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A havd-sphere discrete particle model of a gas-fluidized bed was extended in order to allow Jor a continuous particle size
distribution to be taken into account. For each solid particle the Newtonian equations of motion are solved taking into
account the inter-particle and particle-wall collisions. The gas-phase hydrodynamics is described by the spatially averaged
Navier-Stokes equations for two-phase flow. Pressure peaks inside a slugging fluidized bed decreased with increasing geo-
metric Standard deviation of the log-normal size distribution. This could be observed during the initial stages of a simula-
tion with 2400 particles starting from minimum fluidization conditions. In a bubble formation simulation using 40.000 par-
ticles of uniform size, small ‘satellite’ bubbles appeared above and alongside the main bubble. This could necither be
observed in the simulation with polydispersed particles nor in the experiment duplicating the simulation which indicates the
importance of taking a particle size distribution into account, especially when locally very close packing can prevail,

Due to increasing computer power granular dynamics
simulations have become a very useful and versatile
research tool to study the hydrodynamics of gas-
fluidized beds. In these simulations the Newtonian
equations of motion for each individual particle in the
System are solved. Particle-particle and particle-wall
interactions are taken into account directly which is a
clear advantage over two-fluid models which require
closure relations for the solids-phase stress tensor
(Gidaspow (1), Sinclair and Jackson (2) and Kuipers ez
al. (3) among others). Tsuji ez al. (4) developed a soft-
sphere discrete particle model based on the work of
Cundall and Strack (5). In their approach the particles
are allowed to overlap slightly and from this overlap
the contact forces are calculated subsequently.
Hoomans et al. (6) used a hard-sphere approach in
their discrete particle model which implies that the
particles interact through binary, quasi-instantaneous,
melastic collisions with friction. An important
advantage of a discrete particle model is given by the
fact that a particle size distribution can easily be taken
nto account which is far more complex, if not
impossible, In case a continuum modelling approach is
adopted. Furthermore when simulating the particle
dynamics directly with a uniform particle size the local
particle configuration can approach a closest packing
which leads to very low void fractions which in turn
can nfluence the bed dynamics significantly. In this
work the influence of a particle size distribution on the

granular dynamics of dense gas-fluidized beds will be
studied.

PARTICLE DYNAMICS

Since most details of the model are presented in a
previous paper (Hoomans et al. (6)), the key features
will be summarized briefly here. The collision model
as orniginally developed by Wang and Mason (7) is
used to describe a binary, instantaneous, inelastic
collision with friction. The key parameters of the
model are the coefficient of restitution (0 < e < 1) and

the coefficient of friction (1 = 0). In our hard-sphere
approach a sequence of binary collisions is processed
one collision at a time. This implies that a collision list
1s compiled in which for each particle a collision
partner and a corresponding collision time is stored. A
constant time step is used to take the external forces
mto account and within this time step the prevailing
collisions are processed sequentially. In order to
reduce the required CPU time neighborlists are used in
order to decrease the number of particles to be checked
for possible collisions. Efficient algorithms obtained
from the field of Molecular Dynamics (MD) are

employed to achieve very efficient computational
procedures.

External Forces

The mcorporation of external forces differs somewhat
from the approached followed in our previous paper
(Hoomans ef al. (6)). In this work we use the external
forces analogous to those implemented in the two-fluid
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model described by Kuipers ef al. (3) where, of course,
the forces now act on a single particle:
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where m, represents the mass of a particle, v, its
velocity, u the local gas velocity and V, the volume of
a particle. In Equation (1) the first term is due to
gravity and the third term is the force due to the
pressure gradient. The second term is due to the drag
force where # represents an interphase momentum
exchange coefficient as it usually appears 1n two-fluid
models. For low void fractions (& < 0.80) A is obtained
from the well-known Ergun equation:
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where d, represents the particle diameter, u, the
viscosity of the gas and P, the density of the gas. For

high void fractions (& = 0.80) the following expression

for the interphase momentum transfer coefficient has
been used:;
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The drag coefficient C, is a function of the particle
Reynolds number:
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where the particle Reynolds number in this case is
defined as follows:
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For the integration of Equation (1) a simple explicit

first order scheme was used to update the velocities

and positions of the particles.

PARTICLE SIZE DISTRIBUTION

Hardly any distribution of particle size encountered in
flwdization studies is symmetrical, most of them are
skewed to larger diameters (Seville et al. (8)). A
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symmetrical size distribution like a normal or a
Gaussian distribution is therefore not representative for
particles used in laboratory or industrial practice, In
this work the particle diameters are obtained from a
log-normal distribution which is asymmetrical and can
be represented in mathematical terms as follows:
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where df is the fraction of particles having diameters
whose logarithms lie between In d, and In d, + d(In d,).
In Equation (6) d,, cup 18 the count median diameter and
o, 1s the geometric standard deviation. When creating
the particle size distribution all the diameters which are
smaller than d,,,, -G, Or larger than d, ., -0, are
rejected which mimics the effects of sieving. An
example of a particle size distribution generated with

this method is represented in a (discrete) frequency
histogram in Figure 1.
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Figure 1, Frequency histogram of a log-normal particle
size distribution with a count median diameter of 4.0
[mm] and a o, of 0.1 [mm].

GAS PHASE HYDRODYNAMICS

The motion of the gas-phase is calculated from the
following set of equations which can be seen as a
generalised form of the spatially averaged Navier-
Stokes equations for a two-phase gas-solid mixture
(Kuipers et al, (3)).

Continuity equation gas phase:

‘5(893)
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Momentum equation gas phase:

deo

P -z—(V-gpguu) =—eVp-8§, -(V' «5’53) +&0,8 (8)

In this work transient, two-dimensional, isothermal (T
= 293 K) flow of air at atmospheric conditions is
considered. The constitutive equations and the
boundary conditions used can be found in Hoomans et
al. (6). The void fraction (&) is calculated from the
particle positions in the bed. There is one important
modification with respect to our previous model and
that deals with the way in which the two-way coupling
between the gas-phase and the particle motion is
established. In the present model the reaction force to
the drag force exerted on a particle per unit of volume
1s fed back to the gas-phase through the source term S,

[Nm™]. A more detailed discussion on this approach
can be found in Delnoij et al. (9).

RESULTS
Influence of Distribution Width

At first the influence of the distribution width was
studied. Simulations were performed using 2400
particles with a count median average diameter of 4.0
[mm] and a density of 2700 kg/m® (u_, = 1.78 [m/s])
contained in a system of 0.15 [m] width and 0.5 [m]
hight. A discretization of 15 cells horizontally and 25
cells vertically was applied. A time step of 10™ [s] was
used and all simulations were run for 10 [s] real time.
The coefficient of restitution (e) was set equal to 0.9
and the coefficient of friction (1) was set equal to 0.3
for both particle-particle and particle-wall collisions.
The initial configurations were obtained by placing the
particles 1n the system and allowing them to fall under
the influence of gravity while the gas inflow was set
equal to u,. Simulations were performed for a system
consisting of particles of uniform size and systems
consisting of particles with a log-normal size
distribution with a geometric standard deviation g, =
0.1, 0.5 and 1.0 [mm)] respectively. A homogeneous

gas inflow at 1.5 u_, was specified at the bottom of the
system.

In Figure 2 the pressure fluctuations inside the bed
at 0.2 [m] above the centre of the bottom plate are
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presented for all the four cases. It can be observed that
the pressure peaks decrease with increasing geometric
standard deviation of the size distribution. This can be
explamned by the lower void fraction in the uniform
case due to the closer packing which results in a higher
force acting on the particles ‘which in turn causes the
higher pressure peaks. After the first 1.5 [s] the
differences become far less pronounced which
indicates that especially in situations where close
packing can occur such as at minimum fluidization
conditions it is important to take polydispersity into
account.
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Figure 2, Pressure fluctuations 0.2 [m] above the centre
of the bottom plate as a function of time for the four

cases, GSD = geometric standard deviation (g;).

Experimental Validation

In order to test whether the simulation results were
improved by taking the particle size distribution into
account a comparison with experiment was performed.
The main features of the experimental set-up were
reported earlier (Hoomans ef al. (6)). A sieve fraction

of glass ballotini particles between 800 and 900 [um)]
with a density of 2930 [kg/m’] (w,, = 0.5 [m/s]) was
used. The bed (width 0.2 [m] and hight 0.3 [m]) was
equipped with a porous bottom plate which featured a
central nozzle (15 [mm]) through which excess gas
could be injected into the bed. The background
fluidization velocity was kept equal to u_, whereas
during the first 0.2 [s] excess gas was injected through
the nozzle at 5 u,,. The simulations were performed
using 40,000 particles. The coefficient of restitution
was 0.96 for particle-particle collisions and 0.86 for
particle-wall collisions and the coefficients of friction
were 0.15 1n both cases. A discretization of 39 by 60
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cells was used together with a time step of 10™ [s]. A
simulation was performed where the particle diameters
were obtained from a log-normal distribution with a
count median average of 850 [um] and a geometric
standard deviation of 50 [um] as well as a reference
simulation with particles of uniform diameter (850

[nm]). Snapshots at t = 0.2 [s] of both simulations and
the experiment are presented in Fi gure 3.
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It can be observed that in the case of the uniform
particle assembly small ‘satellite’ bubbles appear above
an alongside the main bubble. This is neither observed
In the experiment nor in the simulation with the
polydisperse particle assembly. These ‘satellite’
bubbles are probably due to low local void fraction due
to close packing. The size of the main bubble agrees
rather well with the experiment for both simulations
which is rather encouraging especially since all model
parameters were obtained on beforehand and
independently. Further improvement can be achieved
by extending the model to three dimensions because
although the experimental bed was quasi two-
dimensional it was still 16 [mm] deep.

el er—

CONCLUSIONS

Granular dynamics simulations have been performed
with particles which diameters have been obtained
from a log-normal distribution. The main influence of
the polydispersity could be observed when the
particles were in a rather close packing. Pressure peaks
mside a slugging fluidized bed decreased with
Increasing geometric standard deviation of the log-
normal size distribution during the initial stages of a
simulation starting from minimum fluidization
conditions. In a bubble formation simulation with
particles of uniform size small ‘satellite’ bubbles
appeared above and alongside the main bubble, This
could neither be observed in the experiment nor in the
simulation with the polydisperse particles. This
indicates that it is especially important to take a
particle size distribution into account in systems where
locally very dense particle configurations can occur.

Due to the fact that a particle size distribution can
be dealt with in a natural and fundamental manner (i.e.
without invoking difficulties in formulating closure
laws for particle stress) it is anticipated that the effect
of fines on fluidization behaviour, which is well
known to the experimentalist but which is
unfortunately poorly understood, can now be studied
in detail.

b) c)

Figure 3, Snapshots at t = 0.2 [s] of: a) experiment, b)
simulation with uniform particles, ¢) simulation with log-
normal particle size distribution.
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NOTATION

C, drag coefficient, [-]

g coefficient of restitution, [-]

d, particle diameter, [m]

g gravitational acceleration, [m/s?]

m, particle mass, [kg]

J2 pressure, [Pa]

r position vector, [m]

S, momentum source term Eq. (8), [N/m°)
¢ time, [s]

I gas velocity vector, [m/s]

v, particle velocity vector, [m/s]

v, particle volume, [m?]

Greek symbols

3 defined in Eqs (2) and (3), [kg/m’s]

5 void fraction, [-]

L coefficient of friction, [-]

M, gas viscosity, [kg/ms]

T gas-phase stress tensor, [kg/ms?]

Py gas density, [kg/m’]

c, geometric standard deviation (GSD), [m]
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