specification. Additionally, it is possible to declare constants in the Modest
specification as extern, meaning that these constants are actually input param-
eters of the model, pre-set according to the specified study.

Due to the possibility to specify non-Markov and non-homogeneous stochas-
tic processes, only simulation is currently supported as a suitable evaluation
approach for Modest models within Möbius. While it is in principle possible
to identify sublanguages of Modest corresponding to Markov chain models, this
has not been implemented in Motor yet.

4 Case Study: Distributed Device-Absence Checking

As an illustrative example application of our framework and tool, we consider
the modeling and subsequent analysis of a protocol that is aimed to maintain
(and to some extent disseminate) up-to-date information about the presence (or
absence) of nodes in a dynamically changing distributed environment. That is to
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say, the protocol allows for the monitoring of the availability of a node by other
nodes. Normally, when a node goes off-line, it informs other nodes by sending
a bye-message, but if it suddenly becomes unavailable, no such indication is
sent, and the studied protocol comes into play. Important requirements on the
protocol are that it should be able to detect the absence of nodes fast (i.e.,
within about a second) while avoiding to overload devices. Related protocols to
this absence-checking protocol [7], nicknamed “ping protocol” in the sequel, are
failure detection and monitoring protocols. Failure detection protocols [36, 37]
aim to identify whether in a group of nodes, one or more nodes stop executing
correctly. In the ping protocol there are two types of nodes, however, only the
failure of a single type of node is relevant. Monitoring protocols involve the
aggregation of various sorts of data (such as availability information) that are
distributed among nodes in the network [30]. The considered protocol is intended
as an enhancement to node (or service) discovery protocols that are common in
“plug-and-play” distributed systems to find nodes. It is self-organizing in the
sense that it continues to operate properly without manual intervention under
the – according to different patterns – joining and (un)intentional leaves of nodes.

4.1 The Ping Protocol

Here, we summarize the behaviour of the ping protocol [7]. The protocol origi-
nally has been developed as an extension of the service discovery protocol in the
UPnP standard (Universal Plug and Play), but may also be used as extension
of similar protocols such as SLP, Rendezvous and Jini.

Two types of nodes are distinguished: simple nodes (devices) and somewhat
more intelligent ones, called control points (CPs). The basic protocol mechanism
is that a CP continuously probes (i.e., pings) a device that replies to the CP
whenever it is (still) present. The essence of the protocol is to automatically
adapt the probing frequency in case a device tends to get over- or underloaded.
This self-adaptive mechanism is governed by a couple of parameters that are
described in more detail furtheron. The CPs are dynamically organized in an
overlay network by letting the device, on each probe, return the ids of the last
two processes that probed it as well. On the detection of the absence of a device,
this overlay network is used to rapidly inform CPs about the leave of the device.
For the sake of simplicity, the latter information dissemination phase of the
protocol is not considered here.

Device behaviour. A device maintains a probe-counter pc that keeps track of
the number of times the device has been probed so far. On the receipt of a
probe, this counter is increment by the natural ∆, which typically equals one,
and a reply is sent to the probing CP with as parameters the (just updated)
value of pc, and the ids of the last two distinct CPs that probed the device. The
latter information is needed to maintain the overlay network of CPs4, whereas

4 By returning two distinct CP ids, the overlay network forms a tree with depth log2 N
where N is the number of CPs, with a high probability.
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the returned value of pc is used by CPs to estimate the load of the device.
As ∆ is device-dependent, and typically only known by the device itself, a CP
cannot distill the actual probing frequency of a device, but only its own perceived
probing frequency. Note that ∆ can be used by a device to control its load, e.g.,
for a larger ∆, CPs consider the device to be more (or even over-) loaded sooner,
and will adjust (i.e., lower) their probing frequency accordingly resulting in a
lower deviceload. Although in principle the value of ∆ can be changed during
the lifetime of a device, in the sequel we assume it to be constant.

CP behaviour. The behaviour of a CP is more intricate. The basic mechanism
for communicating with a device is a bounded retransmission protocol (à la
[17]): a CP sends a probe (“are you still there?”), and waits for a reply. In
absence of a reply, it retransmits the probe. Otherwise, the CP considers the
reply as a notification of the (still) presence of the device, and continues its
normal operation. Probes are retransmitted maximally three times. If on none
of the four probes a reply is received, the CP considers the device to have left
the network, and starts to disseminate this information to other CPs using the
overlay network. The protocol allows to distinguish between the timeout value
TOF after the first probe and the timeout value after the other (maximally three)
probes TOS. Typically, TOS < TOF.

Let us now consider the mechanism for a CP to determine the probing fre-
quency of a device. Let δ be the delay between two consecutive, i.e., not retrans-
mitted, probes. For given constants δmin and δmax with δmax >> δmin , the CP
has to obey

δmin � δ � δmax .

The value of δ is adapted after each successful probe in the following way. Assume
the CP sends a probe to the given device at (its local) time t and receives a reply
on that with probe-count pc. (In case of a failed probe, the time at which the
retransmitted probe has been sent is taken.) The next probe is sent at time t′ > t,
and let pc’ be its returned probe-count. t′−t, thus, is the time delay between
two successive successful probes. The probeload of the device, as perceived by
the CP, is now given as

γ =
pc’ − pc

t′ − t
.

The actual probeload of the device equals γ/∆. For given maximal and minimal
probeloads γmax and γmin for the CP, and constant factors αinc , αdec > 1, the
delay δ is adapted according to the following scheme, where δ′ and δ refer to the
new and previous value of δ, respectively:

δ′ =






min
(
αinc · δ, δmax

)
if γ > γmax

max
(

1
αdec

· δ, δmin

)
if γ < γmin

δ otherwise
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This adaptive scheme is justified as follows5. In case the just perceived probeload
γ exceeds the maximal load γmax , the delay is extended (by a factor αinc > 1)
with the aim to reduce the load. As δ should not exceed the maximal delay
δmax , we obtain the first clause of the above formula. This rule thus readjusts
the probing frequency of a CP in case the number of CPs (probing the device)
suddenly increases. If γ is too low, the delay is shortened in a similar way while
obeying δmin � δ. The second rule thus readjusts the probing frequency of a
CP in case the number of CPs (probing the device) suddenly decreases. In all
other cases, the load is between the maximal and minimal load, and there is no
need to adjust the delay. Note that the maximal frequency at which a CP may
probe a device – given that the protocol is in a stabilized situation – is given
by max( 1

δmin
, γmax ). The maximal actual probing frequency of a device is ∆−1

times this quantity.

4.2 Modeling in MoDeST

The ping protocol can be modeled in Modest in a rather straightforward man-
ner. The entire specification consists of the parallel composition of a number of
CPs, a number of devices and a network process. By making a precise description
of the ping protocol in MoDeST, some small unclarities in the original protocol
specification [7] were revealed, such as, e.g., the way in which the ids of the last
two (distinct) probing CPs were managed.

As the main aim of our simulation study is an assessment of the self-adaptive
mechanism to control the device’s probe frequency, the devices are supposed to
be present during the entire execution of the simulation (i.e., they are static),
whereas the CPs join and leave the network frequently (i.e., they are highly
dynamic). In order to govern the leave- and join-pattern of CPs, a separate
process is put in parallel to the CPs that synchronizes on join and leave actions
while timing these actions according to some profile as specified in the simulation
scenario at hand (see below). For simplicity we omit these actions from the model
of the CP as presented below.

The network is modeled as a simple one-place buffer. A shared variable m
contains the current message in transit (if any) and has fields that contain the
various parameters, e.g., m.src indicates the address of the source of m, m.lck in-
dicates whether the structure contains a message, and m.pc is the probe counter
of a reply message. As the only messages (in our model) from devices to CPs
are replies, and from CPs to devices are probes, there is no need to distinguish
message types.

To give an impression of the Modest specification of the ping protocol, we
present the (basic, i.e., somewhat simplified) models of a device and CP. The
ids of CPs in reply-messages and the bookkeeping of these ids by the device are
omitted here, as the dissemination phase is not further considered. The basic
behaviour of a device is modeled as follows:
5 To avoid clustering of CPs, in fact, a CP adds a small value to δ′ that is randomly

determined. For the sake of simplicity, this is not described any further here.
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process Device (int id) {

action handle_probe, send_reply ; // action declarations

const int Delta = 1.0; // probe increase

clock x; // timer for reply time

int pc = 0, // probe counter

cp;

float rpldel; // reply delay

do { // actual behaviour

:: when ( (m.lck) && (m.dst == id) )

handle_probe {=

pc += Delta, cp = m.src, m.lck = 0,

rpldel = min + (max - min)*EXP(...), x = 0 =};

when ( x >= rpldel ) // rpldel time-units elapsed

send_reply {= m.src = id, m.dst = cp, m.pc = pc =}

}

}

Here it is assumed that the processing time of the device, i.e., the time between
the receipt of a probe and transmitting its reply, is governed by an exponential
distribution (see also below), but this could, of course, be any other reasonable
distribution. Note that on simulating this model, the maximal progress assump-
tion is adopted, i.e., on the expiration of the delay rpldel in the device, a reply
is sent immediately. No further delay takes place. The basic behaviour of a CP
is modeled as follows:

process CP (int id, ) {

action send_probe, .... // action declaration

clock x; // timer for timeouts and delays

int pc = 0, // probe counter of last reply

i = 0; // probe counter

float d = d_max, // delay until next probe (=delta)

to, // timeout value

pl; // pingload (= gamma)

do {

:: send_probe {= i++, m.src = id, m.dst = dev_id, x = 0, to = TOF =};

do { // wait for reply or timeout

:: alt {

:: // timeout and more probe retransmissions allowed

when ( (x >= to) && (i < 4) )

send_probe

{= i++, m.src = id, m.dst = dev_id, x = 0, to = TOS =};

:: // reply received in time

when ( (x < to) && (m.lck) && (m.dst == id) )

handle_reply {= m.lck = 0, pl = (m.pc - pc)/d, pc = m.pc =};

alt { // adapt delay-to-ping

:: when (pl > gamma_max)

alt { :: when (d * a_inc <= d_max)

{= d = d * a_inc =}
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:: when (d * a_inc > d_max)

{= d = d_max =}

:: when (pl < gamma_min)

alt { :: when (d * 1/a_dec > d_min)

{= d = d * 1/a_dec =}

:: when (d * 1/a_dec <= d_min)

{= d = d_min =} }

:: when ((pl >= gamma_min) && (pl <= gamma_max)) tau // nop

};

x = 0; // reset timer

when ( x >= d )

i = 0;

break // restart probing

:: // timeout and no retransmissions further allowed

when ( (x >= to) && (i == 4) )

dev_abs {= i = 0, pc = 0 =}; // signal device absence

break // restart probing

}

}

}

On each outermost iteration, a CP starts by sending an initial probe to the
device. As the first waiting time until a reply equals TOF, the variable to is set
to that value, and clock x is reset. In the innermost iteration, there are three
possibilities. In case the timer expires, signaling that the reply did not come
in time, and the number of probe-transmissions did not exceed the maximum,
the probe is retransmitted. Note that in this case to is set to TOS. If the timer
expires, and the probe has been sent a maximal number of times, the device is
assumed to have left the network and the dissemination phase is started. This
is modeled in an abstract way using action dev abs, and an immediate restart
of the probing. In case a reply is received in time, the probeload is determined,
the time until the next probe is determined, and probing is restarted after this
delay d.

The last component of the Modest specification is the model of the network.
As stated before, the network is modeled as a one-place buffer for simplicity. Its
model is as follows:

process Network () {

action get_msg, ... // action declarations

clock x; // timer for message delay

const int ploss = 1; // message loss probability

float del; // random message delay

do {

:: when (m.lck != 0)

get_msg {= m.lck = 0, x = 0, del = min + (max - min)*EXP(...) =};

tau palt {

:ploss: lose_msg

:(10000 - ploss): alt {

:: when (x >= del) put_msg {= m.lck = 1 =}
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:: when (m.lck != 0) lose_msg // m overwritten

}

}

}

}

4.3 Analysis with MOTOR

To get insight into the behaviour of the probe protocol, in particular, into the
self-adaptive mechanism to control the probe frequency of a device, the MoD-
eST model has been analyzed by means of discrete-event simulation using the
MOTOR-Möbius interface. The main aim of the analysis was to obtain indi-
cations for reasonable values of the parameters of the protocol, in particular of
αinc , αdec and TOF and TOS. The original protocol description [7] indicates that
αinc = 2 and αdec = 3

2 are appropriate choices, but leaves the other parameters
unspecified.

A simulation scenario. To enable a simulation, a description of the configuration
of the network (i.e., the number of CPs and devices) and their join- and leave-
behaviour need to be given. We consider a configuration consisting of a single
device and eight CPs. As our aim is to study the self-adaptive mechanism to
control the probe frequency of a device, the device is assumed to be present
during the entire simulation whereas the CPs have a more dynamic nature.
Two CPs are continuously present, and six CPs join in a bursty fashion, one
shortly after the other, are present for a short while, and then four suddenly
leave altogether. The four then repeatedly all join and leave, until at some point
in time all six CPs leave.

Stochastic assumptions. Various stochastic phenomena of the ping protocol have
been modeled such as the transit delay of a message through the network and
the connection time of a CP. To give an impression of the assumptions that have
been made, we consider a few examples. The device response time, i.e., the delay
that is exhibited by a device between receiving a probe and sending its reply is
determined by

tmin + (tmax−tmin) · p
where tmin and tmax equal 0.06 and 20 msec, respectively, and p is governed
by a negative exponential distribution (with rate λ = 3). The one-way message
delay for a fixed network (i.e., Ethernet-like) is determined in a similar way using
tmax = 1, tmin = 0.25 and λ = 3, whereas a constant loss probability of 10−5

is assumed6. The connection times of CPs is chosen to be deterministic, but
different for the various CPs.

6 These probability distributions are not intended to reflect the actual delays or loss
probabilities, but are merely used as indications. More precise indications are man-
ufacturer specific (and not publicly available).
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Simulation parameters. The following parameters exemplify the kind of infor-
mation that is obtained from a simulation of the Modest model of the ping
protocol:

– Nmsg , the average number of probes and replies exchanged per second
– Pfalse , the probability that a present device is considered to be absent
– Plate , the probability that the time until the next probe is exceeding some

predefined maximum (e.g., 0.7 seconds), and
– Tabs , the average time until a CP detects the absence of a device.

In order to obtain these measures, the Modest specification may be equipped
with additional variables with the sole purpose of information gathering. For
instance, in order to estimate Pfalse , the CP-model is extended with a counter
that is incremented when a device is considered to be absent, cf. action dev abs
in the earlier presented model. In a similar way, the model of the device is
enriched with a clock that measures the amount of time a probe is arriving too
late, i.e., after the deadline of 0.7 seconds.

Fig. 4. Distribution of the delay between successive probes.

Some analysis results. To give an impression of the kind of results that can be
obtained using the Motor tool we present three curves. The first plot (cf. Fig. 4)
indicates the probability distribution of the probe delay as perceived at a device.
Plate equals 0.048 and B equals 5.535 mps (messages per second); the average
time-to-ping is about 0.32 seconds. The protocol was run using the values for
αinc , γmax , TOF and so on, as indicated in [7] and as summarized in the first
row of Table 1.

In our simulation study we concentrated on determining the effect of the val-
ues of α, γ and the timeout values TOF and TOS. Fig. 5, for instance, depicts the
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Fig. 5. Nlate for various timeout values.

effect of the ratio TOS / TOF (x-axis) on the average number of times a present
device is wrongly considered to be absent Nfalse (left y-axis) while keeping the
sum TOF+TOS (right y-axis) constant. Note that the sum of the timeouts gives
an indication about the time a CP needs to determine that a device is absent,
as this equals TOF+3·TOS. From the plot we infer that for a fixed ratio of the
timeout values, Nfalse rapidly grows when the sums of the timeouts exceeds 0.3
seconds. This effect is not surprising since on shorter timeout periods, a CP will
sooner decide that a present device is absent. For a fixed sum of the timeouts,
Nfalse slowly decreases on increasing the timeout ratio as the number of (short)
timeout periods in which the absence can be wrongly concluded is decreasing.
Fig. 6 indicates the bandwidth usage and shows that for a fixed ratio, B grows in
this case up to a factor of about 25%. A similar effect can be observed for a fixed
total timeout value when the ratio is increased: in case the first timeout period
is much longer than the other ones (i.e., TOS/TOF is small), the probability to
get a reply on the first probe is relatively large, and there is no need to carry
out any retransmissions. If these periods get shorter, this probability is lower,
leading to more probes. Using the simulations, the parameters that seem to be
adequate for the ping protocol were determined as indicated in the second row of
Table 1. Note that in particular, the factors αinc and αdec have changed substan-
tially, as well as the length of the timeout periods. Furthers experiments indicate
that with these new parameter values B is basically unchanged, whereas Plate

is improved significantly, e.g., from 1.772% to 0.718% for the scenario described
earlier. More analysis results can be found in [23].

Individual starvation of CPs. The self-adaptive mechanism to control the probe
frequency of a device aims at speeding up CPs (i.e., increasing their probing
frequency) when other CPs leave the network and at slowing them down when
other CPs join. The implicit assumption of this mechanism to work is that all CPs
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Fig. 6. B for various timeout values.

Table 1. Parameter values prior and after simulations.

∆ γmax γmin δmax δmin αinc αdec TOF TOS

Prior to analyis 4 24 12 30 0.5 2
3

2 40 24

After analysis 4 22 14 30 0.5 1
3

3
2

96 68

are probing at a more or less equal frequency. To obtain an equal spreading of
the probing frequency of a device among the probing CPs, slower CPs (that, e.g.,
just joined) should be able to speed up such that they can match the probing
frequency of other CPs. The plot in Fig. 7 shows the spreading of the CPs’
probing frequencies in terms of bandwidth usage for a scenario in which four CPs
are continuously present, while the other four CPs join at intervals of 50 seconds
and leave one by one. The protocol runs according to the parameter values
determined in the previous experiment (see above). The individual bandwidth
usage of each CP is indicated by a colored curves that are put on top of each
other in order to avoid blurring the plots. The lower four curves indicate the
bandwidth usage of the static CPs, whereas the upper four curves refer to the
CPs that dynamically join and leave the system.

A few remarks are in order. The regular pattern of the CPs joining at regular
intervals is clearly recognizable: at each 50 sec there is traffic peak. More impor-
tantly, though, is the discrepancy in probing frequencies among the four static
CPs: from t = 250 on the frequencies of two of these CPs goes towards zero. The
protocol mechanism to adapt the probing frequencies also seems not to be able
to recover from this problem. The occurrence of the starvation phenomenon can
be explained as follows. Suppose several CPs suddenly leave the network in the
situation that a slow CP probes at a much lower frequency than another CP.
The fast CP detects the absence of the CPs and increases its probing frequency.
The slow CP detects this absence much later and the decrease in probeload it
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Fig. 7. Bandwidth usage of several CPs.

detects is insufficient to drastically increase its own probing frequency. In the
meanwhile the fast CP has speeded up such that the probing frequency of the
device is at an appropriate level, and the slow CP does not have any opportunity
to increase. In fact, it slows down further. The main cause is that a CP cannot
distinguish between the situation in which various other CPs probe a device at
a relatively low frequency, and a few (e.g, one) CPs that probe the device at a
high frequency.

The starvation problem that was discovered during our analysis was unknown
to the designers of the ping protocol, and has caused a major re-design of the
protocol. An extended and more detailed description of our experiences on the
modeling and analysis of the ping protocol (and its improvements to circumvent
the starvation problem) is currently under development [10].

5 Conclusion and Future Perspectives

In this paper, we surveyed the language Modest that allows for the composi-
tional modeling of complex systems and its accompanying tool-support MOTOR.
Our framework is particularly suited for analyzing and describing real-time and
probabilistic system aspects. This has been exemplified in this paper by model-
ing and analyzing the ping protocol, a protocol for checking the absence of nodes
by various other nodes in a dynamic distributed system [7]. The key aspect of
this protocol is an adaptive mechanism to control the probe load of a node. Our
analysis has revealed an undesired side-effect of this adaptive mechanism and has
provided useful indications on reasonable parameter values. On the basis of our
analysis, a significant re-design of the protocol has been made that is described
in a forthcoming paper [10].

Recently, some case studies of a rather different nature have been treated
with Modest and MOTOR. [12] studies the effect of resource failures in a hard
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real-time scheduling problem for lacquer production. It assesses the quality of
schedules (that are synthesized using a real-time model checker) in terms of
timeliness (“what is the probability that the hard deadline is missed?”) and
resource utilization and studies – as for the ping protocol – the sensitivity wrt.
different reliability parameters. [29] presents the modeling and analysis of (part
of) the recent European standard for train signaling systems ETCS that is based
on mobile communication between the various components. Critical issues such
as “what is the probability that a wireless connection can be established within
5 seconds?” are assessed with Motor.

Issues for future work are, among others, applying Modest to more practical
case studies and extending Motor with capabilities to analyze timed automata
using the real-time model checker UPPAAL [2] and Markov chains using the
probabilistic model checker ETMCC [25]. We are currently linking Motor to
the in-house conformance test-tool ToRX [4] to enable the on-the-fly automated
test generation for real-time (and untimed) systems, and have plans to apply
this to the testing of wafer-stepper machines for chip production.

The Motor tool is publicly available from the web-site

fmt.cs.utwente.nl/tools/motor
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