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The Lambda Calculus is a formal system, originally intended as a tool in the foun-
dation of mathematics, but mainly used to study the concepts of algorithm and
effective computability. Recently, the Lambda Calculus and related systems ac-
quire attention from Computer Science for another reason too: several important
programming language concepts can be explained elegantly and can be studied
successfully in the framework of the Lambda Calculi. We show this mainly by
means of examples. We address ourselves to interested computer scientists who
have no prior knowledge of the Lambda Calculus. The concepts discussed in-
clude: parameterization, definitions, recursion, elementary and composite data
types, typing, abstract types, control of visibility and life-time, and modules.

1. Introduction

The Lambda Calculus is a completely formally defined system, consisting of expressions (for
functions or rather algorithms) and rules that prescribe how to evaluate the expressions. It
has been devised in the thirties by Alonzo Church to study the concept of function (as a
recipe) and to use it in the foundation of mathematics. This latter goal has not been achieved
(although recent versions of the Lambda Calculus come quite close to it, see Martin-Lof [16],
Coquand & Huet [6]); the former goal, the study of the concept of function, has led to
significant contributions to the theory of effective computability.

Recently, the Lambda Calculus and related systems, together called Lambda Calculi,
have aroused much interest from computer science because several important programming
language concepts are present — or can be expressed faithfully — in them in the most
pure form and without restrictions that are sometimes imposed in commercial programming
languages. Expressing a programming language concept in the Lambda Calculus has the
following benefits:

e It may shed some light upon the concept and thus give some insight.

e [t may answer fundamental questions about the concept via theorems already available
in the Lambda Calculus. And there are quite a lot of them.
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e It proves that the concept does not add something essentially new to the language.
In particular it guarantees that there can not be nasty interferences with other such
concepts. (It has always been a problem in programming language design to combine
concepts that are useful in isolation but have unexpected and undesired interferences
when taken together.)

Some programming language concepts cannot be expressed in the Lambda Calculus. In
view of the expressive power of the Lambda Calculus one should first become suspicious of
such a concept. Secondly, one may try to extend or adapt the Lambda Calculus in such a way
that the concept is expressible. The techniques and tools developed for the Lambda Calculus
may then prove useful to study the extension. Examples of such concepts are assignment and
exception handling.

In this paper our aim is to show the significance of the Lambda Calculus approach to
“Programming Language Concepts”, and to raise interest in the Lambda Calculi. We address
ourselves to (experienced) programmers; no knowledge of the Lambda Calculus is assumed.
To this end we keep the formalism to a bare minimum and use computer science terms and
notations as much as possible. We discuss a variety of programming language concepts,
such as parameterization, definition, recursion, elementary and composite data types, typing,
abstract types, control of visibility and life-time, and modules. All this is preceded by a brief
exposition of the Lambda Calculus and its role as an area of research in itself.

The importance of the Lambda Calculus for the design of programming languages has
already been recognized in the sixties by Landin [12, 13, 14]. Algol 68’s orthogonality is very
similar to the simplicity of the Lambda Calculus. Reynolds [26] explains the essence of Algol
as follows:

“Algol is obtained from the simple imperative language by imposing a procedure
mechanism based on a fully typed, call-by-name lambda calculus.”

2. The Lambda Calculus

We describe the Lambda Calculus as a mini programming language in a notation and a
terminology that is conventional in computer science. (Thus the title of this section might
have read: “Lambda Calculus Concepts — the programming language approach”). Some
topics of past and current research are mentioned.

Expressions. We assume that some set of identifiers is available, and we let z denote an
arbitrary identifier. For expressions there are three syntactic formation rules:

e = =z identifier
e == (fnz ee) function expression
e == e(e) function call
We let e, ef, ea, eb,... denote arbitrary expressions; (f is mnemonic for function, a for ar-

gument and b for body). Fully capitalized WORDS will abbreviate specific expressions. The
sign = stands for syntactic equality.



Notes

2.1. In an expression (fnz e eb), x is called its parameter, eb its body; the parameter is a
local name, so that renaming of the parameter and all its occurrences in the body is allowed
and is considered not to change the expression. We thus identify (fnz e z) and (fny e y),
both denoting the identity function as we shall see below.

2.2. We leave out parentheses if no confusion can result; this is often the case with the
outermost parentheses of a function expression under the convention that the expression
following the dot e should be taken as large as possible.

2.3. An expression fnz e eb is an anonymous function. In contrast to conventional languages,
the concepts of function and of naming are separated here syntactically. Naming is discussed
in Section 3.1.

2.4. Church originally wrote z~e for fnz e e, but for typographical reasons changed this
to Az e and later to Az e. This is still the standard notation and clearly explains the part
‘Lambda’ in the name.

2.5. As an example, consider the expression fnz e f(f(z)) which we shall call TWICEj:
called with argument zy this function will return f(f(zp)), i.e., the result of calling f twice.
The function fn f ¢ TWICE; will return for each argument function f the function that calls
f twice. So both the argument and the result of a function may be functions themselves.
Actually, each expression denotes a function.

We shall now formally define the semantics of expressions analogously to the way in
primary school children are taught to evaluate fractions like (5 x 8 +8)/(10 x 8): they are
given some simplification rules that may be applied in any order.

Evaluation. An expression e evaluates to an expression e’, notation e = ¢/, if €’ is obtained
from e by repeatedly (zero or more times) applying the following evaluation rule:

replace a part  (fnz e eb)(ea) by [ea/z]eb.

Here, and in the sequel, [ea/z]eb denotes the result of substituting ea for each occurrence of
z in eb (taking care to avoid clash of names by renaming local identifiers where appropriate).

Notes
2.6. Substitution is a syntactic manipulation that is tedious to define formally. Let it suffice
here to say that [ea/f] f(f(fnz e )) equals ea(ea(fnz o z)), and that

where z’ is a new identifier distinct from z.

2.7. As an example we have:
(fnf o TWICEf)(sin)(zero)
- TWICEs;, (zero) ie., (fnz e sin(sin(z)))(zero)
sin(sin(zero))

and this cannot be evaluated further at this point.



2.8. In Algol 60 jargon [23] the evaluation rule is the body replacement rule: the effect of
a function call is explained by replacing it by the function body with substitution of the
argument for the parameter. In the Lambda Calculus the rule is called the (-rule, and
evaluation is called reduction.

This seemingly simple mini programming language gives rise to a large number of thorough
questions that in turn have led to substantial research efforts and a lot of results. We mention
but a few.

1. Do there exist expressions whose evaluation may not terminate? Answer: yes there are,
for we shall see that arbitrary recursive definitions are expressible.

2. Is the evaluation strategy (the choice what part to evaluate next) of any importance?
Answer: different strategies cannot yield different final outcomes, but one may terminate
in cases where the other does not. Also the number of evaluation steps to reach the
final outcome, if any, depends on the strategy.

3. Is it possible to express numbers and to do arithmetic in the Lambda Calculus? Answer:
yes, see Section 3.4.

4. Clearly, function expressions denote functions in the sense of recipes of how to obtain
the result when given an argument. Is it possible to interpret expressions as functions in
the sense of a set of (argument, result)-pairs, such a set itself being a possible argument
or result? Answer: this has been a long standing problem. D. Scott formulated the first
such models in 1969; a lot of others have been found since.

5. When may or must expressions be called semantically equivalent? (Of course we want
semantic equivalence to satisfy the usual laws of equality and to be preserved under
evaluation.) If two expressions may both evaluate to a common intermediate or final
outcome, they must be called equivalent. However, it is possible that they do so only “in
the limit”, after an infinite number of evaluation steps; in this case they may be called
equivalent. And what about calling expressions equivalent if they have no outcome, not
even in the limit?

6. What are the consequences of the restriction that in fnxz e eb parameter z must occur
at least once in the body eb? And of the extra evaluation rule

replace fnz e ef(z) by ef
(because both denote the same function intuitively)?

More information about the Lambda Calculus may be obtained from [1, 11, 29].

3. Basic Programming Language Concepts

In this section we express various basic programming language concepts in the Lambda Cal-
culus. Justified by this, we also give specific syntactic forms for each concept together with
derived evaluation rules.



3.1. Definitions. We extend the syntactic formation rules for expressions by:
e == (dfz =eee) definition expression

Within (df z = ea o eb) the part z = ea is a local definition that extends over the body eb.
We consider this new expression as an abbreviation for (fnx e eb)(ea), so that the Lambda
Calculus is not extended in an essential way, and the evaluation rule has to read:

replace a part  (df z = ea ® eb) by [ea/z]eb.

Notes
3.1.1. The definition z = ea in df z = ea e eb is nonrecursive. This is a consequence of our
choice to let it abbreviate (fnz e eb)(ea).

3.1.2. By construction there is a close correspodence, or rather identity, between defitions
df x = ea e eb and parameterizations as in (fnx e eb)(ea). This can be taken as a guiding
principle in the design of programming languages:

for each kind of parameter (think of value, in, out, ref and name) there exists a
semantically identical definition, and conversely.

The consequences of adhering to this Principle of Correspondence have been worked out by
Tennent [30]. Pascal strongly violates it.

3.1.3. There is another principle involved here, the Principle of Naming. In df £ = ea o ¢eb
identifier x names ea locally in eb, and both ea, eb and z are arbitrary. This principle is
violated in Pascal, because e.g. statements cannot be named and naming can be done only
locally to procedure and function bodies.

3.1.4. We have explained the local name introduction of df x = ea e eb in terms of the
fn -construct. Reynolds [26] makes this to a guiding principle for the design of programming
languages:

every local name introduction can be explained by the fn-construct.
We shall apply this Principle of Locality to the expression for recursion, below.

3.1.5. As an example, we now name the function TWICE:
df twice = (fnf e (fnxz o f(f(z)))) ® ...twice(sin)(zero)....

Here sin and zero are just identifiers for which a definition may be provided in the context;
(Principle of Naming).

3.2. Multiple Parameters and Definitions. Consider once again the
expression TWICE(fy)(zo), where TWICE = fnf e (fnx o f(f(z))). One may easily verify
that TWICE(fo)(z0) = (fnz e fo(fo(z)))(x0) = fo(fo(xo)). We might say that both f and
x are parameters, and both fy and zy are arguments. Thus multiple parameters are possible,
for which we design a special syntax:

e == (fnx,...,z,e¢) for distinct z, . .., 7,



These expressions are to abbreviate (fnxz; e (... (fnx, e ¢)...)) respectively ef(e1) ... (en),
so that the evaluation rule has to read:

replace  (fnzy,...,z, e e)(er,...,e,) by [er,...,en/m1,...,2]e.
Guided by the Principle of Correspondence we also design the corresponding definition form:

e = (dfx;=ep,....,2, =€, ®€) for distinct z, ..., T,

with evaluation rule:

replace dfzj =ej, ..., xy,=¢c,@¢e by [e,...,ey/m1,...,3,]e.

Notes
3.2.1. For example, we may now write TWICE'(fy, 29) where TWICE' = fnf,z e f(f(z)).
We can also write df f = fy, z =20 ® f(f(2)).

3.2.2. The industrious reader may verify that the multiple definitions and substitutions are
simultaneous rather than sequential: it turns out that the definition z; = e; extends only over
e and not over e; through en. The distinctness of x1,...,z, is necessary to formulate the
evaluation rule so simple (and to guarantee that the substitution is well defined).

3.2.3. Exercise. Let dfz; = e1; ...; x, = e, e e abbreviate the sequential definition
(dfx; = e; o (...(dfz, = e, ® €)...)). Now think about the corresponding “sequential
parameterization”.

3.3. Recursion. A recursive definition is a definition in which the defined name occurs
in the defining expression. A stupid evaluation strategy that first of all tries to eliminate
the recursively defined name will therefore certainly get into an infinite loop of evaluation
steps. However, sometimes (unfortunately not always) the recursively defined name occurs
in a subexpression (then- or else-branch in particular) whose evaluation is not needed to
reach the final outcome. A moderately clever evaluation strategy will not attempt to evaluate
such needless occurrences. Thus the concept of recursion is fully captured by an expression
in which designated occurrences evaluate —if time has come— to the expression itself. We
“extend” (not really, see Note 3.3.4 below) the Lambda Calculus by the following grammar
and evaluation rules:

e = (reczee) recursion expression

replace (recxz e e) by [(recz ee)/z]e

Notes

3.3.1. Within (rec z e ¢) the occurrences of z in e are the points of recursion: such an occur-
rence evaluates to the original recursive expression. (But if such an occurrence is contained
in a then- or else-branch, it may happen that after one expansion it is not any more subject
to the above evaluation rule.)



3.3.2. The concepts of recursion and of definition have been separated syntactically. We may
combine them by abbreviating (df z = (recz e ea) o eb) by (df recx = ea e eb): the
occurrences of x in eb as well as in ea will evaluate —if time has come— to the recursive
expression (recz e ea).

3.3.3. Assuming that if then else and arithmetic are possible, we may write the definition of
the factorial function as follows:
df rec fac = (fnn e if n = 0then1elsen x fac(n — 1))
ie., df fac = (recfac e (fnn e if n =0then1elsen x fac(n —1)))
= df fac = (recf o (fnn e if n =0thenlelsen x f(n —1)))

The part (recf e ... f(n — 1)) denotes the factorial function without giving it a name that
can be used elsewhere.

3.3.4. In (recz e e) the identifier z is a local name whose scope extends over e. Following
the Principle of Locality we explain that local naming in terms of the fn-construct: provided
that REC satisfies the property

REC (fnz e ¢) evaluates to [REC (fnxz e e)/z]e

we may consider (recz e e) to abbreviate REC (fnz e €). We could now add a constant
‘REC” to the Lambda Calculus with the above evaluation rule, but it turns out (space limi-
tations prohibit to give the motivation) that we may take:

REC = fnf e Wi(W;) where Wy = fny e f(y(y))
as is easily verified.

3.3.5. Notice that recursion (as in the rec-expression), circularity (as in the df rec-definition),
self-activation (as in the evaluation rule for rec) and self-application (as in Wy: y is applied
to itself) are intimately related.

3.3.6. Mutual recursion can also be expressed, but we shall not do so here.

3.4. Truth Values and Enumerated Types. We shall choose two expressions TRUE
and FALSE and some function expressions AND, OR, NOT and IF such that the laws that
we expect to hold, are indeed true of these expressions. The observable behaviour of TRUE
and FALSFE is in their being used as the condition part of an IF call: we wish to have

IF(TRUE,el,eQ) = e,
IF(FALSE,el,EQ) = é9.

Hence we let TRUE and FALSE be selector functions:

TRUE = fnz,yex
FALSE = fnz,yey

so that we may choose

IF = fb,z,yeb(z,y).



The evaluation property for IF is true indeed. Now functions AND, OR and NOT are easy
to define:

AND = fnbl, b2 e IF(bl,b2, FALSE),
OR fn b1, b2 ¢ IF (b1, TRUE, b2),
NOT = fob e IF(b, FALSE, TRUE).

Notes

3.4.1. Plugging in the expression IF into the expression NOT and performing some evaluation
steps, we see that we also may set NOT = fnb e b(FALSE, TRUE). Similarly for AND and
OR.

3.4.2. Suppose PROG is a program (an expression) in which identifiers True, False, If, And,
Or and Not occur and have been assumed to satisfy the usual Boolean laws. We may then
form

df True = TRUE, False = FALSE, ..., Not = NOT e PROG.

In other words, the definitions True = TRUE, ..., Not = NOT can be considered to belong
to the standard environment and the application programmer need not know the particular
representation choices made for truth values. We shall see in Section 4 how to hide the
representation choices so that the application programmer is not allowed to write True(ey, e2)
(but has to use the If-function explicitly).

3.4.3. Rather than providing a standard environment we can also design specific syntactic
expressions for truth values, thus:

e u= true | false | (eande) | (eore) | (note)

e == ifethencelseec
together with the derived evaluation rules:

replace  (true and e¢) by e
replace (false and e¢) by e
replace if true then e else e by e

3.4.4. Elements of a finite enumeration type can be represented analogously: selector function
fnx,...,z, e z; represents the ith element, and elt(ey, ..., e,) is the implementation of

case elt in 1: ey, ..., n: e, endcase.

3.4.5. The above representation has been chosen in the assumption that the evaluation strat-
egy does not evaluate the argument expressions before the body replacement rule is applied.
Otherwise both the then- and the else-branch are always evaluated, and that is undesirable.
We can, however, adapt the representation to that strategy, but we shall not discuss it here.



3.5. Arithmetic: (Natural) Numbers. Throughout the paper we say ‘number’ instead
of ‘natural number’ (0,1,2,...). As motivated below in Note 3.5.3 we choose to represent
number n by an n-fold repeated call of a function f on an initial argument a, where both f
and a are parameters:

fnf,aef(...(f(f(a))...) (n times an f)

In particular we set

ZERO = fnf,aea
ONE = fnf,aef(a)
TWO = fnf,aef(f(a)).

The successor function SUCC may be implemented by

SUCC = fne “ntl-fold iteration”
fnne (Inf, ae f(“n-fold iteration of f on a”))
fane (fnf, aef(n(f a)))

For example, one easily verifies that

SUCC(TWO) = fnf,ae f(TWO(f,a)) = ff,ae f(f(f(a)))
which represents 3. The test for equality is also easy:

EQO = fnn e n(F, TRUE) where ' = fnz e FALSE
so that

EQO(ZERO) = ZERO(F, TRUE) = TRUE,
EQO(ONE) = ONE(F,TRUE) = F(TRUE) = FALSE.

The construction of a predecessor function is more complicated. The idea is to reconstruct
the number itself, n say, and simultaneously “remember” at each step in the reconstruction
the outcome of the previous step. So, each intermediate result consists of a pair, in which one
component is a number (initially 0 and at most n) and the other component its predecessor.
We use here pair-expressions of the form (ej, e2) and suffixes .1 and .2 for selection of the first
and second component of a pair; in Section 3.6 we show how to express these in the Lambda
Calculus. Now we set

PRED = fan e FINISH(n(F,A))

where

A = (ZERO,DONTCARE)
F = fnpair ¢ (SUCC (pair.1), pair.2)
FINISH = fnpair e pair.2



Notes

3.5.1. The choice for DONTCARE in PRED determines the outcome of PRED(ZERO). If
no outcome is wanted, because within the set of numbers zero has no predecessor, we may
take a nonterminating expression like (recz e ).

3.5.2. One way to define addition is:
df rec add = fam,n e IF(EQ0(m),n, add(PRED(m), SUCC(n)))

However, use of recursion expressions is not necessary:
df add = fnm,n e m(SUCC,n).

One can prove that all effectively computable total functions on numbers can be defined
solely in terms of the number zero, the successor function and so-called primitive recursions
(of higher order). For our representation it turns out that we can express primitive recursion
of f and a as: fnn e n(f,a). Solet NREC =fnf,a e (fan e n(f,a)). Then knowledge of
the representation of numbers is not needed any more, and in particular we can replace all
expressions ‘n(ef, ea)’ above by ‘NREC (ef , ea)(n)’.

3.5.3. The representation choice might be motivated thus: we have represented the data
structure “number” by its most characteristic control structure, namely the use of it to con-
trol a repetition (or: repeated call; compare varz := a; fori := ltondoz := f(z) with
f(-.(f(f(a)))...)). A better motivation reads as follows. Numbers form an inductively de-
finable data type: Zero is a “number” and if n is a “number” then so is Succ(n). If we are
able to replace Zero and Succ in an arbitrary “number” Succ(... (Succ(Succ(Zero)))...) by
any a and f, then we are effectively able to construct all functions on “numbers” that are
definable by (structural) induction. Thus Succ(. . .(Succ(Succ(Zero)))...) is represented by

fn Suce, Zero e Succ(. .. (Succ(Succ(Zero)))...) = ff,ae f(...(f(f(a)))...),
and primitive recursion has been built in.

3.5.4. One might object to the above representation of numbers: it can hardly be called a
faithful modeling of commercial programming languages, because the representation length,
and therefore storage space too, for a number 7 is linear in n and also the number of evaluation
steps to compute the predecessor of m, or the sum of m and n, is linear in m. We can
however improve upon this drastically. Observe that the above representation is close to
the unary notation of numbers: number 1...11 (in unary notation) has been represented by
fnf,a e f(...(f(f(a))...). Now we represent e.g. number 1001101 (in binary notation) by
fnf,g,aef(g(g(f(f(g(f(a))))))); an f for 1 and a g for 0. The representation length grows
only logarithmically. The successor function may be defined thus:

SUCC" = fanefnf, g, ae FINISH(n(F,G,(CARRY ,a)))

where
CARRY = fnz,yez (= TRUE)
NOCARRY = foz,yey (= FALSE)
F = fn (carry, result) o carry(g, f)(result)
G = fn (carry, result) o carry(f, g)(result)
FINISH = fn(carry, result) o carry(f(result), result)

10



In a similar way addition can be defined. It turns out that evaluation of both SUCC(n)
and PRED(n) takes O(log n) steps, and ADD(m,n) takes O(log m + log n) steps. No
programming language can improve upon this whenever it allows unbounded numbers.

3.5.5. Similar remarks as in Notes 3.4.2-3 apply here as well. In view of the complicated
representation of numbers, and implementation of the operations, this is very welcome.

3.6. Composite Data Types: Records and Lists. We can be very brief with respect
to lists. Note 3.5.3 provides the clue to choose the representation: the list

Cons (z1, Cons (z2, ...Cons (z,, Nil)...))
is represented by

fn Cons, Nil @ Cons(z;, Cons(xg, ... Cons(xy,, Nil)...)) =
fIlf, a .f(xlvf(gaa .. f(xna Cl) o ))

We leave it to the reader to define functions NIL, CONS and LREC (cf. ZERO, SUCC
and NREC of Section 3.5), and to build HEAD, TAIL, EQNIL and so on in terms of them.
(Typed versions will be given in Section 5.3).

In the next section we discuss typing and shall require that lists be homogeneous: all ele-
ments of a list must belong to the same data type. So we need a kind of record-construct for
inhomogeneous aggregates. For simplicity we discuss pairs (2-tuples) only; the generalization
to n-tuples is straightforward. The tuple Pair(z,y) is represented by fn Pair e Pair(z,y),
ie. fnf o f(z,y). The constituting elements can be retrieved by applying the pair to the
appropriate selector functions. Thus we let

(e1,e9) = fnfef(er, er)
e.l = e(fnz,yex)
e.2 = e(fnz,yey)

or we introduce the left-hand sides as new syntactic forms, together with the appropriate,
derived, evaluation rules:

e == (e,e) | el ] e2
replace (e, e2).1 by e
replace (e1,€2).2 by eo.

3.7. Concluding Remarks.

3.7.1. We have shown how data structures may be represented by functions. Reynolds [25]
and Meertens [17] show the usefulness of such representations in practice. (However, they
term the technique procedural data abstraction rather than procedural (=~ functional) data
representation. )

3.7.2. In a similar way arbitrary Turing machines and similar devices can be represented by
functions, see Fokkinga [7] and Langmaack [15]. It turns out that the functions do accept
functions as parameters, but do not yield functions as result: the representation can therefore
be carried out in conventional languages (if recursive types are available, as in Algol 68). From
this, one immediately concludes several fundamental limitations of compile-time checks.

11



4. Typing

We consider typing a well-formedness check where attributes, called types, are assigned to
subexpressions and the type of a subexpression has to satisfy specific requirements in relation
to the types of its direct constituent parts. An expression that passes the check is said to be
typed or typable.

The assignment of types to expressions may be facilitated by an explicitly written type
at each introduction of a local name; but this is not necessary. In the former case we speak
of explicit typing, in the latter case of implicit typing or type deduction. An expression that
can be assigned only one type is called monomorphic. An expression is called polymorphic
if it is assigned many related types, a type scheme so to speak. In particular, a function
expression is polymorphic if it may be applied to arguments of various but schematically the
same types. We call a function generic if it may be applied to a type (which may determine the
types of the following arguments and final result). (Another term for genericity is parametric
polymorphism.) Examples will be given in the sequel. The type of a function whose arguments
must have type nat and whose result has type bool, is written (nat — bool).

In this section we discuss the Monomorphic Typing M, the Polymorphic Typing P and the
Generic Typing G. These are extensively studied by Hindley & Seldin [11]. Other overviews
on typing are given by Reynolds [28] and Cardelli & Wegner [4]; they cover more features
than we do.

4.1. The Usefulness of Typing. Typing proves its usefulness if the typable expressions
satisfy a useful semantic property (chosen by the designer of the typing). We list here some
properties that may or may not be aimed at in the design of a typing.

1. Set theoretic interpretation. For the class of typable expressions a simple set-theoretic
interpretation is possible, in which expressions of type (nat — bool) are interpreted as
mappings from the set of numbers to the set of truth values, rather than recipes that prescribe
how to obtain the outcome when given an argument. (This property precludes self-application
and therefore also the unrestricted use of the rec-expression.)

2. Termination. The evaluation of typable expressions terminates. One might argue that
non-terminating evaluations are useless, but apart from that, the existence of nonterminating
expressions invalidates conventional mathematical laws such as

0xe=0 for any expression e of type nat.
(This property too precludes general recursion.)

3. Implementation ease. For typable expressions the size of the storage space for the values
that appear during the evaluation, is compile-time computable. This property is aimed at
by the Pascal typing; consequently the programmer is forced to specify the size of arrays by
constants. The property eases the task of the implementor, not of the programmer.

4. Representation independence. The outcome of typable expressions does not depend on
the representation chosen for internally used data like truth values, numbers and other data
types. This property allows the implementor to switch freely from the unary representation
to the binary representation; cf. Section 3.5 and Note 3.5.4. Moreover, the implementor may
even implement arithmetic in hardware: the outcome of typable expressions will not change.

12



This property, as well as property 1 precludes the use of nat-expressions as functions even if
we know they are; cf. Section 3.5.

5. Error prevention. For typable expressions many errors of the kind “Ah, of course, I see,
this is a misprint” and “Ah, of course, this is an oversight” are impossible. This is a rather
fuzzy property and much of it is implied by properties 1 and 4.

7

4.2. The Monomorphic Typing M. We describe here a simple typing M that gives the
essence of Pascal-like typing. We concentrate on the Lambda Calculus and shall derive the
M-typing requirements for the derived expressions.

M-types. The attributes assigned to expressions, and called M-types, are syntactic forms
defined by the following grammar:

t:=(t—t) | nat | bool | char | ....

We let t, ta, tb denote arbitrary types.

M-typable expressions. We write the type assigned to a (sub)expression as a superscript.
It is required that within (fnz e e) all occurrences of z in e have the same type; this type
is written at the parameter position: (fnz’ e ¢). Now consider the following infinite set of
grammar rules, one for each choice of t, ta, and tb:

t t

e = x
eta—»tb - (fnl‘ta ° etb)
etb - eta—ntb(eta)

The grammar generates, by definition, the M-typed expressions. Alternatively we may con-
sider it as a formalization of the requirements for a M-type assignment:

e if 2 has been assigned type ta and e type tb, then (fnz e e) may be assigned type
(ta — tb);

e if ef has been assigned type ta — tb and ea type ta, then ef(ea) may be assigned type
th;

o if identifier z has been assigned type ¢, then considered as a subexpression it may be
assigned type t.

For example, for any ¢ the expression
(fazt o zt) 1=t (fn 5t o gt)t—t)tt

where tt = t — t, is M-typed. But
(fnid e id(id))(fnx e )

is not M-typable although it evaluates in one step to the preceding expression.
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Notes
4.2.1. One may succeed easily in deriving the M-typing requirements for derived expressions
like fnz,y @ e and df z = ea o eb. Extend the grammar for types by

t = (t1,...,t, — t)
where t,...,t, — t is thought of as an abbreviation of t; — (f2 — ...(t, — t)...). Then
the grammar for typed expressions may be extended by

elmtn=t (fn xtl ..,xﬁ” ° et)

ol n= bt (gh et

el = (dfz' =" o et)

4.2.2. We may decide to assign ZERO, ONE, TWO... type nat, and SUCC type nat —
nat; and so on:

enat = ZERO | ONE | TWO | ...
ehat—nat = SUCC

ePoel = TRUE | FALSE
ebool,bool—>b001 — AND ‘ OR

ebool,t,tﬂt = JF.

A justification for this decision is given in Section 5.2. Notice that different occurrences of
IF may be assigned different types; IF' is a polymorphic expression. However, in

dfIf=IFe... . If....0f....If ....

there is only one occurrence of IF', so that all occurrences of If are assigned the same type
bool, T, T — T for one specific type 7. In this way the programmer is forced to spell out
IF each time again. One solution to this problem is given in Section 4.3: polymorphic typing.
Another solution is to extend the grammar by:

el = if ePolthen el else e'.

This is justified by considering if e then e; else e as an abbreviation of IF(e,eq,e3). Yet
another solution is given in Section 4.4: generic typing.

4.2.3. We may treat the other polymorphic expressions similarly to IF': build the polymor-
phism into the derived syntax and typing. For example for pairs:

t n= (L, t) type for pairs
eltot2) = (e", e®2)

el n= el

et n= el 2

and analogously for n-tuples, lists, arrays and so on.

4.2.4. The M-typing as described so far validates properties 1, 2, 4 and 5 of Section 4.1.
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4.2.5. Expression REC' is not M-typable. So the following typing rule properly extends the
set of M-typable expressions:
e = (recz'ecel)
or equivalently; cf. Note 4.2.1.
et=t=t .= REC.
Now property 2 (Termination) is invalidated, the other three are preserved.

4.2.6. One may extend the monomorphic typing by allowing recursive types, as in Algol 68.
It turns out that every expression of the pure Lambda Calculus is typable, with the recursive
type fun = fun — fun. Nevertheless not all expressions are typable, and properties 4 and 5
remain valid, if we require that ZERO is assigned type nat only, and SUCC type nat — nat
and so on. We shall not discuss recursive types any further.

4.3. Polymorphic Typing P. The monomorphic typing M has a flagrant deficiency: there
are only monomorphic types and consequently one is forced to duplicate expressions solely for
the purpose of letting different occurrences be assigned different types. For example consider

df id = (fnz e )
o ... id(zero™) ... id(trueP°®) ... id(id) ...
df compose = (fnf, g e (fnz e f(g(x))))

.. .. COTnpOS@(’nOtbOOl_}bOOl, notbool—»bool) o
. compose(sqridt—nat opgchar—naty -
df sort = sorting function
e ... sort(number list) ... sort(character list) ...

These expressions are not M-typable, but after substituting the defining expressions for the
defined identifiers (or multiplicating the definitions, one for each use) they are M-typable. The
solution to this deficiency is simple: polymorphism. It has been introduced into computer
science by Milner [20], but was already known in the Lambda Calculus as Principal Typing.

P-types. We let z range over identifiers. (One may stipulate that the identifiers denoted
by z are distinct from those denoted by z, but this is not necessary). The P-types are now
defined thus:

t == 2z | (t—t)| nat | bool | char | ....
The identifiers occurring in P-types shall play the role of place holders for which arbitrary

types may be substituted consistently. An P-type may therefore be considered as an “M-type
scheme”.

P-typable expressions. There is only one difference in the type assignment rules in com-
parison with those of the M-typing:

within df z = ea’ o eb the occurrences of z in eb may be assigned instantiations of t,
more precisely: P-types must be substituted for the identifiers in ¢ that have been used
in the typing of ea’ only (and not in its context); different occurrences of z may be
assigned different instantiations of ¢.

All the other rules for the M-typing are valid for the P-typing as well.
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Notes
4.3.1. The examples above are all P-typable. For instance:

df id = (fnz® e z*)2
... ddnatTmat (peppnat)
) idboolabool(truebool)

. i zd(b~>b)~>(b—>b)(,Ld(b~>b)) .

But unfortunately, (fnid e ... id(zero™@t) ... id(true®°°!)...)(fnz e 2) is not P-typable. This
also shows that the P-typing violates the Principle of Correspondence.

4.3.2. The polymorphic typing is used in modern functional languages, like Miranda [31, 32],
as well as in the modern imperative language ABC [18].

4.3.3. One obvious advantage of the P-typing over the more “powerful” G-typing of the next
subsection, is that types need not be written explicitly in the program text (although it is
permitted): the type-checker will deduce them anyway (and show or insert them on request).

4.3.4. The language can be enriched by further constructs for the definition of user defined
types. One particularly simple and elegant way has been built in in Miranda [31, 32]. We
discuss type definitions more fundamentally in the next subsection.

4.4. Generic Typing G. The P-typing, although quite successful for programming in the
small, is not very satisfactory for at least two reasons. First, as we have seen in Note 4.3.1
parameters can not be used polymorphically. Second, the facility of assigning nat to ZERO,
ONE, ... and nat — nat to SUCC is not generally available to the programmer. (Recall
that ZERO, ONE, ... SUCC are merely ordinary expressions.) The programmer does need
such a facility in order to get Representation Independence for his own devised data types.
The solution is to control the type assignment explicitly, by indicating for each parameter the
desired type and in addition allowing types to be parameters (“genericity”). The resulting
language is often called Second Order Lambda Calculus and was invented by J.-Y Girard
and, independently, Reynolds [24].

G-types. As before z ranges over identifiers. G-types are defined by the following grammar.
t u= 2z | (t—=1t)] (z:tp—1t).

The third form of type is called a generic type. Within (z : tp — t) identifier z is a local
name whose scope extends over t; of course systematic renaming is allowed. We let ¢, ta,
tb,...denote arbitrary types. (Type constants like nat and bool are no longer needed. We
shall see that the programmer can “define” them.)

G-Typable expressions. As for the M-typing we define:

t t

e =T
ela= = (fnz': ta e e?) Note the explicit type for z
etb - etaﬂtb(eta)
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Henceforth we shall omit a type superscript at a parameter, if it also occurs explicitly. We
add two new expressions:

Pt = (fnz:tpee’) generic function expression

eltallt .= 2=t (4g) generic instantiation/call

Deliberately, generic instantiation looks like a normal function call, but it is not: it is a new
kind of expression with a type as one of its direct constituents. Similarly for generic function
expression. Within (finz : tp e ¢) identifier z is a local name whose scope extends over e; z
may e.g. occur in the explicit types in e. For simple examples see the first note below; Section
5 contains further examples.

Evaluation. For the new expressions we have to define an evaluation rule. The rule is
evident:

replace (fnz:tp e e)(ta) by [ta/z]e.

Notes

4.4.1. For example, the generic identity function reads GID = fnz :tp e (fnz : 2z e z7)
and has type z : tp — (2 — z). The generic instantiation GID(nat) has type [nat/z](z — 2)
= nat — nat and evaluates to (fnz : nat e x"4)"at=nat 55 expected and desired. Similarly,
GID(bool) has type [bool/z](z — z) = bool — bool, and evaluates to the identity function for
bool-expressions.

2z

4.4.2. In Section 5 we shall introduce some syntactic sugar like we did before. Let it suffice
here that we may write the left-hand sides for the right-hand sides:

(z:tp,z:2 — 2) (z:tp— (z:2— 2))
(fnz:tp,x:2e2) (= GID') fnz:tpe(fnz:zex)(= GID)
GID'(nat, zero™™) GID(nat)(zero™)

and

(df z : tp = nat, v : z = zero™ e x) GID'(nat, zero™™).

4.4.3. The richness of the G-typable expressions is already perceptible from the possibility of
generically calling GID with its own type: GID(z : tp — (2 — z)) has type (z : tp — (z —
z)) — (z : tp — (2 — z)) and evaluates to the identity function fnz : (z:tp — (2 — 2)) e x.
This in turn may be applied to GID and then evaluates to GID again.

4.4.4. The following theorems have been proved for the class of G-typed expressions. For
(a)-(e) see [9] and for (f) see [27].

Different evaluation strategies cannot produce different outcomes.

Any evaluation of any expression terminates.

G-typability is preserved under evaluation.

The G-type of an expression is uniquely determined and compile-time computable.
The generic function expressions and instantiations are semantically insignificant.
That is, they can be eliminated compile-time from any expression (by compile-time
evaluation), provided, of course, that neither the expression nor the global identifiers
in it have a generic part (z : tp — ...) in their type. For example GID(nat) has type

S L T
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nat — nat; it evaluates compile-time to fn z : nat e x that contains no generic constructs
any more. GID itself does contain a generic construct that can not be eliminated, for
its type explicitly demands so.

f. A classical set-theoretic interpretation of expressions and types is not possible.

4.4.5. Tt is still a topic for research how much of the explicit types and generic functions and
instantiations can be left out of expressions, while still keeping G-typability decidable.

4.4.6. It is easy to extend the language with a recursive construct; this however invalidates
the Termination property (b) above.

4.4.7. A technical detail. Consider (fnz : tp @ ¢!)*®~! and assume that some global identi-
fier x with type ... z... occurs in it. There are now a global z and a local z involved in the
type assignment to e. To avoid problems one should either forbid such occurrences of x or
else require that [2'/z]e has type [2’/z]t for some brand-new identifier 2/, rather than that e
has type t).

5. Type Definitions, Abstract Types and Modules

Clearly a typing is not satisfactory if there is no facility for something like “user defined
types”, “abstract types” and “modules”. Pascal, Algol 68, Ada, Modula 2 and others all have
their own way to do so, and the result is an astonishing diversity of different constructs; (think
only of type definitions and the problem of choosing between occurrence equivalence, name
equivalence and structural equivalence). We have refrained from designing such facilities in an
ad-hoc way, because we get them for free, in a fundamental way, from the G-typing: according
to the Principle of Correspondence we may write a generic instantiation of a generic function
expression as a definition: a type definition. This is done in Section 5.1; Section 5.2 and 5.3
give some examples and Section 5.4 discusses modules. Throughout Section 5.1-3 we use the
G-typed Lambda Calculus.

5.1. User Defined Types. Like we did for the un-, M- and P-typed Lambda Calculus, we
introduce some special syntactic forms for special (frequently used) composite expressions.
The abbreviations for (normal) multiple parameters, arguments and definitions are straight-
forward; both with respect to the form of the expressions, as well as with respect to the typing
and evaluation rules. But generic types, functions and instantiations call for an abbreviation
too; in particular we write the left-hand sides, below, for the right-hand sides:

Zitp, b, .., by — 2'tp—>(t1—>(. Aty — 1))
fz:tp,x:b,..., 2, tp @€ z:tpe(fnz :t1e(...(nx,:t,0¢)...))
ef(t, €1,. .. en) €f( )( ) (en)
dfz:tp=t,zm:th=e,...;,xp:th=e,0e (Mz:tp, x:t,...,z,:t, ®e)(t,e1,...,¢€p)
Notice that in all these expressions the scope of z extends over ti,...,t, and e but not over
€1,...,e,. This is particularly true of the df-expression. Hence the derived typing rules have
to read

et tn =t (fnz:tp, z:ty,..., o el

elt/z]th N ¢ tp,tl, sta=th (¢ e [t/z]tl T[L/z]

elt/2]th n= (dfz:tp=t, 2 t1 = e{t/z]tl, B et/ o ')
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In words: if z is defined to be t and an expression e; outside the scope of z : tp is required
to have — formulated inside the scope of z — type t;, then e; must actually have [t/z]t;,
i.e. the required type t; in which t is read for z. Within the scope of a type definition z = ¢
identifier z is a type that is unrelated to t as far as type-checking is concerned. (Thus far all
our type-checking rules require exact matching, i.e. equality; there has not been introduced
any notion of type equivalence.)

Notes
5.1.1. Referring to the expressions discussed above, the collection

zitp,w by, ..., Ty Ty

constitutes the signature of an abstract data type, z being the name for the carrier. The
collection

t, e1,..., €y

constitutes the/an implementation; ¢ being the representation type, i.e. the type to represent
the “abstract z-values”, and ey,..., e, being the implementation of z; : t1,...,z, : t,. The
G-typed Lambda Calculus provides no way to express laws between the zy,...,z, that one
might wish to hold. See also Section 6.

5.1.2. One might introduce a new expression
df 2=t ee tostand for [t/z]e.

In this expression, z and ¢ may be used interchangeably within e: as is to be seen in the right-
hand side all z’s are replaced by . So here the definition z = t is completely transparent for
e. We shall not use this construct in the sequel.

5.2. Simple Abstract Types: nat. We have already seen how numbers may be rep-

resented by function expressions and that the definitions for zero, successor and primitive

recursion in principle suffice to define the other total functions on numbers. We shall now

adapt the expressions to the G-typing and provide suggestive names (identifiers) for them.
Remember, number n was represented by

tmf,aef(...(f(f(a))...).
This may be typed

(fnf:(t—t),a:te f(...(f(f(a))...) =ttt

for any type t. Therefore we make ¢ to an explicit parameter (called z), getting

fz:tp, f:(z—2),a:zef(...(f(f(a))...).
The type of these expressions is abbreviated NAT, so
NAT = (z:tp, (z — 2), z — 2).

Now we form, given a user program PROG:
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df nat:tp = NAT,
zero:nat = (fnz:tp, f: (2 — 2),a:2ea),
succ : nat — nat
=fan: NAT e fnz:tp, f:2— 2, a:zef(n(zf,a)),
nrec : (z:tp, (z — 2), z — (nat — 2))
=fnz:tp,f:2—2,a:z2e(fan: NAT e n(z,f,a))
e PROG

Notes
5.2.1. Notice that uses of number representations have to get an explicit type argument,
which determines (see NAT) the types of the subsequent arguments and the final result.

5.2.2. Within PROG the identifiers can only be used as prescribed by their type at the
left-hand sides of the definitions; other use within PROG is not G-typable. In particular,
although zero evaluates to a function, the “expression” zero (bool, (fnz : bool e 1), true®®)
is type-incorrect.

5.2.3. The right-hand sides may be replaced by G-typed versions of the “binary” represen-
tation suggested in Note 3.5.4: the entire df -expression remains G-typable. Also, as long as
PROG has no nat in its type, the outcome does not change by this replacement. Cf. 4.1.4.

5.2.4. Nothing prevents us from replacing a by f(f(f(a))) in the right-hand side of the defi-
nition of zero: what results is G-typable again, but does not have the intended semantics.

5.2.5. Suppose PROG has type nat. Then the entire expression has type NAT (not nat).
Hence the context of the entire expression “knows” that the outcome is a generic iterator
function, rather than a number, and it may use the outcome accordingly. This is not at all
surprising if one realizes that it is the very context writer who also provides the right-hand
sides (and possibly delegates the construction of PROG to another programmer, the left-hand
sides and the type of PROG being the interface between the two).

5.2.6. Within PROG one may define other arithmetic functions, e.g.
df eq0 : nat — bool = nrec (bool, (fnx : bool e false), true) e ...

assuming that the global identifiers bool, false and true have been defined properly in that
context. Similarly one can adapt the expression PRED to the G-typing, and use it to define
pred : nat — nat within PROG.

5.2.7. An alternative type and definition for nrec is:

nrec’ : (nat — NAT)
=fan: NAT e (fnz:tp,f: (2 — 2),a:zen(zf,a))

and the right-hand side may even be replaced by fnn : NAT e n and GID(NAT). But notice
that with the definition

nrec” : (nat — nat) = ...... as for nrec’ ... ...

we cannot use nrec” differently from the identity function on nat-expressions.

20



5.2.8. Let us abbreviate the sequence of the left-hand sides by SIG,,: and the sequence of
right-hand sides by IMPLya7. (‘SIG’ is mnemonic for signature and ‘IMPL’ for implemen-
tation.) Then we may also write

(fa SIGpa; @ PROG)(IMPLyaT)

and this is G-typed and equivalent to the previous program (w.r.t. both typing and evalua-
tion). The expression shows more clearly that the implementation may be changed indepen-
dently of the signature.

5.3. Parameterized Abstract Types: List of Elements. We shall construct something
like “list(elt)” where elt is a parameter, in such a way that the construct “list(elt)” can be
used with different choices for elt. The problem here is that “list(elt)” can not be a G-
type, because we would then have (... — tp) as type for list and such G-types do not exist.
Nevertheless a satisfactory solution is possible and is easily generalized to, say, “array(elt, n)”
for arrays of run-time determined fixed length n.

As for numbers it suffices to have nil (the empty list), cons (for constructing an element
and a list into a new list) and lrec (for generic primitive recursion over lists) as the primitive
operations and constant of lists. Head, tail, eqnil, append, map and so on can be defined in
terms of them. (There is however no objection at all to enlarge the set of primitives.) We set

SIG = list : tp,
nal : list,
cons : (elt, list — list),
lrec: (z : tp, (elt,z — 2), z — (list — z2)).

So SIG gives the signature of the abstract data type of lists. It is not an expression, but
a series of left-hand sides of definitions or formal parameters. Notice also that elt occurs
globally in SIG} it will be used as the type of the list elements. For the time being we assume
that we have an implementation for the signature, i.e. a series of expressions that we call
IMPL:

IMPL = LIST, NIL, CONS, LREC

where, again, identifier elt occurs globally in LIST, ..., LREC. We postpone the construction
of IMPL and first focus on instantiating IMPL by different choices for elt.

Let PROG be a user program that computes with lists of numbers: within PROG, list
is assumed to be a type, cons to be of type (nat, list — list) (rather than (elt, list — list)),
and similarly for nil and lrec. In short, PROG is G-typed under the typing assumptions
[nat/elt]SIG. We may then form

(fn [nat/elt] SIG « PROG)([nat/elt| IMPL)

to obtain a G-typed expression with the desired behaviour. Now suppose that PROG uses
both lists of nats and lists of bools. Let [nat/elt]SIG' and [bool/elt] SIG" be the assumptions
under which PROG is G-typed. (By a single/double prime on SIG we mean that each of
list, ..., lrec gets a single/double prime.) As before we may now form

(1) (fn [nat/elt]SIG", [bool/elt]SIG" o PROG) ([nat/elt|IMPL, [bool/elt] IMPL)
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to obtain a G-typed expression with the desired behaviour. However, we have duplicated
IMPL and performed the substitutions nat/elt and bool/elt in IMPL manually. This is
quite unsatisfactory, and can not claimed to be (a good model of) a practical programming
language concept. Fortunately, there is better way by using parameterization. In the following
expression ‘AT’ is mnemonic for ‘abstract type’, ‘gen’ for ‘generic’ or ‘generate’, and T is the
type of PROG.

(2) df genListAT : (elt:tp, (SIG—T) — T)
= (fn elt:tp, p: (SIG—T) e p(IMPL))
o genListAT (nat, (fn [nat/elt]SIG o PROG))
respectively
genListAT (nat, (fn [nat/elt)SIG’
e genListAT (bool, (fn [bool, elt]SIG" e PROG))))

So inside genListAT the user program receives the implementation, and thanks to the ar-
gument for parameter elt the implementation is suitably instantiated. Notice also that the
nested call of genListAT is not at all recursive. There is yet one adaptation necessary; it
concerns PROG’s result type T. As it stands, T is fixed within genListAT but naturally we
want T to vary with the argument for p. Hence T should be made a parameter and we get:

(2") df genListAT : (elt :tp, t: tp, (SIG—t) — t)
= (fn elt:tp, t:tp, p: (SIG—t) e p(IMPL))
o genListAT (nat, T, (fo [nat/elt]SIG o PROG))

and so on...

Actually the type-checker may deduce T from PROG and the programmer need not write it
explicitly.

Notes

5.3.1. One might now go on and design new expression forms for the definition and use of
abstract types. This has been done indeed, and gives rise to the introduction of a V- and a
J-type and a special syntax for program scheme (2'). Essentially, V elt e t is a generic type and
abbreviates (elt : tp — t), whereas Jelt o ¢ is a generic signature and abbreviates elt : tp, ¢
(where ¢t may be a cartesian product t1, ta, . .., t,). See Cardelli & Wegner [4] and Mitchell &
Plotkin [21]. A formal Representation Independence has been proved for the typing system
of [21], see [22].

5.3.2. Consider once more expressions (1) and (2’) and in particular type T of PROG. In (1),
T may be expressed in terms of list’ and list” and there is no problem whatsoever with the
G-typability of the entire expression (1). E.g., if T = list’ then (1) has type [nat/elt] LIST;
cf. also Note 5.2.5. Within (2") however it seems impossible to arrange that T = list’. The
reason is that 7' falls outside the scope of [nat/elt]SIG, i.e. T is not in the scope of the locally
defined list. This forms our explanation of the requirement AB.3 in [21], viz. that a program
may not deliver a value of a locally defined abstract type.

5.3.3. Constructions like “list of list of elements” are possible too. For example, replace in
(2) bool by list’ (i.e. list of nats).

5.3.4. Within PROG other list manipulating functions can be defined, thereby using the
entries of [nat/elt]SIG. For example
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df hd : (list — nat)
= lrec (nat, (fazx : nat, y : nat e ), DONTCARE)

defines the head-function for lists of numbers (with DONTCARE determining the outcome
for “the head of the empty list nil”).

It remains to construct some IMPL, i.e. some LIST, NIL, CONS, LREC. The construc-
tion below is quite analogous to the definitions of nat, zero, succ and nrec given in Section 5.2,
and follows the suggestion of Section 3.6. Here are the type and expressions:

LIST = (z:tp, (elt,z — 2), 2 — 2)

NIL fnz:tp, f:(elt,z—2),a:2z0a

CONS = fax:elt,l: LIST

o (fnz :tp, f:(elt,2 —2),a:2 o f(z, (<, f,a)))
fnz:tp, f:(elt,z—2),a:2z e (fnl: LIST e l(z2,f,a)).

LREC

5.4. Modules. For large scale programs modularity is of utmost importance. The wide
variety in modern programming languages is substantially due to the constructs for modu-
larity: packages in Ada, modules in Modula 2, clusters in CLU, programs in Modular
Pascal and so on. We shall express a very general module concept in the Lambda Calculus
and design a new syntactic form for this particular expression scheme. For simplicity we do
not consider typing.

In order to demonstrate the generality (not to express the concept) we assume in this
subsection that the Lambda Calculus has been extended with assignment, assignable variables,
sequencing and, if you wish, exception handling. (These extensions surely invalidate so much
of the properties of the Lambda Calculus that no one would ever call it “Lambda Calculus”
any more.)

The example problem that we tackle is a classical one: it is requested to write a “module”
for a random number generator that allows the user to specify the “seed” (which determines
the pseudo-random sequence completely) and that “exports” a parameterless function for
“drawing” a next random number from the sequence. It should also be possible that several
instantiations of the module be active simultaneously for several independent pseudo-random

sequences.
It is known that ag, a1, ag, ... is a pseudo-random sequence if, for some suitable constants
m and d, we have a; = a,_1xmmodd for all ¢ > 0; ag is the seed. Therefore we wish to

construct the solution from the following three ingredients:

vara:nate ...... local store for the q;
a = seed initialization
DRAW = (fn() e a := axmmod d; result is a)

function that yields the next random number

There are two main problems: to control the wvisibility so that the scope of vara does not
extend over the user’s program, and to control the life-time of vara so that storage is allocated
for a precisely during the evaluation of the user’s program PROG.

Quite surprisingly our successful attempts to express parameterized abstract types in the
G-typed Lambda Calculus provide already the solution. In expressions (2) and (2') above,
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IMPL is invisible in PROG even if all typing were omitted! Moreover, had there been Pascal-
like variables in the body of genListAT, these would exist as long as the evaluation of p (and
therefore of PROG) would last. Thus we find:

df rng = (fnseed, p e vara : nat e a:= seed; p(DRAW))

rng (041130, (fn draw e PROG))
respectively
rng (041130, (fn draw e rng (161087, (fn draw’ ¢ PROG'))))

It seems worthwhile to design a special syntactic form for the above scheme: module expres-
sions and module invocations. First we show their use and then we define them formally.
Here is the above program written with the module constructs.

df rmg = (fn seed @ module
var a : nat e a := seed; export(DRAW)
endmodule)

(invoke draw = rng (041130) ¢ PROG)
respectively
(invoke draw = rng (041130) @ (invoke draw’ = rng (161087) ¢ PROG"))

The module consists of an expression in which one subexpression is tagged with export. An
invoke-expression is syntactically similar to a df -expression. The evaluation of invoke x =
em e eb consists of evaluating the module expression em after replacing the part export(ea)
in it by df x = ea e eb. Thus it may be better to say that eb is imported into em rather than
that ea is exported to eb. Formally, we consider the left-hand sides, below, as abbreviations
for the right-hand sides:

module .....export(ea)....endmodule fmpe.....p(ea)....
invokez = em e ¢b em (fnz e eb)

Hence, the derived evaluation rule reads:

replace invoke z = (module.....export(ea)....endmodule) e eb
by . (dfz=caeed)....
Notes

5.4.1. One may, of course, replace the fragment a := seed; p(DRAW) by df drw = DRAW e
a := seed; p(drw). It thus turns out that the (first) solution can be transliterated to Pascal,
so that in principle no extra module construct is needed in Pascal.

5.4.2. A formal proof that “storage for a is allocated precisely during the evaluation of
PROG” can not be given before assignment and variables have been added formally to the
Lambda Calculus.

5.4.3. Neither Pascal-like dynamically allocated variables, nor Algol 68 heap variables, fa-
cilitate a solution to the problem of controlling the life-time of a satisfactorily. Algol 60 has
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the concept of own variable for this purpose. But, whereas the interference of recursion and
own variables gives problems in Algol 60, there are no such problems here (because both
recursion and the above solution are expressed entirely within the Lambda Calculus).

5.4.4. Generalization to multiple export and invocation is straightforward.

5.4.5. Not only initialization “before the export” is possible, but also finalization “after the
export”, and even exception handling “around the export”. For the latter, imagine an “ex-
ception” defined locally within the module, possibly “raised” from within DRAW when used
in PROG, and “handled” at/around the export expression within the module. Other ar-
rangements are possible too, e.g. exporting a locally defined “exception” jointly with DRAW
so that it may be handled from within PROG as well. Also, by a slight adaptation of the
rng definition, we get a module that yields initialized variables: export a itself rather than
DRAW . For details see Fokkinga [7].

6. Beyond Generic Typing

As shown informally in Section 5, generic typing is quite expressive; a precise characterization
of the G-typable arithmetic functions is given by Fortune et al. [9]. Nevertheless there are
reasons for further generalization:

e There still exist expressions that are semantically meaningful but not G-typable; e.g.
TW(TW)(K) where TW =fnf e (fnz e f(f(z))) and K = fnz e (fny e ), [10].

e Functions like fnn,z;,...,z, ® 71 + ... 4+ z, for which the first argument determines
the number of following arguments, are not G-typable.

e Referring to SIG and IMPL of Section 5, it seems natural to make the implementation
IMPL into one tuple expression (IMPL), from which the individual components can be
retrieved by selections .1, .2, ...; the type of (IMPL) would then be a tuple type (SIG).
(Notice the dependency between the first and following components within (SIG).)

e One might wish to extend the type formation rules in such a way that arbitrary prop-
erties can be expressed in types, and typability means total correctness with respect to
the properties expressed in the types.

Much work is, and has been, done towards the fulfillment of the last point above: the AU-
TOMATH project [2], Martin-Lof’s Intuitionistic Theory of Types [16], and recently the
Theory of Constructions [5]. Space limitations do not permit us to discuss these very promis-
ing approaches. Instead, we briefly present our own devised typing, called SVP-typing [8].
Due to its far going generalization, it is quite simple to define but, as a price to be paid,
has some weak points that have been avoided consciously in AUTOMATH, the Intuitionistic
Theory of Types and the Theory of Constructions:

e there is no distinction any more between types and normal value expressions;
e the evaluation of typed expressions may not terminate.
Consequently, compile-time type-checking may sometimes not terminate. This is really a pity,

but hopefully not disastrous:
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e we expect that type errors will be detected far more often than that the type-checker
does not terminate;

e nontermination of the type-checker can be treated in the same way as nontermination
of programs nowadays: an unexpectedly long type-checking time should make some-
one suspicious and suggests to prove termination or change the program (or typing)
otherwise.

It is left open for future research whether this is a sensible approach.

6.1. SVP-Typing. The SVP-typing is a generalization of the G-typing that was already
anticipated when we designed the syntax for generic constructs. Basically, types are now
merely expressions that have type tp. In particular they may be the result of functions and
components of tuples, and tp itself is a type (so that tp has type tp).

SVP’-typed expressions. The following grammar generates the SVP’-typable expressions.
In each rule we distinguish constituent parts by suffixes f, a, b, x and r, and we stipulate
that equally named constituents are equal. Moreover, for readability we write ‘¢’ for ‘e®’,
‘tz’ for ‘ex®’, ‘tr’ for ‘er®’, and so on.

t = tp the type of types

ol R

t n= (2%t — tr) the type of functions
eI e (2™ tr e eb!)

eleafaltr . gpaitamtr g toy

t n= (2", b) the type of tuples

o @ity to) = (el 62[61/$]t2>

el = ep<’“t1’t2>.1

elert/altz . gplmtit) o

An expression of type tp is called a type; we let t, ta,...denote arbitrary types. Within
(z :t" — t"), (faz : t' e eb?") and (z : ¢/,t") identifier z is a local name whose scope
extends over ¢’ and eb, but not over ¢’. If z does not occur in t”, we simply write (¢’ — t),
respectively (¢, ¢").

Notes
6.1.1. The evaluation rules and the generalization to multiple parameters, definitions and
tuples are obvious and tacitly used in the sequel.

6.1.2. Due to the last rule the type of an expression is not uniquely determined.

6.1.3. Clearly, the SVP’-typing subsumes the G-typing. Thanks to the concrete notation that
we have designed both a G-type and a G-typed expression are SVP’-typed expressions.

6.1.4. Functions that yield types, and tuples that contain types, are now possible. For in-
stance, with SIG and IMPL of the previous section, we may now write:
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df genListAT' : (elt : tp — (SIG)) = (fnelt : tp e (IMPL)) e ......

On the dots genListAT'(nat) has type [nat/elt](SIG) so that, according to the typing rules
for tuple selection:

genListAT'(nat).1 (= NLIST) has type tp

and is the representation type for lists,
genListAT'(nat).2 has type NLIST

and is the nil for lists of numbers,
genListAT'(nat).3 has type (nat, NLIST — NLIST)

and is the cons for lists of numbers, and
genListAT'(nat).4 has type (z : tp, (2 — 2), 2 — (NLIST — 2))

and is the lrec for lists of numbers.

6.1.5. The dependency has been generalized too. Not only type parameters and components
may be referred to in later parameters, result and components, but also normal value param-
eters and components; e.g. sort : (n : nat, elt : tp, a : array(elt,n) — array(elt,n)). This
kind of dependency has been strived for in the design of PEBBLE, a typing system for large
scale modularity [3].

6.1.6. Given array of type (elt : tp, n : nat — tp), as above, we find that

ef(a:ar'my(boolﬁ) —...) (eaarmy(bool,3+4))

is not SVP’-typed: the rule for function call requires that the parameter type and the argu-
ment type be syntactically equal. This leads to the extension below.

SVP”-typed expressions. The grammar consists of all rules for the SVP’-typed expres-

sions, and in addition:
’ " . .
el = el whenever ¢’ and t” are semantically equivalent.

(There are several ways to define semantic equivalence; one way is to say that expressions are
semantically equivalent if they can be evaluated to a common intermediate result.)

Notes
6.1.7. It is the very combination of this rule with tp® that seems to allow for SVP”-typed
expressions with nonterminating evaluations; cf. Meyer & Reinhold [19].

6.1.8. We conjecture that it is impossible to express the tuple constructs in the others, i.e.
to replace the tuple constructs by SVP”-typed equivalent functions.

6.1.9. Now that evaluation on type positions (superscripts) is allowed, we can reformulate
the grammar rules for function constructs:

t n= (fnz:tpetr) (1)
TP (fn g iy e eb'T) (2)
etf(ea) - eftf(fnm:tpom)(eam) (3)

That is, fn z : tz e tr plays the role of the type (x : tx — tr); it contains the same information
and, indeed, (fnz : tz o tr)(ea) is semantically equivalent to [ea/z|tr.
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6.1.10. According to rule (1) above fnz : t’ e t” has type tp, and according to rule (2) [taking
tz, eb, tr to be t,t',tp| it has type fnz : ¢tz e tp too. This suggests to replace rule (1) by

’ 1"
el = et whenever t" < ¢/

< is the reflexive transitive closure generated by (fnz : tz e eb™) < (fnz : tr o tr)

This approach has been studied in the context of AUTOMATH and is incorporated in some
version of the Theory of Constructions.

7. Concluding Remarks

Much of the programming language concepts that we have discussed, deal with the —intuitive—
notion of “abstraction”, which is to neglect, consciously, some aspects of the subject under
consideration. It turns out that the fin-construct facilitates this abstraction. Since the syn-
tactic manipulation of forming fnx e e out of e and z, is called Lambda-abstraction, we
conclude from our exposition that

Lambda-Abstraction is the key to Intuitive Abstraction.

Many programming language concepts have not been discussed here, notably assignment
and assignable variables, and exception handling. These two concepts in particular require
a drastical extension/change of the Lambda Calculus. In [7] we have done so, and it turns
out that the formalism does not change much; the properties do. There we also show how
the conventional stack-based implementations may be derived in a systematic way from the
the “replacement” semantics of the Lambda Calculus. Thus the applicability of the Lambda
Calculus approach to programming language concepts is wider than sketched in this paper.

Finally we remark that one should not confuse “programming language concepts” with
“programming concepts”.
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