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Chapter 1

Rare Event Estimation for a Large Scale
Stochastic Hybrid System with Air Traffic
Application

Abstract - Embedding of rare event estimation theory within a stochastic analysis
framework has recently led to significant novel results in rare event estimation for
a diffusion process using sequential MC simulation. This chapter presents this rare
event estimation theory for diffusions to a Stochastic Hybrid System (SHS) and ex-
tends it in order to handle a large scale SHS where a very huge number of rare dis-
crete modes may contribute significantly to the rare event estimation. Essentially,
the approach taken is to introduce a suitable aggregation of the discrete modes, and
to develop importance sampling and Rao-Blackwellization relative to these aggre-
gated modes. The practical use of this approach is demonstrated for the estimation
of mid-air collision for an advanced air traffic control example.

1.1 Introduction

This study is motivated by the problem of safety verification of a future air traffic
concept of operation through the analysis of reach probabilities. From a control the-
oretic perspective, such an advanced concept of operations is a blueprint of a con-
trolled Stochastic Hybrid System (SHS) which satisfies the strong Markov property
[13]. Recently, Sastry and co-workers [1, 2] studied the optimization of the control
policy of a discrete-time SHS, such that the probability of staying within some pre-
scribed safe set remains above some prescribed minimum level. Specifically, Amin
et al. [2] developed a theoretical framework which expressed the reach probability
as a multiplicative function, and this was used to develop a dynamic programming-
based approach to compute probabilistic maximal safe sets, i.e. initial states of a sys-
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tem for which control policies exists that assure the reach probability to stay below
some given value. Subsequently, Abate et al. [1] showed this problem to be comple-
mentary to the problem of how to optimize the control policy of an SHS such that the
reach probability of some prescribed unsafe set remains below some given maximum
level, and that the same dynamic programming-based computation of maximal safe
sets can be used. The dynamic programming approach becomes computationally
intractable when the SHS considered is of large scale type. Prandini and Hu [40] de-
veloped a Markov chain approximation based method for the computation of reach
probabilities for a continuous time SHS. This way the dynamic programming chal-
lenge is avoided, however the computational load of their method prohibits its ap-
plication to a large scale SHS. Prajna et al. [39] developed an approach to obtain an
upper bound of the reach probability, but this cannot handle large scale SHS either.

In theory, reach probability estimation can be done by simulating many trajec-
tories of the process considered, and counting the fraction of cases where the simu-
lated trajectory reaches the unsafe set within some given period T. When the reach
probability value is very small then the number of straightforward MC simulations
needed is impractically large. Rare event estimation literature forms a potentially
rich source of information for speeding up MC simulation, e.g. through combin-
ing methods from large deviation and importance sampling theories [11, 29, 31]. An
early successful development in this area is sequential MC simulation for the esti-
mation of the intensity of radiation that penetrates a shield of absorbing material in
nuclear physics, e.g. [10]. More recently this approach has also found application
in non-nominal delay time and loss estimation in telecommunication networks, e.g.
[3]. L’Ecuyer et al. [36] provide a very good recent overview of these sequential MC
simulation developments.

In order to exploit rare event estimation theory within probabilistic reachability
analysis of controlled SHS, we are in need of establishing a theoretically unambigu-
ous connection between the two concepts. Implicitly, this connection has recently
been elaborated by Del Moral and co-workers [16, 17, 18, 20, 21]. They embedded
theoretical physics equations, which supported the development of advanced MC
simulations, within the stochastic analysis setting that is typically used for probabilis-
tic reachability analysis. They subsequently showed that this embedding provides
a powerful background for the development and analysis of sequential MC simula-
tion for rare event simulation. In [37] this novel development is well explained in the
broader context of splitting techniques in rare event simulation.

The aim of this chapter is to present a part of the framework developed by Del
Moral et al. [16, 17, 18, 20, 21] in a probabilistic reachability setting, to further de-
velop this for a large scale SHS, and to demonstrate its practical use for safety verifi-
cation of an advanced air traffic operation. In [8, 9], the practical use of the approach
of Del Moral [16, 17, 18, 20, 21] for safety verification of an advanced air traffic oper-
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ation has already been demonstrated for some specific scenarios. In these scenarios,
the main contributions to the reach probability value came from diffusion behavior.
It also became clear that the same sequential MC simulation approach failed to work
for scenarios of the same air traffic operation where the reach probability is deter-
mined by rare switching between modes. This chapter is aimed to handle such more
demanding rare event estimation problems for large scale controlled SHS. Essentially
the approach is to introduce an aggregation of the discrete mode process, and to de-
velop importance switching and Rao-Blackwellization relative to these aggregated
modes.

The chapter is organized as follows. Section 1.2 develops a factorization of the
reach probability. Section 1.3 explains the approach of [16, 17, 20, 21]. Section 1.4
presents an extension of this approach to hybrid systems. Section 1.5 develops the
aggregation mode process and characterizes key relations with the controlled SHS.
Section 1.6 develops a novel sequential MC simulation approach for estimating reach
probabilities. Section 1.7 shortly describes the free flight air traffic example consid-
ered. Section 1.8 applies the novel approach towards estimating reach probabilities
for this air traffic example. Section 1.9 presents concluding remarks. An early version
of this chapter is [5].

1.2 Factorization of reach probability

Throughout this and the following sections, all stochastic processes are defined on a
complete stochastic basis (Ω,F ,F,P,T) with (Ω,F ,P ) a complete probability space,
and F an increasing sequence of sub-σ-algebra’s on the positive time line T =R+, i.e.
F, {J , (Ft , t ∈ T),F }, J containing all P-null sets of F and J ⊂ Fs ⊂ Ft ⊂ F for
every s < t .

Let us denote E ′ = Rn ×M, with M a discrete set. Let E ′ be the Borel σ-algebra
of E ′. We consider a time-homogeneous strong Markov process which also is a gen-
eralised stochastic hybrid process {xt ,θt } [12, 14, 32, 35], with {xt } assuming values
in Rn and {θt } assuming values in M. The first component of {xt } equals t and the
other components of {xt } form an Rn−1 valued cadlag process {st }. The M-valued
process {θt } is a cadlag switching process. Incorporating t as a state component al-
lows to represent any time-inhomogeneous strong Markov process {st ,θt } as a time-
homogeneous strong Markov process {t , st ,θt } [19]. The problem considered is to
estimate the probability that {st } hits a given “small” closed subset D ⊂Rn−1 within a
given time period [0,T ), i.e. P (∃t ∈ [0,T ); st ∈ D).

Following Del Moral and co-workers [16, 17, 20, 21], this probability can be char-
acterized in the form of a multiplicative function the terms of which are defined
through an arbitrarily assumed nested sequence of closed (time-invariant) subsets
D = Dm ⊂ Dm−1 ⊂ . . . ⊂ D1, with the constraint that P (s0 ∈ D1) = 0 and each compo-
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nent of {xt }, that may hit any Dk , is a pathwise continuous process. In order to derive
a multiplicative functional characterization of the hitting probability, we set τ0 = 0
and define τk ,k = 1, ..,m, as the first moment that {st } hits subset k, i.e.

τk = inf{t > 0; st ∈ Dk }, (1.1)

which implies P (∃t ∈ [0,T ); st ∈ Dm) = P (τm < T ).
We also define {0,1}-valued random variables {χk ,k = 0, ..,m} as follows

χk =
{

1 if τk < T or k = 0,

0 otherwise.

By using these τk and χk definitions and the assumption that each component
of {st } that may hit any Dk , k = 1, ..,m, has continuous paths (i.e. {st } can not enter
Dk by jumping over the boundary of Dk ) we can write the probability of {st } hitting
D before T as a product of conditional probabilities of reaching Dk given Dk−1 has
been reached at some earlier moment in time, i.e.

P (τm < T ) = E[χm] = E[
m∏

k=1
χk ] =

m∏
k=1

E[χk |χk−1 = 1]

=
m∏

k=1
P (τk < T |τk−1 < T ) =

m∏
k=1

γk (1.2)

with γk , P (τk < T |τk−1 < T ).
With this, the problem can be seen as one to estimate the conditional probabili-

ties γk in such a way that the product of the estimators γ̃k is unbiased. Because of the
multiplication of the various individual γ̃k estimators, which depend on each other,
in general such a product may be heavily biased. Garvels et al. [27, 28] showed for a
discrete-time Markov process that estimating the γk ’s in (1.2) by an appropriate se-
quential MC simulation approach, which is known as “splitting method”, guarantees
unbiased estimation of P (τm < T ). The key novelty of [16, 17, 18, 20, 21] was to de-
velop such convergence type of proof to a sequential MC simulation approach for the
estimation of the γk ’s in (1.2) under the much weaker condition that {st } is embedded
in (or is) a strong Markov process.

1.3 Sequential MC simulation

For the process {xt ,θt } we follow the approach of [16, 17, 20, 21] to characterize how
the evolution proceeds from τk−1 ∧T to τk ∧T . For any B ∈ E ′, let pξk |χk (B |1) de-
note the conditional probability of ξk = (xτk∧T ,θτk∧T ) ∈ B given χk = 1. Under the
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assumption that P (s0 ∈ D1) = 0, we characterize the following recursive sequence of
transformations:

pξk−1|χk−1 (· |1)
prediction−−−−−−−−→ pξk |χk−1 (· |1)

conditioning−−−−−−−−−−→ pξk |χk (· |1).y
γk

Because {xt ,θt } is a strong Markov process, {ξk } is a Markov sequence. Hence the
prediction step satisfies a Chapman-Kolmogorov equation:

pξk |χk−1 (B |1) =
∫

E ′
pξk |ξk−1 (B |ξ)pξk−1|χk−1 (dξ|1). (1.3)

Next we characterize the conditional probability of reaching the next subset:

γk = P (τk < T |τk−1 < T ) = P (χk = 1|χk−1 = 1)

= E[χk |χk−1 = 1] =
∫

E ′
1Qk (ξ)pξk |χk−1 (dξ|1), (1.4)

where Qk , (0,T )×Dk ×M. Similarly, the condition step satisfies, for any B ∈ E ′:

pξk |χk (B |1) =
∫

B 1Qk (ξ)pξk |χk−1 (dξ|1)∫
E ′ 1Qk (ξ′)pξk |χk−1 (dξ′|1)

. (1.5)

With this, the γk ’s in (1.2) are characterized as a solution of the set of recursive equa-
tions (1.3)-(1.5). Following [16, 17, 20, 21], this recursive characterization can numer-
ically be approximated through a sequential MC simulation to estimate P (τm < T ).
This is referred to as the IPS (Interacting Particle System) algorithm, and works as
follows.

Simulate Np random trajectories of {xt ,θt } over [0,T ), each of which starts from a
random initial condition ((0, s0),θ0), with s0 ∉ D1. Each simulated trajectory stops at
τ1 ∧T , i.e. upon hitting Q1 or when the first x-component reaches T . The full hybrid
states of these trajectory end points form an empirical density π̃1 as an approxima-
tion of pξ1|χ1 (.|1). This empirical density is used to generate (i.e. to resample) Np

initial conditions of trajectories which are subsequently simulated until hitting Q2 or
when the first x-component reaches T ; the end points in Q2 form an empirical den-
sity π̃2 as an approximation of pξ2|χ2 (·|1). This cycle repeats from Q2 to Q3 ,. . . , and
finally from Qm−1 to Qm =Q. During the k-th cycle, a fraction γ̃k of the Np simulated
trajectories arrives at Qk . The product of these m fractions forms an estimator for
P (τm < T ).

Using the recursive characterization of the conditional density, [16, 20] have also
shown that the product of these fractions γ̃k forms an unbiased estimate of the prob-
ability of {st } to hit the set D within the time period [0,T ), i.e.
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E[
m∏

k=1
γ̃k ] =

m∏
k=1

γk = P (τ< T ).

In addition there is a bound on the L1 estimation error [16, 20], i.e.:

E(
m∏

k=1
γ̃k −

m∏
k=1

γk ) ≤ cp√
Np

,

with cp a finite constant which depends on the simulated scenario and the sequence
of nested subsets adopted. These convergence results have been obtained under
the assumption that the resampling of the empirical density π̃k is done uniformly,
hence there is a chance of resampling some particles more than once, and other par-
ticles not at all. Furthermore, Cérou et al. [18] developed some complementary error
bounds, and showed convergence under an alternate resampling approach.

Application of this IPS algorithm to air traffic operation may work well for specific
scenarios where rare discrete modes are not significantly contributing to the reach
probability [8, 9]. However, there also are relevant scenarios which do not satisfy the
latter condition. To tackle this problem, [32, 33, 34] proposed hybrid versions of the
baseline IPS algorithm. These approaches work well only if the size of space M is
not too big. However, in many realistic scenarios the state space M of the discrete
valued component {θt } is usually very large. Therefore another extension was pro-
posed, namely, Hierarchical Hybrid IPS algorithm (HHIPS), which will be presented
and applied in this chapter. For the convenience of the reader, before addressing
HHIPS, we first introduce the HIPS algorithm of [33].

1.4 Importance switching based Hybrid IPS algorithm

Although in theory the IPS approach is applicable virtually to any strong Markov pro-
cess, in practice the straightforward application of this approach to stochastic hybrid
processes may fail to produce reasonable estimates within a reasonable amount of
simulation time. First, there may be few if no particles in modes with small probabil-
ities (i.e. “light” modes). This happens because each resampling step tends to sample
more “heavy” particles from modes with higher probabilities, thus, “light” particles
in the “light” modes tend to be discarded. Second, if the switching rate is small then it
is highly unlikely to observe even one switch during a simulation run. In such cases,
the possible switching between modes is not properly taken into account. Together
with the first problem this badly affects IPS estimation performance. By increasing
the number of particles the IPS estimates should improve but only at the cost of sub-
stantially increased simulation time which makes the performance of IPS approach
similar to one of the standard Monte Carlo.
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The HIPS algorithm of [33] incorporates sampling per mode (stratified sampling
with modes defining the strata) to cope with large differences in mode weights, and
importance switching (an importance sampling form for the discrete valued compo-
nent {θt }) to cope with rare mode switching. In what follows, we outline the HIPS
algorithm.

If the initial probabilities of some particular modes are very small then it is highly
unlikely to draw particles in these modes. To avoid this, at the initial sampling step
we start with a fixed number of particles in each mode whatever small the initial
probability is and adjust the weights appropriately. Let Np denote the initial number
of particles in each mode θ ∈M. In total the system of particles will consist of N =
Np · |M| particles. Let Jθ denote the ordered set of indices of particles which are in
mode θ (Jθ∩ Jη =∅ for θ 6= η). The whole set of indices is defined by

J ,
⋃
θ∈M

Jθ = {1,2, . . . , N }, |J | = N .

At the initial sampling step we will have |Jθ| = Np particles in each mode θ ∈M. As
particles evolve and switch from one mode to another one, the numbers of particles
in different modes will change, so will the index sets Jθ’s. But at each resampling step
we will again sample Np particles for each mode θ ∈M from a conditional empirical
distribution.

Let γ̃k and π̃k denote numerical approximations of γk and pξk |χk (· |1) respectively.
We choose these numerical approximations in the form of the weighted empirical
distributions associated with the particle system {ξi

k ,ωi
k }N

i=1, where ξk , (xτk∧T ,θτk∧T )
andω ∈ [0,1]. When simulating from τk−1∧T to τk∧T , only a fractionγk of the Monte
Carlo simulated trajectories will reach Qk . The HIPS algorithm estimates these frac-
tions and their product in a recursive way using the following steps:

Step 0 generates, per θ ∈M value, Np initial particles at k = 0 and then starts the cy-
cling through steps 1 through 3 for k := 1,2, . . . ,m.

Step 1 extrapolates each particle from τk−1∧T to τk∧T in time steps of length h, using
importance switching for the new value of {θt } component.

Step 2 evaluates the particles that have arrived at Qk . For this, use is made of equa-
tions (1.4)-(1.5).

Step 3 resamples with replacement, per θ ∈M value, Np particles that have arrived at
Qk ; the weights must be adjusted accordingly.

Each of these steps is specified in detail below.

Hybrid Interacting Particle System (HIPS)

(HIPS) Step 0: Initial sampling for k = 0.
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• For each θ ∈M, sampling Np independent initial Rn values outside D1:

x j
0 ∼ px0|θ0 (·|θ). Set θ j

0 = θ, then ξ j
0 = (x j

0 ,θ j
0), j ∈ Jθ.

• Assigning initial weights:

ω
j
0 = Pθ0 (θ)

/
Np , j ∈ Jθ, θ ∈M.

• Then γ̃0 = 1 and

px0,θ0 (d x,θ) ≈ ∑
θ∈M

∑
j∈Jθ

ω
j
0δ(x

j
0 ,θ

j
0 )

(d x,θ) =
N∑

i=1
ωi

0δ(xi
0,θi

0)(d x,θ).

HIPS iteration cycle: For k = 1, . . . ,m cycle over step 1 (prediction), step 2 (assess-
ment) and step 3 (resampling):

HIPS Step 1. Prediction:

• For i = 1, . . . , N , using importance switching for {θt } component1, generate path
starting at ξi

k−1 = (xi
τk−1∧T ,θi

τk−1∧T ) until the k-th set Qk is reached.

• The weight of each particle must be adjusted recursively in time (i.e. at each
time discretization step):

ωi
t+h =ωi

t ·Lt+h|t (θi
t+h |θi

t , xi
t ),

where

Lt+h|t (θi
t+h |θi

t , xi
t ) = pθt+h |θt ,xt (θi

t+h |θi
t , xi

t )

p̃θt+h |θt ,xt (θi
t+h |θi

t , xi
t )

is the likelihood ratio corresponding to the change of switching rates of the {θt }
component.

• This yields a new set of particles {ξi
k ,ωi

k }N
i=1.

HIPS Step 2. Evaluation of the Qk arrived particles:

• Particles which do not reach the set Qk are killed, i.e. we set ω̂i
k = 0, else set

ω̂i
k =ωi

k and ξ̂i
k = ξi

k .

• The new set of particles is {ξ̂i
k ,ω̂i

k }N
i=1.

1in order to increase frequency of switchings at each time discretization step we replace the orig-
inal transition probabilities pθt+h |θt ,xt (·|θ, x) by some known transition probabilities p̃θt+h |θt ,xt (·|θ, x),
which guarantees higher switching rates (see [32, 33] for details).
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• Approximation of γk :

γk ≈ γ̃k =
N∑

i=1
ω̂i

k .

If all particles are killed, i.e. γ̃k = 0, then the algorithm stops and Phi t (0,T ) ≈ 0.

• If k = m, then stop HIPS with the estimate

Phi t ≈
m∏

k=1
γ̃k .

• For each i = 1, . . . , N set ξ̃i
k = ξ̂i

k and normalize the weights: ω̃i
k = ω̂i

k /γ̃k .

• This yields a new set of particles {ξ̃i
k ,ω̃i

k }N
i=1.

• The estimated pξk |χk (· |1) satisfies:

pξk |χk (d x,θ |1) ≈ π̃k (d x,θ) =
N∑

i=1
ω̃i

kδ(x̃i
k ,θ̃i

k )(d x,θ).

HIPS Step 3. Resampling step.

• For each mode θ ∈M resample with replacement Np values of ξ̃k from the un-
normalized conditional empirical measure

pξk |χk ,θk (· |1,θ) ≈ π̃k (d x,θ |θk = θ) = ∑
j∈Jθ

ω̃
j
kδ(x̃

j
k ,θ̃

j
k )

(d x,θ)

and adjust the weights as follows

ω
j
k =

∑
s∈Jθ ω̃

s
k

Np
, j ∈ Jθ, θ ∈M.

• This yields a new set of particles {ξi
k ,ωi

k }N
i=1.

• If k < m, then repeat steps 1 - 3 for k := k +1.
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1.5 Aggregation of modes

In [32, 33, 34], hybrid versions of the baseline IPS algorithm [16, 17, 20, 21] have been
developed, which take into account that rare discrete modes may contribute signifi-
cantly to the reach probability to be estimated. As has been explained in section 1.4,
the hybrid IPS version of [33] simulates another, more frequent switching, M-valued
process {θ̆t } and compensates importance weights for the difference between {θ̆t }
and {θt }. In [34] another hybrid IPS version has been developed, which makes use of
Rao-Blackwellization, i.e. using exact probabilistic equations for certain components
and simulated particles for all other components [15]. For filtering of a stochastic hy-
brid process {xt ,θt } two Rao-Blackwellization versions have been developed [6, 22].
The version of [22] uses exact probabilistic equations for {xt } and particle simula-
tion for {θt }. The version of [6] uses exact probabilistic equations for {θt } and particle
simulation for {xt }. [34] combines the latter approach with IPS. The resulting hybrid
IPS version uses exact probabilistic equations for the evolution of {θt } and simulates
particles for the Euclidean valued {xt }. This Rao-Blackwellization based hybrid IPS
version also resamples at the end of each IPS cycle Np x-values from π̃k (·,θ) for each
mode θ ∈M, leading to a total of Np ×|M| particles, where |M| is the number of ele-
ments in M. Since the computational load increases linearly with |M|, these hybrid
IPS approaches are computationally intractable when |M| is very large. Such condi-
tion e.g. applies to the air traffic example (where |M| ≈ 1025) considered further on in
this chapter.

The idea is to improve the situation for very large |M| through developing an hy-
brid IPS approach not for {θt , xt }, but for {κt , (θt , xt )}, where {κt } is some complemen-
tary K-valued process with |K| ¿ |M|. In order to accomplish this, we group modes
that have large differences in mode switching frequencies. This defines a partition
{Mκ, κ ∈K}, i.e.

⋃
κ∈KMκ =M and Mκ

⋂
Mκ′ = ; for κ 6= κ′, and a K-valued aggrega-

tion mode process {κt } as follows:

κt (ω) = κ, if θt (ω) ∈Mκ. (1.6)

Because the evolution of the aggregation mode process {κt } depends of the evolution
of {θt }, {κt } may inherit rare mode switching from {θt }. In order to avoid these rare
effects in the evolution of particles, we also define aK-valued Markov chain {κ̆t } with
known non-rare transition rates, and use the transition rates of {κ̆t } to determine for
each particle a new κ̆-value at some time step h later. The particle weight is compen-
sated with the corresponding importance switching ratio

pκτ+h |κτ,xτ,θτ(κ̆|κ, x,θ)/pκ̆τ+h |κ̆τ(κ̆|κ),

whereκ, x,θ denote the given (κτ, xτ,θτ) particle value, and κ̆denotes the value newly
sampled for κ̆τ+h .

– 12–



Next, the prediction of the new θτ+h particle from the (xτ,θτ) particle values is
done conditional on the newly sampled κ̆ value. Theorem 1.5.1 provides a proba-
bilistic characterization of such κ̆-conditional θ-prediction.

Theorem 1.5.1. (κ̆-conditional θ-prediction) Let τ be an arbitrary stopping time, then

pθτ+h |xτ,θτ,κτ+h (η|x,θ, κ̆) = 1Mκ̆
(η)pθτ+h |xτ,θτ(η|x,θ)∑

η′∈M1Mκ̆
(η′)pθτ+h |xτ,θτ(η′|x,θ)

. (1.7)

Proof. Using Bayes yields:

pθτ+h |xτ,θτ,κτ+h (η|x,θ, κ̆) = pκτ+h |θτ+h (κ̆|η)pθτ+h |xτ,θτ(η|x,θ)∑
η′∈M pκτ+h |θτ+h (κ̆|η′)pθτ+h |xτ,θτ(η′|x,θ)

.

Substituting pκτ+h |θτ+h (κ̆|η) = 1Mκ̆
(η) yields (1.7).

The prediction of the x-part of the particle over time step h is done by drawing a
sample from pxτ+h |xτ,θτ,θτ+h (·|x,θ,η). In order to identify all particles that arrive at Qk

before time T , the prediction over time step h has to be done up to T /h times. Af-
ter these prediction steps, there is no guarantee that for each κ̆ ∈K some minimum
number of particles have arrived at Qk . Hence we resample the Qk -arrived particles
such that we regain Np particles for eachκ ∈K. In order to make this possible, in The-
orem 1.5.2 we provide a characterization of the (conditional) probabilities pκτ+h and
pxτ,θτ|κτ+h as a function of pxτ,θτ , for arbitrary stopping time τ and time step h. This
characterization allows to sample a fixed number of particles per aggregation mode
κ ∈K, and to sample for each particle a novel θ value conditional on the aggregation
mode value.

Theorem 1.5.2. (Hierarchical interaction) If pκτ+h (κ) > 0 for an arbitrary stopping
time τ, then

pxτ,θτ|κτ+h (d x,θ|κ) = ∑
η∈Mκ

pθτ+h |xτ,θτ(η|x,θ)pxτ,θτ(d x,θ)/pκτ+h (κ) (1.8)

pκτ+h (κ) = ∑
θ∈M

∫
Rn

∑
η∈Mκ

pθτ+h |xτ,θτ(η|x,θ)pxτ,θτ(d x,θ). (1.9)

Proof. By definition of the partitioning {Mκ, κ ∈K} we have

pκτ+h ,xτ,θτ(κ,d x,θ) = ∑
η∈Mκ

pθτ+h ,xτ,θτ(η,d x,θ)

= ∑
η∈Mκ

pθτ+h |xτ,θτ(η|x,θ)pxτ,θτ(d x,θ).
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Dividing left and right hand sides by pκτ+h (κ) yields (1.8). From the law of total prob-
ability we have:

pκτ+h (κ) = ∑
θ∈M

∫
Rn

pκτ+h ,xτ,θτ(η,d x,θ).

Substitution of the latter in the former yields (1.9).

In order to see what Theorem 1.5.2 means for the empirical kind of densities that
will be used, we assume pxτ,θτ(·) equals an empirical density:

pxτ,θτ(d x,θ) = ∑
κ∈K

Nκ∑
i=1

ωκ,iδ(xκ,i ,θκ,i )(d x,θ) (1.10)

with {xκ,i ,θκ,i ,ωκ,i }Nκ

i=1, κ ∈ K, a given set of particles. Substituting (1.10) into (1.8)
and evaluation yields:

pxτ,θτ|κτ+h (d x,θ|κ) = ∑
η∈Mκ

pθτ+h |xτ,θτ(η|x,θ)
∑
κ′∈K

Nκ′∑
i=1

ωκ
′,iδ(xκ′,i ,θκ′,i )(d x,θ)/pκτ+h (κ)

= ∑
κ′∈K

Nκ′∑
i=1

∑
η∈Mκ

pθτ+h |xτ,θτ(η|xκ′,i ,θκ
′,i )ωκ

′,iδ(xκ′,i ,θκ′,i )(d x,θ)/pκτ+h (κ).

(1.11)

Similarly, substituting (1.10) into (1.9) yields

pκτ+h (κ) = ∑
κ′∈K

Nκ′∑
i=1

∑
η∈Mκ

pθτ+h |xτ,θτ(η|xκ′,i ,θκ
′,i )ωκ

′,i . (1.12)

The idea is to use equation (1.11) for resampling Np particles from pxτk
,θτk

|κτk+h (·|κ)
for each κ-value once at the beginning of a prediction cycle from τk to τk+1. Equation
(1.12) is used to compensate each particle weight for this resampling.

1.6 Hierarchical Hybrid IPS algorithm

Similar as in the IPS algorithm for an SHS [8, 9], a particle is defined as a triplet
(x,θ,ω), ω ∈ [0,1], x ∈ Rn and θ ∈M. Numerical approximations γ̃k and π̃k are used
for γk and pξk |χk (·|1) respectively. When simulating from τk−1 ∧T to τk ∧T , a frac-
tion γ̃k of the Monte Carlo simulated trajectories only will reach Qk . The Hierarchical
Hybrid Interacting Particle System (HHIPS) algorithm estimates these fractions and
their product in a recursive way, using the following steps:

Step 0 generates per κ-value Np initial particles at k = 0, and then starts the cycling
through steps 1 through 3 for k := 1,2, ...m.
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Step 1 extrapolates each particle from τk−1 ∧ T to τk ∧ T in time steps of length h,
using importance switching for the new κ-value and κ-conditional sampling
of a new θ value. For the latter use is made of the κ-conditional θ-prediction
characterization in Theorem 1.5.1.

Step 2 evaluates the particles that have arrived at Qk . For this, use is made of equa-
tions (1.4)-(1.5).

Step 3 resamples from the particles that have arrived at Qk . In order to draw Np sam-
ples per κ-value, use is made of the hierarchical interaction characterization in
Theorem 1.5.2.

Each of these steps is specified in detail below.

Hierarchical Hybrid Interacting Particle System

(HHIPS) Step 0: Initial sampling for k = 0.

• At time t = 0 we start with a set of Nκ := Np particles for each aggregation

mode κ ∈K: {xκ,i ,θκ,i ,ωκ,i }
Np

i=1, κ ∈K, where the particles are obtained as fol-
lows. First, the θκ,i are independently drawn from pθ0|κ0 (·|κ). Then, the xκ,i ∈
{0}×Rn−1/D1 are independently drawn from px0|θ0 (·|θκ,i ) with the first compo-
nent of xκ,i equal to zero. The initial weights satisfy

ωκ,i = pκ0 (κ)

Np
, i = 1, . . . , Np , κ ∈K.

• With this we have γ̃0 = 1 and

p̃x0,θ0 (d x,θ) = ∑
κ∈K

Nκ∑
i=1

ωκ,iδ(xκ,i ,θκ,i )(d x,θ).

• Identify a sufficiently large number J of equal discretization steps of time length
h = T /J , which allows to use a numerical integration time step h.

• Identify an appropriate positive value for α< 1/J .

HHIPS iteration cycle: For k = 1, . . . ,m cycle over step 1 (prediction), step 2 (assess-
ment) and step 3 (resampling):

HHIPS Step 1. Prediction:

• Start with empty sets Sκk , κ ∈K, to store all particles that arrive at Qk = (0,T )×
Dk ×M.
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• For j = 1, . . . , J , iterate over substeps 1.a, 1.b and 1.c.

Substep 1.a Sample κτ+h using importance switching.
If k > 1 and j = 1, then go to substep 1b, else for each κ ∈K and i = 1, . . . , Nκ:

• If ωκ,i = 0 then ω̆κ,i := 0 and κ̆κ,i := κ; else, sample a κ̆κ,i ∈K with probability α
for each of the values inK\{κ}, and with probability 1−α(|K|−1) for the valueκ,
and correct the corresponding weight according to this importance switching,
i.e.

ω̆κ,i =
ωκ,i pκτ+h |xτ,θτ (κ̆κ,i |xκ,i ,θκ,i )

1−α(|K|−1) if κ̆κ,i = κ,

ωκ,i pκτ+h |xτ,θτ (κ̆κ,i |xκ,i ,θκ,i )

α
if κ̆κ,i 6= κ.

• The resulting sets of particles are {x̄κ
′,l , θ̄κ

′,l ,ω̆κ
′,l , κ̆κ

′,l }Nκ′

l=1 , κ′ ∈K. For each κ ∈
K, collect from these particles those Nκ particles for which κ̆κ

′,l = κ, i.e.

Nκ := ∑
κ′∈K

Nκ′ 6=0

Nκ′∑
l=1

1{κ}(κ̆
κ′,l ).

• For each κ ∈K, renumber the indices of these Nκparticles such that the first in-
dex equals κ and the second index runs over {1, ..., Nκ}. This yields for each
κ ∈ K the following new set of particles {xκ,i ,θκ,i ,ωκ,i }Nκ

i=1 if Nκ 6= 0, and an
empty set ∅ if Nκ = 0.

Substep 1.b κτ+h-conditional prediction of (xτ+h ,θτ+h).
For each κ ∈K, determine the new set of particles {x̄κ,i , θ̄κ,i ,ω̄κ,i }Nκ

i=1 as follows:

• For each κ, i for which ωκ,i = 0, set x̄κ,i := xκ,i and θ̄κ,i := θκ,i . Else, use Theo-
rem 1.5.1 to sample a new value θ̄κ,i from:

pθτ+h |xτ,θτ,κτ+h
(η |xκ,i ,θκ,i ,κ) =

1Mκ(η)pθτ+h |xτ,θτ(η |xκ,i ,θκ,i )∑
η′∈Mκ

1Mκ(η′)pθτ+h |xτ,θτ(η′ |xκ,i ,θκ,i )

and a new value x̄κ,i from

pxτ+h |θτ+h ,xτ,θτ(d x | θ̄κ,i , xκ,i ,θκ,i ).

• The weights are not changed, i.e. ω̄κ,i :=ωκ,i .
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Substep 1.c. Memorizing particles that arrived at Qk :

• If (x̄κ,i , θ̄κ,i ) ∈ Qk and ωκ,i 6= 0, then a copy of the particle {x̄κ,i , θ̄κ,i ,ω̄κ,i } is
stored in the set Sκk .

• Subsequently, we set ω̄κ,i := 0 in the original particle.

• If j = J , then step 1 is complete, hence go to step 2, else, repeat substeps 1a,b,c
for j := j +1.

HHIPS Step 2. Evaluate the Qk arrived particles:

• The particles which are memorized in Sκk ,κ ∈K, provide an estimate of pξk |χk (·|1)and
γk .

• Renumbering the particles in Sκk yields a set of particles {x̃κ,i , θ̃κ,i ,ω̃κ,i }Nκ

i=1 with
Nκ the number of particles in Sκk .

• Weighted fraction γ̃k of the Qk arrived particles:

γk ≈ γ̃k = ∑
κ∈K

Nκ 6=0

Nκ∑
i=1

ω̃κ,i .

• If Nκ = 0 for all κ ∈K, then the algorithm stops with estimate Phi t (0,T ) ≈ 0.

• If k = m, then stop HHIPS with the estimate Phi t (0,T ) ≈∏m
k=1 γ̃k .

• For each κ ∈K and i = 1, . . . , Nκ:

ω̃κ,i := ω̃κ,i /γ̃k .

• The estimated pξk |χk (·|1) satisfies:

pξk |χk (d x,θ|1) ≈ π̃k (d x,θ) = ∑
κ∈K

Nκ 6=0

Nκ∑
i=1

ω̃κ,iδ(x̃κ,i ,θ̃κ,i )(d x,θ).

HHIPS Step 3. Copy the Qk arrived particles through κτk+h-conditional resampling.
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• Evaluate aggregated mode probabilities at τ := τk using (1.12):

pκτ+h |χk (κ|1) ≈ϕ(κ) = ∑
κ′∈K

Nκ′ 6=0

Nκ′∑
i=1

∑
η∈Mκ′

pθτ+h |xτ,θτ(η|x̃κ′,i , θ̃κ
′,i )ω̃κ

′,i .

• For each κ ∈ K independently draw Np random pairs (xκ,i ,θκ,i ), i = 1, . . . , Np

from the particle spanned empirical measure, using (1.11):

pxτ,θτ|κτ+h ,χk (d x,θ |κ,1) ≈ ∑
κ′∈K

Nκ′ 6=0

Nκ′∑
i=1

∑
η∈Mκ′

pθτ+h |xτ,θτ(η|x̃κ′,i , θ̃κ
′,i )×

× ω̃κ′,iδ{x̃κ′,i ,θ̃κ′,i }(d x,θ)/ϕ(κ).

• This yields, for eachκ ∈K, a set of particles {xκ,i ,θκ,i ,ωκ,i }
Np

i=1 withωκ,i :=ϕ(κ)/Np .

• If k < m, then repeat steps 1-3 for k := k +1 and Nκ := Np .

Remark 1.6.1. The key extensions of HHIPS over IPS for an SHS [8, 9] are:

1. Embedding of an aggregation mode process;

2. Particles are maintained per aggregation mode;

3. Importance switching of aggregation mode is used for the conditional predic-
tion of SHS particles;

4. Hierarchical interaction is used for the resampling of particles that reached
Qk , k = 1, ..,m −1.

1.7 Free flight air traffic example

We consider a specific free flight operational concept that has been developed within
a recent European research project [38]. In the free flight air traffic example, the
airspace is an en-route airspace without fixed routes and without support by air traf-
fic control. All aircraft flying in this airspace are assumed to be properly equipped
and enabled for free flight: the pilots can try to optimise their trajectory, due to the
enlarged freedom to choose path and flight level. The pilots are only limited by their
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responsibility to maintain airborne separation, in which they are assisted by a sys-
tem called ASAS (Airborne Separation Assistance System). This system processes the
information flows from the data-communication links between aircraft, the naviga-
tion systems and the aircraft guidance and control systems. ASAS detects conflicts,
determines conflict resolution maneuvers and presents the relevant information to
the aircrew. The number of agents involved in the free flight operation is huge and
ranges from the Control Flow Management Unit to flight attendants. In the setting
chosen for an initial risk assessment, the following agents are taken into account:

• One pilot-flying in each aircraft,

• One pilot-non-flying in each aircraft,

• Various systems and entities per aircraft, like the aircraft position evolution and
the conflict management support systems,

• Some global systems and entities, like the communication frequencies and a
satellite system.

The approach taken in developing the AMFF concept of operation [38] is to avoid
much information exchange between aircraft and to avoid dedicated decision-making
by artificial intelligent machines. Although the conflict detection and resolution ap-
proach developed for AMFF has its roots in the modified potential field approach
[30], it has some significant deviations from this. The main deviation is that con-
flict resolution in AMFF is intentionally designed not to take the potential field of all
aircraft into account. The resulting AMFF design can be summarized as follows:

• All aircraft are supposed to be equipped with Automatic Dependent Surveillance-
Broadcast (ADS-B), which is a system that periodically broadcasts own aircraft
state information, and continuously receives the state information messages
broadcasted by aircraft that fly within broadcasting range (∼ 100 Nm).

• To comply with pilot preferences, conflict resolution algorithms are designed to
solve multiple conflicts one by one rather than according to a full concurrent
way, e.g., see [30].

• Conflict detection and resolution are state-based, i.e., intent information, such
as information at which point surrounding aircraft will change course or height,
is supposed to be unknown.

• The vertical separation minimum is 1000 ft and the horizontal separation min-
imum is 5 Nm. A conflict is detected if these separation minima will be violated
within 6 minutes.
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• The conflict resolution process consists of two phases. During the first phase,
one of the aircraft crews should make a resolution maneuver. If this does not
work, then during the second phase, both crews should make a resolution ma-
neuver.

• Prior to the first phase, the crew is warned when an ASAS alert is expected to
occur if no preventive action would be timely implemented; this prediction is
done by a system referred to as P-ASAS (Predictive ASAS).

• Conflict co-ordination does not take place explicitly, i.e., there is no communi-
cation on when and how a resolution maneuver will be executed.

• All aircraft are supposed to use the same resolution algorithm, and all crew are
assumed to use ASAS and to collaborate in line with the procedures.

• Two conflict resolution maneuver options are presented: one in vertical and
one in horizontal direction. The pilot decides which option to execute.

• ASAS related information is presented to the crew through a Cockpit Display of
Traffic Information (CDTI).

In order to use the HHIPS algorithm for the estimation of collision risk of this free
flight operation, we need to develop a MC simulator of this operation, such that the
simulated trajectories constitute realizations of a hybrid state strong Markov process.
Everdij and Blom [23, 24, 25, 26] have developed a Stochastically and Dynamically
Coloured Petri Net (SDCPN) formalism that ensures the specification of a free flight
MC simulation model which is of the appropriate class. In [9] it is explained how the
SDCPN formalism has been used to develop a MC simulation model of a particular
free flight design. The dimensionality of the resulting MC simulation model is very
large, e.g. in simulating two aircraft there are about 1025 discrete mode combina-
tions, and the Euclidean state may go up to R336 [9]. For this very large stochastic
hybrid system we want to estimate the probability of collision between aircraft. This
is practically infeasible using naive MC simulation.

1.8 Application of HHIPS to air traffic example

In [4, 8, 9] we developed a way to cast the air traffic SHS model within the setting of
the IPS formulation, and used the IPS to evaluate demanding high risk bearing multi-
aircraft scenarios. This IPS approach, however, did not work properly anymore for
low risk bearing scenarios. The aim of this section is to demonstrate that the novel
HHIPS works well for such a low risk bearing scenario, using the same SHS model.
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In the low risk bearing scenario considered, two aircraft start at the same flight
level, some 250 km away from each other, and fly on opposite direction flight plans
head-on with a ground speed of 240 m/s. This means that collision may be reached
after about 500s simulation, hence we set T = 600s. The collision reach probability is
estimated through running ten times the HHIPS algorithm2. The aggregation modes
chosen are all combinations of the following high level mode values: global commu-
nication support is ‘up’ or ‘down’, and decision-making (DM) loop of aircraft 1 is ‘up’
or ‘down’. This leads to a total of four aggregation mode values.

The Dk ’s have been identified through an iterative process of learning from con-
ducting MC simulations. This quite easily led to the identification of a series of Dk ’s
that appeared to work well. Although it is likely that further optimization of Dk ’s may
lead to a reduction in the variance and confidence interval of the estimates [37], we
did not try to do so yet.

The identified Dk ’s are defined by three parameters, the values of which are given
in Table 1.1 for a sequence of eight nested subsets. Here dk and hk define a cylin-
der of diameter dk and height hk respectively. The ∆k value is the time period over
which position and velocity differences between the two aircraft are compared. If
within ∆k the predicted position difference falls within the corresponding cylinder,
then Dk is said to be reached. The three parameters of D1,D2,D4,D6 and D8 are such
that reaching them represents medium term conflict, short term conflict, conflict,
near collision and collision respectively. The extra D3, D5 and D7 appeared useful in
avoiding too small fractions remaining from hitting D4 after D2, D6 after D4 and D8

after D6.

Table 1.1: IPS conflict level parameter values
k 1 2 3 4 5 6 7 8

dk (Nm) 4.5 4.5 4.5 4.5 2.5 1.25 0.50 0.054
hk (ft) 900 900 900 900 900 500 250 131
∆k (min) 8 2.5 1.5 0 0 0 0 0

The number of particles used is 5,000 per aggregation mode value; hence 20,000
particles are used per HHIPS run. The time step h = 1s, and α = 0.001. Results of
these HHIPS runs are presented in Table 1.2.

Table 1.2 presents the values for γ̃k which have been estimated during the first
five HHIPS runs. The estimated mean probability of collision between the two air-
craft equals 1.91×10−7. The estimated standard deviation is 1.6×10−8, which shows
that the estimated value is quite accurate. It should be noticed that the variation in

2In [7] a similar two-aircraft encounter scenario has been simulated using a heuristic precursor of
the current HHIPS.
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Table 1.2: γ̃k values estimated by first five HHIPS runs. IPS based estimation typically
yields values 0.0 for k ≥ 4

k Run 1 Run 2 Run 3 Run 4 Run 5
1 1.000 1.000 1.000 0.991 1.000
2 5.77E-04 5.64E-06 6.24E-06 5.04E-06 6.13E-06
3 6.40E-03 7.25E-01 7.20E-01 6.84E-01 7.66E-01
4 0.566 0.569 0.596 0.540 0.608
5 0.344 0.256 0.223 0.401 0.198
6 0.420 0.452 0.402 0.459 0.429
7 0.801 0.845 0.929 0.710 0.949
8 0.814 0.827 0.841 0.828 0.802
Π 1.97E-07 1.89E-07 1.89E-07 2.00E-07 1.85E-07

the fractions per level is significantly larger than the variation in the product of the
fractions. Apparently, the dependency between the fractions γ̃k reduces the variation
in the multiplication of these fractions.

Finally we improved the availability/reliability of the ASAS related systems by a
factor 100, and then conducted the ten HHIPS runs again. This resulted in a 100-fold
decrease of the collision reach probability. These results demonstrate that HHIPS
works well for this large scale SHS.

1.9 Concluding remarks

This chapter first presented the rare event estimation theory developed in [16, 17, 18,
20, 21] in the framework of probabilistic reachability analysis of SHS. Subsequently,
the theory has been extended with mode aggregation, importance switching and
Rao-Blackwellization. This allows probabilistic reachability analysis theory to be ap-
plied to large scale SHS, and in particular when the reachability probability consid-
ered receives significant contributions from combinatorially many rare modes. The
power of the resulting novel sequential MC simulation approach has been demon-
strated through a successful application to collision risk estimation in a demanding
future air traffic scenario. And, of course, there are several interesting directions for
follow up research, such as:

• Extending convergence proof for IPS to HIPS and HHIPS.

• Incorporating parameter sensitivity assessment in IPS, HIPS and HHIPS.

• Optimization of Dk ’s identification in the air traffic example.
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