
Chapter 8

Mapping Applications to a Coarse Grain
Reconfigurable System

Yuanqing Guo, Gerard J.M. Smit, Michèl A.J. Rosien, Paul M. Heysters,
Thijs Krol, Hajo Broersma

University of Twente, Faculty of Electrical Engineering,
Mathematics and Computer Science, P.O. Box 217, 7500AE Enschede,
The Netherlands
{yguo, smit, rosien, heysters, krol}@cs.utwente.nl; h.j.broersma@utwente.nl

Abstract This paper introduces a design method to map applications written in a high level
source language program, like C, to a coarse grain reconfigurable architecture,
called MONTIUM. The source code is first translated into a control dataflow
graph (CDFG). Then after applying graph clustering, scheduling and allocation
on this CDFG, it can be mapped onto the target architecture. High performance
and low power consumption are achieved by exploiting maximum parallelism
and locality of reference respectively. Using our mapping method, the flexibility
of the MONTIUM architecture can be exploited.

Keywords: Coarse Grain Reconfigurable Architecture, Mapping and Scheduling

8.1 Introduction

In the CHAMELEON/GECKO project we are designing a heterogeneous recon-
figurable System-On-Chip (SoC) [Smit, 2002] for 3G/4G terminals. This SoC
contains a general-purpose processor (ARM core), a bit-level reconfigurable
part (FPGA) and several word-level reconfigurable parts (MONTIUM tiles). We
believe that in future 3G/4G terminals heterogeneous reconfigurable architec-
tures are needed. The main reason is that the efficiency (in terms of performance
or energy) of the system can be improved significantly by mapping application
tasks (or kernels) onto the most suitable processing entity.

The objective of this paper is to present a design method for mapping pro-
cesses, written in a high level language, to a reconfigurable platform. The

93

P. Lysaght and W. Rosenstiel (eds.), 

© 2005 Springer. Printed in the Netherlands. 

New Algorithms, Architectures and Applications for Reconfigurable Computing, 93–103. 



94

method can be used to optimize the system with respect to certain criteria
e.g. energy efficiency or execution speed.

8.2 The Target Architecture: MONTIUM

In this section we give a brief overview of the MONTIUM architecture, because
this architecture led to the research questions and the algorithms presented in
this paper. Figure 8.1 depicts a single MONTIUM processor tile. The hardware
organization within a tile is very regular and resembles a very long instruc-
tion word (VLIW) architecture. The five identical arithmetic and logic units
(ALU1 · · · ALU5) in a tile can exploit spatial concurrency to enhance perfor-
mance. This parallelism demands a very high memory bandwidth, which is
obtained by having 10 local memories (M01 · · · M10) in parallel. The small
local memories are also motivated by the locality of reference principle. The
ALU input registers provide an even more local level of storage. Locality of
reference is one of the guiding principles applied to obtain energy-efficiency in
the MONTIUM. The MONTIUM has a datapath width of 16-bits and supports both
integer and fixed-point arithmetic. Each local SRAM is 16-bit wide and has a
depth of 512 positions, which adds up to a storage capacity of 8 Kbit per local
memory. A memory has only a single address port that is used for both reading
and writing. A reconfigurable address generation unit (AGU) accompanies each
memory. The AGU contains an address register that can be modified using base
and modify registers.

A single ALU has four 16-bit inputs. Each input has a private input register
file that can store up to four operands. The input register file cannot be by-
passed, i.e., an operand is always read from an input register. Input registers
can be written by various sources via a flexible interconnect. An ALU has two
16-bit outputs, which are connected to the interconnect. The ALU is entirely
combinatorial and consequentially there are no pipeline registers within the
ALU. Each MONTIUM ALU contains two different levels. Level 1 contains four

Figure 8.1. MONTIUM processor tile.



Mapping Applications to a Coarse Grain Reconfigurable System 95

function units. A function unit implements the general arithmetic and logic
operations that are available in languages like C (except multiplication and di-
vision). Level 2 contains the MAC unit and is optimised for algorithms such as
FFT and FIR. Levels can be bypassed (in software) when they are not needed.

Neighboring ALUs can also communicate directly on level 2. The West-
output of an ALU connects to the East-input of the ALU neighboring on the
left (the West-output of the leftmost ALU is not connected and the East-input
of the rightmost ALU is always zero). The 32-bit wide East-West connection
makes it possible to accumulate the MAC result of the right neighbor to the
multiplier result (note that this is also a MAC operation). This is particularly
useful for performing a complex multiplication, or for adding up a large amount
of numbers (up to 20 in one clock cycle). The East-West connection does not
introduce pipeline, as it is not registered.

8.3 A Four-Phase Decomposition

The overall aim of our research is to execute DSP programs written in high
level language, such as C, by one MONTIUM tile in as few clock cycles as
possible. There are many related aspects: the limitation of resources; the size
of total configuration space; the ALU structure etc. The main question is to
find an optimal solution under all those constraints. Therefore we propose to
decompose this problem into a number of phases: Based on the two-phased
decomposition of multiprocessor scheduling introduced by [Sarkar, 1989], our
work is built on a four-phase decomposition: translation, clustering, scheduling
and resource allocation:

1 Translating the source code to a CDFG: The input C program is first
translated into a CDFG; and then some transformations and simplifica-
tions are done on the CDFG. The focus of this phase is the input program
and is largely independent of the target architecture.

2 Task clustering and ALU data-path mapping, clustering for short: The
CDFG is partitioned into clusters and mapped to an unbounded number
of fully connected ALUs. The ALU structure is the main concern of this
phase and we do not take the inter-ALU communication into considera-
tion;

3 Scheduling: The graph obtained from the clustering phase is scheduled
taking the maximum number of ALUs (it is 5 in our case) into account. The
algorithm tries to find the minimize number of the distinct configurations
of ALUs of a tile;

4 Resource allocation, allocation for short: The scheduled graph is mapped
to the resources where locality of reference is exploited, which is



96

important for performance and energy reasons. The main challenge in
this phase is the limitation of the size of register banks and memories, the
number of buses of the crossbar and the number of reading and writing
ports of memories and register banks.

Note that when one phase does not give a solution, we have to fall back to a
previous phase and select another solution.

8.4 Translating C to a CDFG

A control data flow graph (CDFG) G = (NG, PG, AG) consists of two finite
non-empty sets of nodes NG and ports PG and a set AG of so-called hydra-
arcs; a hydra-arc a = (ta, Ha) has one tail ta ∈ NG ∪ PG and a non-empty set
of heads Ha ⊂ NG ∪ PG . In our applications, NG represents the operations of a
CDFG, PG represents the inputs and outputs of the CDFG, while the hydra-arc
(ta, Ha) either reflects that an input is used by an operation (if ta ∈ PG), or that
an output of the operation represented by ta ∈ NG is input of the operations
represented by Ha , or that this output is just an output of the CDFG (if Ha

contains a port of PG).
See the example in Figure 8.2: The operation of each node is a basic compu-

tation such as addition (in this case), multiplication, or subtraction. Hydra-arcs
are directed from their tail to their heads. Because an operand might be input for
more than one operation, a hydra-arc is allowed to have multiple heads although
it always has only one tail. The hydra-arc e7 in Figure 8.2, for instance, has
two heads, w and v. The CDFG communicates with external systems through
its ports represented by small grey circles in Figure 8.2.

In general, CDFGs are not acyclic. In the first phase we decompose the
general CDFG into acyclic blocks and cyclic control information. The control

+

+

+x y

u

vw

+

+

e1 e2 e3 e4

e5 e6

e7
e8 e9

e10 e11

Figure 8.2. A small CDFG.



Mapping Applications to a Coarse Grain Reconfigurable System 97

const int n = 4;
float x_re[n] ; float x_im[n] ; float w_re[n/2]; float w_im[n/2];
void main() {
  int xi, xip;
  float u_re, u_im, x_re_tmp_xi, x_re_tmp_xip, x_im_tmp_xi, x_im_tmp_xip;
  for (int le = n / 2; le > 0; le /= 2) {
    for (int j = 0; j < le; j++) {
      int step = n / le;
      for (int i = 0; i < step/2; i++ ) {
        xi = i + j * step; xip = xi + step/2; u_re = w_re[le * i]; u_im = w_im[le * i];
        x_re_tmp_xi = x_re[xi]; x_re_tmp_xip = x_re[xip];
        x_im_tmp_xi = x_im[xi]; x_im_tmp_xip = x_im[xip];
        x_re[xi] = x_re_tmp_xi + (u_re *  x_re_tmp_xip - u_im *  x_im_tmp_xip);
        x_re[xip] = x_re_tmp_xi - (u_re *x_re_tmp_xip - u_im * x_im_tmp_xip);
        x_im[xi] = x_im_tmp_xi + (u_re * x_im_tmp_xip + u_im * x_re_tmp_xip);
        x_im[xip] = x_im_tmp_xi  - (u_re * x_im_tmp_xip+ u_im * x_re_tmp_xip);
      }
    }
  }
}

Figure 8.3. C code for the n-point FFT algorithm.

information part of the CDFG will be handled by the sequencer of the MONTIUM.
In this paper we only consider acyclic parts of CDFGs. To illustrate our ap-
proach, we use an FFT algorithm. The Fourier transform algorithm transforms
a signal from the time domain to the frequency domain. For digital signal pro-
cessing, we are particularly interested in the discrete Fourier transform. The fast
Fourier transform (FFT) can be used to calculate a DFT efficiently. The source
C code of a n-point FFT algorithm is given in Figure 8.3 and Figure 8.4 shows
the CDFG generated automatically from a piece of 4-point FFT code after C
code translation, simplification and complete loop expansion. This example
will be used throughout this paper.

8.5 Clustering

In the clustering phase the CDFG is partitioned and mapped to an unbounded
number of fully connected ALUs, i.e., the inter-ALU communication is not yet
considered. A cluster corresponds to a possible configuration of an ALU data-
path, which is called one-ALU configuration. Each one-ALU configuration
has fixed input and output ports, fixed function blocks and fixed control signals.
A partition with one or more clusters that can not be mapped to our MONTIUM

ALU data-path is a failed partition. For this reason the procedure of clustering
should be combined with ALU data-path mapping. Goals of clustering are 1)
minimization of the number of ALUs required; 2) minimization of the number
of distinct ALU configurations; and 3) minimization of the length of the critical
path of the dataflow graph.



98

D0r D0iD2r D2i

++

-

-+

+ +

+

- +

W20r W20i D1r D1iD3r D3i

++

-

-+
+ +

+

- +M0r M1r M1i M0i M2r M3r M3i M2i

M0r M0iM2r M2i

++

-

-+

+ +

+

- +

W40r W40i M1r M1iM3r M3i

++

-

-+

+ +

+

- +

O0r O2r O2i O0i O1r O3r O3i O1i

W41r W41i

Figure 8.4. The generated CDFG of a 4-point FFT after complete loop unrolling and full
simplification.

The clustering phase is implemented by a graph-covering algorithm [Guo,
2003]. The procedure of clustering is the procedure of finding a cover for a
CDFG which is implemented in two steps:

Step A: Template Generation Problem
Given a CDFG, generate the complete set of nonisomorphic templates (that
satisfy certain properties, e.g., which can be executed on the ALU-architecture
in one clock cycle), and find all their corresponding matches (instances).

Step B: Template Selection Problem
Given a CDFG G and a set of (matches of ) templates, find an ‘optimal’ cover
of G.

See [Guo, 2003] for the details of the graph-covering algorithm.
Each selected match is a cluster that can be mapped onto one MONTIUM

ALU and can be executed in one clock-cycle [Rosien, 2003]. As an example
Figure 8.5 presents the produced cover for the 4-point FFT. The letters inside
the dark circles indicate the templates. The graph is completely covered by
three templates. This result is the same as our manual solution. It appears that
the same templates are chosen for a n-point FFT (n = 2d).

8.6 Scheduling

To facilitate the scheduling of clusters, all clusters get a level number. The
level numbers are assigned to clusters with the following restrictions:



Mapping Applications to a Coarse Grain Reconfigurable System 99

D0r D0iD2r D2i

++

-

-+

+ +

+

- +

W40r W40i D1r D1iD3r D3i

++

-

-+
+ +

+

- +M0r M1r M1i M0i M2r M3r M3i M2i

M0r M0iM2r M2i

++

-

-+

+ +

+

- +

M1r M1iM3r M3i

++

-

-+

+ +

+

- +

O0r O2r O2i O0i O1r O3r O3i O1i

W41r W41i

1 1

1 1

2

2 2

3 3

3 3

2
3

3 3

Figure 8.5. The selected cover for the CDFG in 8.4.

� For a cluster A that is dependent on a cluster B with level number i, cluster
A must get a level number > i if the two clusters cannot be connected by
the west-east connection.

� Clusters that can be executed in parallel may have equal level numbers.

� Clusters that depend only on in-ports have level number one.

The objective of the clustering phase is to minimize the number of different
configurations for separate ALUs, i.e. to minimize the number of different one-
ALU configurations. The configurations for all five ALUs of one clock cycle
form a 5-ALU configuration. Since our MONTIUM tile is a very long instruction
word (VLIW) processor, the number of distinct 5-ALU configurations should
be minimized as well. At the same time, the maximum amount of parallelism is
preferable within the restrictions of the target architecture. In our architecture,
at most 5 clusters can be on the same level.

If there are more than 5 clusters at some level, one or more clusters should
be moved one level down. Sometimes one or more extra clock cycles have to
be inserted. Take Figure 8.5 as an example, where, in level one, the clusters
of type 1 and type 2 are dependent on clusters of type 3. However, by using
the east-west connection, clusters of type 1/2 and type 3 can be executed on the
same level. Because there are too many clusters in level 1 and level 2 of Figure
8.5, we have to split them. Figure 8.6(a) shows a possible scheduling scheme
where not all five ALUs are used. This scheme consists of only one 5-ALU



100

clu0 clu1 clu2clu3

clu4 clu5 clu6clu7

clu8 clu9 clu10clu11

clu12 clu13 clu14clu15

1

1

1

1

3

2

2

2

2

3 3

3

3 3

3 3

ALU0 ALU1 ALU2 ALU3 ALU4

clu0 clu1 clu2clu3

clu4

clu5

clu6clu7

clu8 clu9 clu10clu11

clu12

clu13

clu14clu15

Level2

Level4

1

1

1

1

3

2

2

2

2

3 3 3

3 3 3

3

Level1

Level3

ALU0 ALU1 ALU2 ALU3 ALU4

(a) (b)

Figure 8.6. Schedule the ALUs of Figure 8.5.

configuration: C1 = { 1 23 3 3 }. As a result, with the scheme of 8.6(a), the
configuration of ALUs stays the same during the execution. The scheduling
scheme of Figure 8.6(b) consists of 4 levels as well, but it is not preferable
because it needs two distinct 5-ALU configurations: C2 = { 1 23 3 3 } and
C3 = { 1 2 3 33 }. Switching configurations adds to the energy and control
overhead.

8.7 Allocation

The main architectural issues of the MONTIUM that are relevant for the re-
source allocation phase are summarized as follows:

(1) The size of a memory is 512 words; (2) Each register bank includes 4
registers; (3) Only one word can be read from or written to a memory within
one clock cycle; (4) The crossbar has a limited number of buses (10); (5) The
execution time of the data-path is fixed (one clock cycle); (6) An ALU can only
use the data from its local registers or from the east connection as inputs.

After scheduling, each cluster is assigned an ALU and the relative execut-
ing order of clusters has been determined. In the allocation phase, the other
resources (busses, registers, memories, etc) are assigned, where locality of ref-
erence is exploited, which is important for performance and energy reasons.
The main challenge in this phase is the limitation of the size of register banks
and memories, the number of buses of the crossbar and the number of reading
and writing ports of memories and register banks. The decisions that should be
made during allocation phase are:

� Choose proper storage places (memories or registers) for each interme-
diate value;



Mapping Applications to a Coarse Grain Reconfigurable System 101

� Arrange the resources (crossbar, address generators, etc) such that the
outputs of the ALUs are stored in the right registers and memories;

� Arrange the resources such that the inputs of ALUs are in the proper
register for the next cluster that will execute on that ALU.

Storing an ALU result must be done in the clock cycle within which the
output is computed. When the outputs are not moved to registers or memories
immediately after generated by ALUs, they will be lost. For this reason, in each
clock cycle, storing outputs of the current clock cycle takes priority over using
the resources. Preparing an input should be done at least one clock cycle before
it is used. However, when it is prepared too early, the input will occupy the
register space for a too long time. A proper heuristic is starting to prepare an
input 4 clock cycles before the clock cycle it is actually used by the ALU. If
the inputs are not well prepared before the execution of an ALU, one or more
extra clock cycles need to be inserted to do so. However, this will decrease the
runtime of the algorithm.

When a value is moved from a memory to a register, a check should be done
whether it is necessary to keep the old copy in the memory or not. In most
cases, a memory location can be released after the datum is fed into an ALU.
An exception is when there is another cluster which shares the copy of the
datum and that cluster has not been executed.

We adopt a heuristic resource allocation method, whose pseudocode is listed
in Figure 8.7. The clusters in the scheduled graph are allocated level by level
(lines 0–2). Firstly, for each level, the ALUs are allocated (line 4). Secondly, the
outputs are stored through the crossbar (line 5). As said before, storing outputs
is given highest priority. The locality of reference principle is employed again
to choose a proper storage position (register or memory) for each output. The

//Input: Scheduled Clustered Graph G
//Output: The job of an FPFA tile for each clock cycle
0   function ResourseAllocation(G) {
1     for each level in G do  Allocate(level);
2   }
3   function Allocate(currentLevel) {
4      Allocate ALUs of the current clock cycle
5    for each output  do store it to a memory;
6     for each input of current level
7      do  try to move it to proper register at the clock cycle which is four steps
8              before; If failed,  do it three steps before; then two steps before;  one
9              step before.
10   if  some inputs are not moved successfully
11   then insert one or more clock cycles before the current one to load inputs
12 }

Figure 8.7. Pseudocode of the heuristic allocation algorithm.



102

Table 8.1. The resource allocation result for the 4-point FFT CDFG

Step Actions

1 Load inputs for clusters of level 1 in Figure 8.6.
2 Clu0, Clu1, Clu2 and Clu3 are executed; Save outputs of step 2; Load inputs for

clusters of level 2.
3 Clu4, Clu5, Clu6 and Clu7 are executed; Save outputs of step 3; Load inputs for

clusters of level 3.
4 Clu8, Clu9, Clu10 and Clu11 are executed; Save outputs of step 4; Load inputs for

clusters of level 4.
5 Clu12, Clu13, Clu14 and Clu15 are executed; Save outputs of step 5.

unused resources (busses, registers, memories) of previous steps are used to load
the missing inputs (lines 6–9) for the current step. Finally, extra clock cycles
might be inserted if some inputs could not be put in place by the preceding steps
(lines 10–11).

The resource allocation result for the 4-point FFT CDFG is listed in Table
8.1. Before the execution of Clu0, Clu1, Clu2 and Clu3, an extra step (step 1) is
needed to load their inputs to proper local registers. In all other steps, besides
saving the result of current step, the resources are sufficient to loading the
inputs for the next step, so no extra steps are needed. The 4-point FFT can
be executed within 5 steps by one MONTIUM tile. Note that when a previous
algorithm already left the input data in the right registers, step 1 is not needed
and consequently the algorithm can be executed in 4 clock cycles.

8.8 Conclusion

In this paper we presented a method to map a process written in a high level
language, such as C, to one MONTIUM tile. The mapping procedure is divided
into four steps: translating the source code to a CDFG, clustering, scheduling
and resource allocation. High performance and low power consumption are
achieved by exploiting maximum parallelism and locality of reference respec-
tively. In conclusion, using this mapping scheme the flexibility and efficiency
of the MONTIUM architecture are exploited.

8.9 Related work

High level compilation for reconfigurable architectures has been the focus of
many researchers, see [Callahan, 2000]. Most systems use the SUIF compiler
of Stanford [http://suif.stanford.edu].



Mapping Applications to a Coarse Grain Reconfigurable System 103

The procedure of mapping a task graph to a MONTIUM tile has NP complex-
ity just like the task scheduling problem on multiprocessors systems [Rewini,
1994]. [Kim, 1988] considered linear clustering which is an important special
case of clustering. [Sarkar, 1989] presents a clustering algorithm based on a
scheduling algorithm on unbounded number of processors. In [Yang, 1994] a
fast and accurate heuristic algorithm was proposed, the Dominant Sequence
Clustering. The ALUs within our MONTIUM are interconnected more tightly
than multiprocessors. This difference prevents us from using their solution di-
rectly.

To simplify the problem, we use a four-phased decomposition algorithm
based on the two-phased decomposition of multiprocessor scheduling intro-
duced by [Sarkar, 1989].

Acknowledgments

This research is conducted within the Chameleon project (TES.5004) and
Gecko project (612.064.103) supported by the PROGram for Research on Em-
bedded Systems & Software (PROGRESS) of the Dutch organization for Sci-
entific Research NWO, the Dutch Ministry of Economic Affairs and the tech-
nology foundation STW.

References

T.J. Callahan, J.R. Hauser, and J. Wawryzynek, “The Garp Architecture and C compiler” in IEEE Computer,
33(4), April 2000.

Yuanqing Guo, Gerard Smit, Paul Heysters, Hajo Broersma, “A Graph Covering Algorithm for a Coarse
Grain Reconfigurable System”, 2003 ACM Sigplan Conference on Languages, Compilers, and Tools for
Embedded Systems(LCTES’03), California, USA, June 2003, pp. 199–208.

S.J. Kim and J.C. Browne, A General Approach to Mapping of parallel Computation upon Multiprocessor
Architectures, International Conference on Parallel Processing, vol 3, 1988, pp. 1–8.

Hesham EL-Rewini, Theodore Gyle Lewis, Hesham H. Ali, Task scheduling in parallel and distributed
systems, PTR Prentice Hall, 1994.

Michel A.J. Rosien, Yuanqing Guo, Gerard J.M. Smit, Thijs Krol, “Mapping Applications to an FPFA Tile”,
Proc. of Date 03, Munich, March, 2003.

Vivek Sarkar. Clustering and Scheduling Parallel Programs for Multiprocessors. Research Monographs in
Parallel and Distributed Computing. MIT Press, Cambridge, Massachusetts, 1989.

Gerard J.M. Smit, Paul J.M. Havinga, Lodewijk T. Smit, Paul M. Heysters, Michel A.J. Rosien, “Dynamic
Reconfiguration in Mobile Systems”, Proc. of FPL2002, Montpellier France, pp. 171–181, September
2002.

SUIF Compiler system, http://suif.stanford.edu.
Tao Yang; Apostolos Gerasoulis, “DSC: scheduling parallel tasks on an unbounded number of processors”,

IEEE Transactions on Parallel and Distributed Systems, Volume:5 Issue:9, Sept. 1994 Page(s): 951–967.




