
4

Searching for Text Documents

Henk Blanken and Djoerd Hiemstra

University of Twente

4.1 Introduction

Many documents contain, besides text, also images, tables, and so on. This
chapter concentrates on the text part only. Traditionally, systems handling
text documents are called information storage and retrieval systems. Before
the World-Wide Web emerged, such systems were almost exclusively used by
professional users, so-called indexers and searchers, e.g., for medical research,
in libraries, by governmental organizations and archives. Typically, profes-
sional users act as “search intermediaries” for end users. They try to figure
out in an interactive dialogue with the system and the end user what it is
the end user needs, and how this information should be used in a successful
search. Professionals know the collection, they know how documents in the
collection are represented in the system, and they know how to use Boolean
search operators to control the number of retrieved documents.

Many modern information retrieval systems, like Internet search engines,
are specifically designed for end users who are not familiar with the collection,
the representation of the documents, and the use of Boolean operators. The
main requirements for these systems are the following. Firstly, users should
be able to enter any natural language word(s), phrase(s) or sentence(s) to the
system without the need to enter operators. Secondly, the system should rank
the retrieved documents by their estimated degree or probability of usefulness
for the user.

In this introduction we will reconsider some concepts from previous chap-
ters and describe what these concepts mean in the information retrieval realm.

4.1.1 Text Documents

A (text) document has an identification and can be considered to be a list
of words. So, a book is a document, but so is a paper in the proceedings
of a conference or a Web page. The identification may be an ISBN number
for a book, the title of the paper together with the ISBN of the conference
proceedings or a URL for a Web page.

98 Henk Blanken and Djoerd Hiemstra

Retrieval of text documents does normally not imply the presentation
of the whole document (this is too space and time consuming). Instead the
system presents the identifications of the selected documents possibly together
with brief descriptions and/or their rankings.

4.1.2 Indexing

Indexing is the process of deriving metadata from documents and storage of
the metadata in an index. The index describes in one way or another the
content of the documents; for text documents the content is described by
terms like social or political. During retrieval, the system uses the index
to determine the output.

There are two ways to fill the index, namely manually and automatically.
Professional users like librarians may add so-called assigned terms to docu-
ments as a kind of annotation. Sometimes these terms are selected from a
prescribed set of terms, the catalog. A catalog is composed by specialists and
describes a certain (scientific) field. An advantage of this approach is that the
professional users know the allowed terms to be used in query formulation.
A clear disadvantage is the amount of work needed to perform the manual
indexing process.

Describing the content of documents can also be done automatically re-
sulting in so-called derived terms. Several steps are required, for instance a
step in which an algorithm identifies words in an English text and puts them
to lower case. Other steps use basic tools like stop word removal and stemming.
Stop words are words in the document with little meaning, mostly function
words like “the” and “it”. These words are removed. Stemming conflates the
words in the document to their stem. For instance, the stemmer introduced by
Porter [23] conflates the words “computer”, “compute” and “computation” to
the stem comput.

4.1.3 Query Formulation

The process of representing the information need is often referred to as the
query formulation process. The resulting formal representation is the query.
In a broad sense, query formulation might denote the complete interactive
dialogue between system and user, leading not only to a suitable query but
possibly also to a better understanding by the user of his/her information
need. Here, however, query formulation denotes the formulation of the query
when there are no previously retrieved documents to guide the search, that
is, the formulation of the initial query.

Again we must distinguish between the professional searcher and the casual
end user. The first one knows the document collection and the assigned terms.
The professional will use Boolean operators to compose the query and will be
able to adequately rephrase the query depending on the output of the system.
If the result set is too small, the professional must broaden the query, if too
large the professional must make the query more restrictive. See Section 4.2.

4 Searching for Text Documents 99

The end user likes to communicate the need for information to the system
in natural language. Such a natural language statement of the information
need is called a request. Automatic query formulation includes receiving the
request and generating an initial query by applying the same algorithms as
used for the derivation of terms. The query consists in general of a list of
query terms. The system accepts this list and composes in one way or another
a result set. The end user may indicate the documents that are considered to
be relevant. This relevance feedback allows the system to formulate a successive
query.

4.1.4 Matching

Probably the most important part of an information retrieval system is the
matching algorithm. The algorithm compares the query against the docu-
ment representations in the index. We distinguish exact matching and inexact

matching algorithms. To start with the first kind: a Boolean query formulated
by a professional searcher defines exactly the set of documents that satisfy
the query. For each document the system generates a yes/no decision.

If a system uses inexact matching, it delivers a ranked list of documents.
Users will walk down this document list in search of the information they need.
Ranked retrieval will hopefully put the relevant documents somewhere in the
top of the ranked list, minimizing the time the user has to invest on read-
ing the documents. Simple but effective ranking algorithms use the frequency
distribution of terms over documents. For instance, the words “family” and
“entertainment” mentioned in a small part of a book, may occur relatively
infrequent in the rest of the book, which indicates that the book should not
receive a top ranking for the request “family entertainment”. Ranking algo-
rithms based on statistical approaches easily halve the time the user has to
spend on reading documents. The description of ranking algorithms is a major
theme of this chapter.

4.1.5 Relation to Other Chapters

If a document contains text and for instance images, then an algorithm needs
to separate those parts. In Chapter 3 approaches are described to deal with
this problem.

In Section 4.3.6 we deal with the PageRank algorithm used in the Google
Web search engine. The algorithm takes into account the hyperlink struc-
ture on the Web and has some similarities with collaborative filtering that
is explained in Chapter 11. In this technique the opinion of users regarding
documents influences the selection process.

4.1.6 Outline

In the traditional information retrieval systems, which are usually operated by
professional searchers, only the matching process is automated; indexing and
query formulation are manual processes. These information retrieval systems

100 Henk Blanken and Djoerd Hiemstra

use the Boolean model of information retrieval. The Boolean model is an exact

matching model, that is, it either retrieves documents or not without ranking
them. The model also supports the use of structured queries, which do not
only contain query terms, but also relations between the terms defined by the
query operators AND, OR and NOT. In Section 4.2 we explain the Boolean
model.

In modern information retrieval systems, which are commonly used by non-
professional users, query formulation is also automated. Mathematical models
are used to model the matching process. There are many candidate models for
the matching process of ranked retrieval systems. These models are so-called
inexact matching models, that is, they compute a ranking for each document
retrieved even if the document only partly satisfies the query. Each of these
models has its own advantages and disadvantages. However, there are two
classical candidate models for approximate matching: the vector space model
and the probabilistic model. In Section 4.3 we explain these models as well
as other ranking models like the p-norm extended Boolean model, and the
Bayesian network model.

So-called language models were first used in telecommunications and some
time later in speech recognition. Language models build a mathematical model
of a language. This model can be used for instance to determine the probability
that a certain word follows a recognized word. Recently the models got much
attention in the IR community. Language models are treated in Section 4.3.5.

Web search engines are a rather new phenomenon and the most successful
engine is probably Google. Besides some content oriented ranking techniques,
Google also exploits the so-called PageRank algorithm. The idea is that the
opinion of the user community with respect to a document, that is Web page,
influences the ranking of the page. The opinion is modeled by considering the
reference pattern which can be derived from the Web. Section 4.3.6 discusses
Google’s ranking mechanism.

Until now terms are treated equally in a query and in the document as
represented in the index. Much attention in IR research has been paid, how-
ever, to so-called term weighting algorithms. A term weight is a value of the
term’s importance in a query or a document. Term weighting is described in
Section 4.4.

4.2 Boolean Model
The Boolean model is the first model of information retrieval and probably
also the most criticized model. The model is based on set theory and can be
explained by thinking of a query term as an unambiguous definition of a set of
documents. For instance, the query term economic simply defines the set of all
documents that are indexed with the term economic. Using the operators of
George Boole’s mathematical logic, query terms and their corresponding sets
of documents can be combined to form new sets of documents. Boole defined
three basic operators: AND, OR, and NOT [4]. Combining terms with the

4 Searching for Text Documents 101

social

economic

political

social AND economic

social political

economic

social OR political

social

economic

political

(social OR political)

 economic)

NOT (social AND

Fig. 4.1. Three Boolean combinations of sets visualized as Venn diagrams.

AND operator will define a document set that is smaller than or equal to
the document sets of any of the single terms. For instance, the query social

AND economic will produce the set of documents that are indexed both with
social and economic. Combining terms with the OR operator will define
a document set that is bigger than or equal to the document sets of any of
the single terms. So, the query social OR political will produce the set of
documents that are indexed with either social or political, or both.

This is visualized in the Venn diagrams of Figure 4.11 in which each set
of documents is visualized by a disk. The intersections of these disks and
their complements divide the document collection into eight non-overlapping
regions, the unions of which give 256 different Boolean combinations of so-
cial, political and economic documents. In Figure 4.1, the retrieved sets are
visualized by the shaded areas.

4.2.1 Proximity Searching: ADJ, NEAR

With the emergence of automatic full text indexing (meaning that every word
of the document is indexed), commercial retrieval systems added new Boolean
operators to the standard Boolean operators. These operators use positions

1 Often, the NOT-operator is implemented as a logical difference instead of a set
complement, requiring the use of A NOT B instead of A AND NOT B

102 Henk Blanken and Djoerd Hiemstra

of words in text. The ADJ operator allows for the search of exact phrases by
looking for documents that contain two adjacent terms in the specified order.
For instance, environmental ADJ damage selects only documents containing
the exact phrase “environmental damage”. The NEAR operator allows for the
search of two terms that are near to each other without any requirements on
the order of the words. Table 4.1 list some examples.

Table 4.1. Proximity operators.

Query Interpretation

waste ADJ management select documents containing the
exact phrase “waste management”

waste NEAR management select documents containing, e.g.,
“waste management”, “manage-
ment of waste” or “waste of

valuable management talent”

(hazardous OR toxic) ADJ wastes select documents containing
either “hazardous wastes”
or “toxic wastes”

(hazardous AND waste) ADJ management ill-defined because “management”
could not be adjacent to both
“hazardous” and “waste”

The last example of Table 4.1 requires some explanation. Some systems pro-
duce an error if such a query is entered as these systems claim that it is
impossible that a term management is adjacent to two other terms hazardous
and waste. But management may occur many times in a document and usu-
ally system designers decide to process the last example as (hazardous ADJ

management) AND (waste ADJ management).

4.2.2 Wildcards

Wildcards are used to mask a part of a query term with a special character,
allowing it to match any term that maps to the unmasked portion of the
query term. Table 4.2 shows some examples of the use of wildcards, taken
from Kowalski [14].

From the options in Table 4.2, suffix searches are the most common. In
some systems suffix searches are the default without the user having to specify
this. Suffix truncation is also the easiest of the options above to implement.

4.2.3 Discussion

We give two advantages of Boolean retrieval. Firstly, the model gives (ex-
pert) users a sense of control over the system. It is immediately clear why a

4 Searching for Text Documents 103

Table 4.2. Wildcards.

Query Interpretation

dog∗ suffix truncation selects documents containing, e.g.,
“dog”, “dogs” or “doggy”, but also “dogma”
and “dogger”

∗computer prefix truncation: selects documents containing, e.g.,
“minicomputer”, “microcomputer” or “computer”

colo∗r infix truncation: selects documents containing, e.g.,
“colour”, “color”, but also “colorimeter” or
“colourbearer”

multi$national single position truncation: selects documents
containing “multi-national” or “multinational”,
but no “multi national” as it contains two
processing tokens

document has been retrieved given a query. If the resulting document set is
either too small or too big, it is directly clear which operators will produce
respectively a bigger or smaller set. Secondly, the model can be extended with
proximity operators and wildcard operators in a mathematically sound way,
which makes it a powerful candidate for full text retrieval systems as well.

We also give two disadvantages of the Boolean model starting with its
inability to rank documents. For this reason, the model does not fit the needs
of modern full text retrieval systems like for instance Web search engines. On
the Web, and for many other full text retrieval systems, ranking is of utmost
importance.

A second disadvantage is that the rigid difference between the Boolean
AND and OR operators does not exist between the natural language words
“and” and “or”. For instance, someone interested in “social” and “political”
documents, should enter the query social OR political to retrieve all pos-
sibly interesting documents. In fact, the Boolean model is more complex than
the real needs of users would justify. Expert users of Boolean retrieval systems
tend to use faceted queries. A faceted query is a query that uses disjuncts of
quasi-synonyms: the facets, conjoined with the AND operator. The following
query for instance has two facets: (economic OR financial OR monetary)

AND (internet OR www OR portal).

4.3 Models for Ranked Retrieval
The Boolean model’s inability to rank documents is addressed by the models
presented in this section. A key issue of models of ranked retrieval is auto-
matic query formulation. Non-expert users should be able to enter a request
in natural language, or possibly just a couple of terms, without the use of op-
erators. Both ranking and the fact that operators are not mandatory is shared

104 Henk Blanken and Djoerd Hiemstra

by the approaches presented in this section. Pros and cons are identified for
each model.

4.3.1 The Vector Space Model

Luhn [16] was the first to suggest a statistical approach to search for informa-
tion. He suggested that in order to search in a document collection, the user
should first prepare a document that is similar to the needed documents. The
degree of similarity between the representation of the prepared document and
the representations of the documents in the collection are used to search the
collection.

Salton [30] found a nice theoretical underpinning of Luhn’s similarity cri-
terion. They considered the representations of the documents in the index
and the query as vectors embedded in a high-dimensional Euclidean space,
where each term is assigned a separate dimension. The document’s index
representation is a vector d = (d1, d2, · · · , dm) of which each component dk

(1 ≤ k ≤ m) is associated with an index term, while the query is a similar
vector q = (q1, q2, · · · , qm) of which the components are associated with the
same terms.

The similarity measure is usually the cosine of the angle that separates the
two vectors d and q. The cosine of an angle is 0 if the vectors are orthogonal
in the multidimensional space and 1 if the angle is 0 degrees:

score(d,q) =

∑m
k=1 dk · qk

√

∑m
k=1(dk)2 ·

√

∑m
k=1(qk)2

. (4.1)

The metaphor of angles between vectors in a multidimensional space makes it
easy to explain the implications of the model to non-experts. Up to three di-
mensions, one can easily visualize the document and query vectors. Figure 4.2
visualizes an example document vector and an example query vector in the
space that is spanned by the three terms social, economic and political.

Relevance Feedback

Measuring the cosine of the angle between vectors is equivalent with normal-
izing the vectors to unit length and taking the vector inner product:

score(d,q) =
m

∑

k=1

n(dk) · n(qk) where n(vk) =
vk

√

∑m
k=1(vk)2

. (4.2)

Some rather ad hoc, but quite successful retrieval algorithms are nicely
grounded in the vector space model if the vector lengths are normalized. An
example is the relevance feedback algorithm by Rocchio [26]. He suggested the
following algorithm for relevance feedback, where qold is the original query,

qnew is the revised query, d
(i)
rel (1 ≤ i ≤ r) is one of the r documents the user

4 Searching for Text Documents 105

q

d

economic

social

political

Fig. 4.2. A query and document representation in the vector space model.

selected as relevant, and d
(i)
nonrel (1 ≤ i ≤ n) is one of the n documents the

user selected as non-relevant:

qnew = qold +
1

r

r
∑

i=1

d
(i)
rel −

1

n

n
∑

i=1

d
(i)
nonrel. (4.3)

The normalized vectors of documents and queries can be viewed at as points on
a hypersphere at unit length from the origin. In (4.3), the first sum calculates
the centroid of the points of the known relevant documents on the hypersphere.
In the centroid, the angle with the known relevant documents is minimized.
The second sum calculates the centroid of the points of the known non-relevant
documents. Moving the query towards the centroid of the known relevant
documents and away from the centroid of the known non-relevant documents
is guaranteed to improve retrieval performance. The sphere is visualized for
two dimensions in Figure 4.3. The figure is taken from Savino [32].

Discussion

A strong point of the vector model is the ease of explaining it to non-expert
users. The main disadvantage of the vector space model is that it does not in
any way subscribe what the values of the vector components should be. Now
we touch the problem of term weighting which is addressed in Section 4.4.
Early experiments [27] already suggested that term weighting is not a triv-
ial problem at all. A second disadvantage of the vector space model is that
it is not possible to include term dependencies into the model, for instance
for modeling of phrases or adjacent terms. It is however possible to give a
geometric interpretation of Boolean-structured queries, which is described in
Section 4.3.3. A third problem with the vector space model is its implemen-

106 Henk Blanken and Djoerd Hiemstra

political

social

1

1

query

centroid of

known relevant docs.
representations of

representations
of known relevant
documents

Fig. 4.3. Rocchio’s relevance feedback method.

tation. The calculation of the cosine measure needs the values of all vector
components, which may be difficult to provide in practice [41].

4.3.2 The Probabilistic Model

Sometimes it is argued that a retrieval system should rank the documents in
the collection in order of their probability of relevance. This seems a rather
trivial requirement indeed, since the objective of information retrieval sys-
tems is defined in Chapter 1 as “to help the user to find relevant documents”.
However, Robertson showed that optimality of ranking by the probability of
relevance can only be guaranteed if the following conditions are met. Firstly,
relevance should be a dichotomous variable, either yes or no. Secondly, rele-
vance of a document to a request should not depend on the other documents
in the collection.

The Probability of Relevance

Whereas Luhn’s intuitive similarity criterion raises the question “What ex-
actly makes two representations similar?”, Robertson’s probability ranking
principle raises the question “How, and on the basis of what data, should the
probability of relevance be estimated?”

Relevance is ultimately determined by the end user. So, the probabilistic
model that is based on relevance, is only useful if the system has information
about relevance of documents. This information may be given by the end user
as a result of relevance feedback.

It is possible that the similarity criterion and the relevance criterion do
not coincide as the following reasoning shows. First let us make the notion
“probability of relevance” explicit. Robertson adopted the Boolean model’s
viewpoint by looking at a term as a definition of a set of documents. Suppose
a user enters a query containing a single term, for instance the term social. If

4 Searching for Text Documents 107

all documents that fulfill the user’s need were known, it would be possible to
divide the document collection into four non-overlapping subsets as visualized
in the Venn diagram of Figure 4.4. The figure contains additional informa-
tion about the size of each of the non-overlapping subsets. The collection in
question has 10,000 documents, of which 1000 contain the word “social”; only
11 documents are relevant to the query of which 1 contains the word “so-
cial”. If a document is taken at random from the set of documents that are
indexed with social, then the probability of picking a relevant document is
1/1000 = 0.0010. If a document is taken at random from the set of documents
that are not indexed with social, then the probability of relevance is bigger:
10/9000 = 0.0011. Since the user entered only one index term, the system has
only two options: either the documents indexed with the term are presented
first in the ranking, or the documents that are not indexed with the term are
presented first. In the example of Figure 4.4, it is wise to present the user first
with documents that are not indexed with the query term social, that is, to
present first the documents that are “dissimilar” to the query. Clearly, such a
strategy violates Luhn’s similarity criterion.

social RELEVANT
1

999 10
8,990

Fig. 4.4. Venn diagram of the collection given the query term social.

Notation
Let L be the random variable “document is relevant” with a binary sample
space {0, 1}, 1 indicating relevance and 0 non-relevance. Let a query contain
n terms. To each document n random variables are assigned and let Dk (1 ≤
k ≤ n) be a random variable indicating “the document belongs to the subset
indexed with the kth query term” with a binary sample space {0, 1}. We
concentrate on the kth query term and assume it to be social. We compute
the four conditional probabilities P (Dk|L) by the sizes of non overlapping
subsets caused by the term social. Figure 4.5 shows the Venn diagram of
documents indexed with social. The sizes are defined by R: the number of
relevant documents, nk: the number of documents indexed with social, rk:
the number of relevant documents that is indexed with social and N : the
total number of documents in the collection.

The Binary Independence Assumption
If the user enters two terms, for instance the terms social and political,
then there are four sets that must find their place in the final ranking:

108 Henk Blanken and Djoerd Hiemstra

P(Dk | L)=0=0

P(Dk | L =1)=0

P(Dk=1| L)=0

P(Dk=1| L =1)

R

N−R

social RELEVANT

=

=

=

=

R−r

R−r

n −rr

r
Rk

k

N−n −R+r

n −r

N−R

kk

k

k
k

k

k k

N−n −R+rk k

Fig. 4.5. Definition of probabilities.

social AND political, social NOT political, political NOT social

and NOT(social OR political). Each of these Boolean subsets can be rep-
resented by a pair of binary values, the first value indicating whether the
subset includes documents indexed with social, the second value indicating
whether the subset includes documents indexed with political. The four
Boolean subsets are represented by respectively (1, 1), (1, 0), (0, 1) and (0, 0).
Below we detail the probability computations; first we consider increasing the
number of query terms.

The number of non-overlapping subsets increases exponentially with the
number of query terms. To make the computation of the probability of rel-
evance possible in reasonable time, the binary independence assumption is
introduced:

In documents terms occur independently from each other.

In our example this means that the probability that a relevant document con-
tains both social and political is equal to the product of the probabilities
of the terms alone:

P(social, political |L=1) = P (social |L=1) P (political |L=1).

We would like to compute the probability that a document is relevant
given values for the random variables D1, D2, · · · , Dn. We will show that
in that computation the independence assumption will be used. First we re-
mark that the computation may involve many multiplications of sometimes
small probabilities. To prevent computational problems often a logistic trans-
formation of probabilities is used. Equation (4.4) is a variation of Bayes’
rule that uses a logistic transformation of probabilities, which is defined by
logit P (L) = log(P (L) / (1−P (L))). The transformation is strictly monotonic,
so ranking documents by (4.4) will in fact rank them by the probability of
relevance. Let L and Dk (1 ≤ k ≤ n) be defined as before. Given a query of
length n documents will be assigned the value defined by (4.5). Documents
with the same values for D1, D2, · · · , Dn should be ranked equally [25, 39].
Note that duplicate query terms retrieve the same subset of documents and
should be ignored in the formulas:

4 Searching for Text Documents 109

logit P (L=1|D1,· · ·, Dn) = log
P (L=1|D1, · · · , Dn)

P (L=0|D1, · · · , Dn)
(4.4)

= log
P (L=1)P (D1, · · · , Dn|L=1) /P (D1, · · · , Dn)

P (L=0)P (D1, · · · , Dn|L=0) /P (D1, · · · , Dn)

= log
P (D1, · · · , Dn|L=1)

P (D1, · · · , Dn|L=0)
+ logit P (L=1)

=

n
∑

k=1

log
P (Dk|L=1)

P (Dk|L=0)
+ logit P (L=1), (4.5)

and, regarding the latter term,

logit P (L=1) = log
P (L=1)

1 − P (L=1)
= log

P (L=1)

P (L=0)
.

The binary independence assumption is used to derive 4.5 from 4.4.

Implementation

Equation (4.5) needs some computation for subsets for which Dk = 0, that
is for non-matching query terms. In the vector space model non-matching
terms are assigned zero weight, which is usually convenient for implementation
reasons. Therefore,

∑n
k=1 log(P (Dk =0|L=1) /P (Dk =0|L=0)) is subtracted

from the score of each document subset. This does not affect the ranking of
the documents and assigns a score of zero to documents with no matching
terms:

P (L=1|D1, · · · , Dn) ∝
∑

k ∈match-
ing terms

log
P (Dk =1|L=1)P (Dk =0|L=0)

P (Dk =1|L=0)P (Dk =0|L=1)
. (4.6)

Relevance Computation

The values of nk and N are available to the system, but the values of rk and
R are only available if the user provides those to the system, typically by
marking some previously retrieved documents as relevant. If rk and R are not
available to the system, it is necessary to make some assumptions about them.
Robertson et al. [25] simply add 0.5 to each non-overlapping subset and Croft
et al. [5] assume a constant value for P (Dk|L=1). If the additional assumption
is made that the number of relevant documents is much smaller than the size
of the collection, more specifically: R, rk ≪ N,nk, then documents might be
ranked by a idf-like measure: log((N−nk) / nk) (see Section 4.4).

Discussion

The probabilistic model is one of the few retrieval models that do not need
an additional term weighting algorithm to be implemented (see Section 4.4).

110 Henk Blanken and Djoerd Hiemstra

Ranking algorithms are completely derived from theory. The probabilistic
model has been one of the most influential retrieval models for this very
reason. Unfortunately, in many applications the distribution of terms over
relevant and non-relevant documents will not be available. In these situations
probability of relevance estimation is of theoretical interest only.

The main disadvantage of the probabilistic model is that it only defines
a partial ranking of the documents. For short queries, the number of differ-
ent subsets will be relatively low. By looking at a term as a definition of a
set of documents, the probabilistic model ignores the distribution of terms
within documents. In fact, one might argue that the probabilistic model suf-
fers partially from the same defect as the Boolean model. It does not allow
the user to really control the retrieved set of documents. For short queries it
will sometimes assign the same rank to, for instance, the first 100 documents
retrieved.

4.3.3 The p-norm Extended Boolean Model

The p-norm extended Boolean model was developed by [29], following the
vector space model’s metaphor of documents in a multi-dimensional Euclidean
space. If the two terms social and political are again considered, the vector
space spanned by the terms can be easily visualized. If document vectors are
normalized to unit length, then the point (1,1) in the space represents the
situation that both terms are present with weight 1 (which implies a length
greater than one!). This is the desirable location for a document matching
the query social AND political. For the query social OR political on
the other hand, the point (0,0) representing the situation that both terms are
absent, is the undesirable location for a document.

Therefore, AND-queries should rank documents in order of increasing dis-
tance from the point (1,1) and OR-queries in order of decreasing distance
from the point (0,0). If the distances are properly normalized to fall between
0 and 1, then the following formulas apply. In the formula da denotes the
weight of the term a in a document with index representation d:

score(d, a OR b) =

√

(da − 0)2 + (db − 0)2

2

score(d, a AND b) = 1 −

√

(1 − da)2 + (1 − db)2

2
.

(4.7)

Salton [29] suggested two generalizations of the basic idea. First of all, query
term weights were included to reflect the importance of individual terms.
Secondly, the Euclidean distance measures were generalized by introducing
a parameter p for each set operator. The resulting p-norm model uses the
following formulas:

4 Searching for Text Documents 111

score(d,q OR(p)) =

(∑m
k=1(qk)p(dk)p

∑m
k=1(qk)p

)1/p

score(d,qAND(p)) = 1 −

(∑m
k=1(qk)p(1 − dk)p

∑m
k=1(qk)p

)1/p

.

(4.8)

For p = 2 the formulas will use the Euclidean distance measures as in (4.7).
For p = 1 the OR-operator and the AND-operator produce the exact same
results and the model behaves like the vector space model. If p → ∞ then the
ranking is evaluated according to the standard fuzzy set operators [44].

The p-norm model belongs to the best performing extended Boolean mod-
els. Based on recent publications about such models, the p-norm model is prob-
ably more popular for extended Boolean retrieval than other well-performing
algorithms. Greiff et al. [8] copied the behavior of the p-norm model in their
inference network architecture and Losada and Barreiro [15] propose a belief
revision operator that is equivalent to a p-norm case.

A disadvantage of the p-norm model is that it needs an additional term
weighting algorithm to be implemented.

4.3.4 Bayesian Network Models

A Bayesian network is an acyclic directed graph that encodes probabilistic de-
pendency relationships between random variables. A directed graph is acyclic
if there is no directed path A → · · · → Z such that A = Z. Probability theory
ensures that the system as a whole is consistent. Some alternative names for
Bayesian networks are belief networks, probabilistic independence networks,
influence diagrams and causal nets [21]. This is further explained by the fol-
lowing simple model suggested by Turtle [37, 38], and Ribeiro [24].

D

3TT2

Q

T1

Fig. 4.6. Simple Bayesian network.

The nodes in the Bayesian network of Figure 4.6 represent binary random
variables with values {0, 1}. Arrows indicate probabilistic dependency rela-
tionships, e.g., the arrow from node D to node T1 indicates that the value

112 Henk Blanken and Djoerd Hiemstra

for D influences the probability distribution of T1. A missing arrow indicates
probabilistic independence. So, T1 and T2 are independent. The random vari-
ables T1, T2, and T3 stand for query terms, in our case social, political,
and economic. If the document is relevant (D = 1), then the probability will
be high that some of the terms will be present in the document. The informa-
tion need of the user is indicated by Q. Expression Q = 1 indicates that the
need is satisfied. The occurrence of (some of) the terms in the document will
increase the probability that the information need is satisfied.

We now consider the joint probability distribution of the random variables
of the Bayesian network. By the chain rule of probability, the joint probability
is:

P (D,T1, T2, T3, Q) =

P (D)P (T1|D)P (T2|D,T1)P (T3|D,T1, T2)P (Q|D,T1, T2, T3).
(4.9)

Independence relationships in the Bayesian network are used to simplify
the joint probability distribution as follows. The second, third and fourth
term in (4.10) are simplified because T1, T2 and T3 are independent given
their parent D. The last term is simplified because Q is independent of D
given its parents T1, T2 and T3:

P (D,T1, T2, T3, Q) = P (D)P (T1|D)P (T2|D)P (T3|D)P (Q|T1, T2, T3).
(4.10)

We proceed using the network. If it is hypothesized that the document is
relevant (D = 1), the probability of query fulfillment P (Q=1|D=1) can be
used as a score to rank the documents:

P (Q=1|D=1) =
P (Q=1, D=1)

P (D=1)
(4.11)

=

∑

t1,t2,t3
P (D=1, T1=t1, T2=t2, T3=t3, Q=1)

P (D=1)
. (4.12)

The joint probability distribution defined by (4.10) can be used to calculate
the score. The only thing that is still missing is the specification of the prob-
abilities. These are shown in the form of tables in Fig. 4.7. For example, the
conditional probability P (Q|T1, T2, T3) is given in the lower left table. With
help of these tables, P (Q=1|D=1) can be computed for each document.
The table of P (Q|T1, T2, T3), however, shows a potential difficulty of this ap-
proach. The number of probabilities that have to be specified for a node grows
exponentially with its number of parents, so a query of n non-equal terms
requires the specification of 2n+1 possible values of P (Q|T1, T2, · · · , Tn). De-
spite the simplifying assumptions made by the conditional independencies,
the model has to make additional simplifying assumptions to make it possible

4 Searching for Text Documents 113

P (D=0) P (D=1) D P (T1 = 0) P (T1 = 1)
0.999 0.001 0 0.60 0.40

1 0.05 0.95
T1 T2 T3 P (Q=0) P (Q=1)
0 0 0 1.000 0.000 D P (T2 = 0) P (T2 = 1)
0 0 1 0.901 0.099 0 0.88 0.12
0 1 0 0.887 0.113 1 1.00 0.00
0 1 1 0.992 0.008
1 0 0 0.547 0.453 D P (T3 = 0) P (T3 = 1)
1 1 0 0.332 0.664 0 0.97 0.03
1 0 1 0.271 0.729 1 0.02 0.98
1 1 1 0.220 0.780

Fig. 4.7. Example specification of the model’s parameters.

to calculate the probability in reasonable time. Turtle [37, page 53] therefore
suggests the use of four canonical forms of P (Q|T1, T2, · · · , Tn) which can be
computed on the fly in linear time. The four canonical forms which are called
“and”, “or”, “sum” and “weighted sum” (“wsum” for short), are displayed in
Figure 4.8. The weights w1, w2 and w3 in the last columns are restricted to
positive values and should sum up to one.2

Pand(Q) Por(Q) Psum(Q) Pwsum(Q)
T1 T2 T3 0 1 0 1 0 1 0 1

0 0 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 2

3

1

3
1 − w3 w3

0 1 0 1 0 0 1 2

3

1

3
1 − w2 w2

0 1 1 1 0 0 1 1

3

2

3
1−w2−w3 w2+w3

1 0 0 1 0 0 1 2

3

1

3
1 − w1 w1

1 0 1 1 0 0 1 1

3

2

3
1−w1−w3 w1+w3

1 1 0 1 0 0 1 1

3

2

3
1−w1−w2 w1+w2

1 1 1 0 1 0 1 0 1 0 1

Fig. 4.8. Canonical forms of P (Q|T1, T2, T3).

Suppose for now that the values of P (T1|D), P (T2|D) and P (T3|D) are known
and given by p1, p2 and p3. The calculation of P (Q=1|D=1) by the canonical
forms of Figure 4.8 will give the same results as the following calculations,
which only require linear time:

2 The definition of “wsum” by Turtle [37] is more general.

114 Henk Blanken and Djoerd Hiemstra

Pand(Q=1|D=1) = p1 p2 p3

Por(Q=1|D=1) = 1 − (1−p1)(1−p2)(1−p3)

Psum(Q=1|D=1) = (p1 + p2 + p3) / 3

Pwsum(Q=1|D=1) = w1 p1 + w2 p2 + w3 p3.

(4.13)

The main advantage of the Bayesian network models [38] is that the network
topology can be used to combine evidence in a complex way. Many other
recent approaches to information retrieval seek for new ways of combining
evidence from multiple sources [7, 33, 40, 43].

R2

3TT2T1 4T

R1

D

Q3

Q1

Q2

I

and

or

sum

wsum

Fig. 4.9. Complex Bayesian network.

Figure 4.9 shows such a complex Bayesian network. In the network R1 and
R2 define different representations of the document, for instance one might
represent the document’s title words, whereas the other might represent words
from the abstract. The model’s probabilities might indicate that title words
are more important than words from the abstract. The nodes Q1, Q2 and Q3

represent different queries for the same information need, which is represented
by the node I. The query represented by Q2 is evaluated as or(and(T1 T2)

T3)), whereas the query Q3 is evaluated as wsum(T2 T3 T4).
There are two disadvantages of the Bayesian network models presented

in this section. Firstly, the approaches do not suggest how the probability
measures P (Ti|D), (1 ≤ i ≤ n) should be estimated. Instead, the approaches
suggest the use of Bayesian probabilities. In a nutshell, the Bayesian proba-
bility of an event is a person’s degree of belief in that event, which does not
have to refer to a physical mechanism or experiment. In contrast, the classi-
cal probability always implies such an experiment and therefore can always

4 Searching for Text Documents 115

be interpreted as a relative frequency. Considering probabilities as a person’s
degree of belief is quite practical if a medical expert system is built [9]. For
full text information retrieval systems however, experts are by definition not
available for specifying the probabilities of the network because it implies
manual indexing of the collection. The models therefore use one of the term
weighting algorithms that use term frequencies and document frequencies as
presented in Section 4.4. The joint probability distribution defined by (4.10)
can be used as follows to calculate the score.

A second disadvantage of the Bayesian network models presented in this
section is that the calculation of the probabilities generally takes exponential
time in the number n of non-equal query terms. The introduction of the
four canonical forms solves this problem, but it could have been solved by
the network topology. For instance the definition of Pand in (4.13) actually
suggests (conditional) independence between the probabilities p1, p2 and p3

and, for instance the definition of Pwsum suggests the use of a mixture model
topology [13]. By using the four canonical forms, the network is tractable
if it is used for inference, but it is still intractable if used for updating the
probabilities. Updating the probabilities might be an effective approach to
relevance feedback. Although the Bayesian network formalism comes with
efficient learning algorithms, these algorithms can in practice not be applied
in reasonable time on the network model presented in this section [36].

4.3.5 Language Model

A language model is a mathematical model of a language. Such a model can
be very simple, for instance a list with the words of a language together with
the frequency with which the word occurs in sentences. Language models
have been around for quite a long time. They were first applied by Andrei
Markov at the beginning of the 20th century to model letter sequences in
works of Russian literature [17]. Later on language models were also used to
model word sequences [34]. At the end of the 1970s language models were
first successfully used for automatic speech recognition. Recently, statistical
language models are very popular in the area of information retrieval. In this
case one builds a simple language model for each document in the collection
and given a query, documents are ranked by the probability that the language
model of each document generated the query. It may be instructive to describe
the process of generating the query from the model as if it were a physical
process.

An Informal Description: the Urn Model Metaphor

The metaphor of “urn models” [19] might give more insight. Instead of drawing
balls at random with replacement from an urn, we will consider the process
of drawing words at random with replacement from a document. Suppose
someone selects one document in the document collection; draws at random,
one at a time, with replacement, ten words from this document and hands

116 Henk Blanken and Djoerd Hiemstra

those ten words (the query terms) over to the system. The system can now
make an educated guess as from which document the words came from, by
calculating for each document the probability that the ten words were sampled
from it and by ranking the documents accordingly. The intuition behind it
is that users have a reasonable idea of which terms are likely to occur in
documents of interest and will choose query terms accordingly [22]. In practice,
some query terms do not occur in any of the relevant documents. This can be
modeled by a slightly more complicated urn model. In this case the person
that draws at random the ten words, first decides for each draw if he will draw
randomly from a relevant document or randomly from the entire collection.
The yes/no decision of drawing from a relevant document or not, will also
be assigned a probability. This probability will be called the relevance weight
of a term, because it defines the distribution of the term over relevant and
non-relevant documents. For ad hoc retrieval all non-stop-words in the query
will be assigned the same relevance weight. The user’s feedback might be used
to re-estimate the relevance weight for each query term.

Definition of the Corresponding Probability Measures

Based on the ideas mentioned above, probability measures can be defined to
rank the documents given a query. The probability that a query T1, T2, · · · , Tn

of length n is sampled from a document with document identifier D is defined
by:

P (T1, T2,· · ·, Tn|D) =
n

∏

i=1

((1−λi)P (Ti) + λiP (Ti|D)). (4.14)

In the formula, P (T) is the probability of drawing a term randomly from
the collection, P (T |D) is the probability of drawing a term randomly from
a document and λi is the relevance weight of the term. If a query term is
assigned a relevance weight of λi = 1, then the term is treated as in exact
matching: the system will assign zero probability to documents in which the
term does not occur. If a query term is assigned a relevance weight of 0, then
the term is treated like a stop word: the term does not have any influence
on the final ranking. It can be shown that this probability measure can be
rewritten to a tf.idf term weighting algorithm.

Parameter Estimation

It is good practice in information retrieval to use the term frequency and
document frequency as the main components of term weighting algorithms.
The term frequency tf(t, d) is defined by the number of times the term t occurs
in the document d. The document frequency df(t) is defined by the number
of documents in which the term t occurs. Estimation of P (T) and P (T |D)
in (4.14) might therefore be done as follows [10, 12]:

4 Searching for Text Documents 117

P (Ti = ti|D = d) =
tf(ti, d)

∑

t tf(t, d)
(4.15)

P (Ti = ti) =
df(ti)

∑

t df(t)
. (4.16)

From the viewpoint of using language models for retrieval and from the view-
point of the urn model metaphor, (4.16) would not be the obvious method
for the estimation of P (T). One might even argue that it violates the axioms
of probability theory, because P (Ti=ti1 ∪ Ti=ti2) �= P (Ti=ti1) + P (Ti=ti2)
if ti1 and ti2 co-occur in some documents. Therefore the following equation,
(4.16b), would be the preferred method for the estimation of P (T), where the
collection frequency cf(t) is defined by the number of times the term t occurs
in the entire collection:

P (Ti = ti) =
cf(ti)

∑

t cf(t)
=

∑

d tf(ti, d)
∑

d

∑

t tf(t, d)
. (4.16b)

The latter method was used by various authors [1, 18, 20, 22]. We try to
relate the language modeling approach to the traditional approaches, so we
will use former method. By using (4.16), the language modeling approach
to information retrieval gives a strong theoretical backup for using tf.idf term
weighting algorithms: a backup that is not provided by the traditional retrieval
models. The prior probability P (D=d) that a document d is relevant, might
assumed to be uniformly distributed, in which case the formulas above suffice.
Alternatively, it might be assumed that the prior probability of a document
being relevant is proportional to the length of the document as in:

P (D = d) =

∑

t tf(t, d)
∑

t

∑

d tf(t, d)
(4.17)

It can be included in the final ranking algorithm by adding the logarithm
of (4.17) to the document scores as a final step.

4.3.6 Ranking in Google

The World-Wide Web has become increasingly important. A Web page may
contain all kinds of information: text, images, and so on. We consider a Web
page to be a hypertext document, which means that besides text also the
HTML referencing mechanism (=link) is available. Many search engines have
been developed to address the huge document collection offered by the Web;
the dominant search engine is without doubt Google. This engine offers high
performance and ease of use. Ease of use is achieved by allowing the user
to issue natural language search terms that are subsequently processed as if
they were separated by ANDs. In the meantime other Boolean operators (OR,
NOT) are allowed via an advanced search interface. Actually, Google uses a
Boolean matching model.

118 Henk Blanken and Djoerd Hiemstra

The decisive factor, however, in the success of Google is probably its rank-
ing mechanism. An important part in this mechanism is the so-called PageR-
ank algorithm [3]. The algorithm is based on the citation index, which is
generally accepted in the academic world: the importance of a paper can be
judged by the number of references to it. In Web terms: the number of links
referring to a Web page.

Within the past few years many adjustments and modifications regarding
Google’s ranking mechanism have occurred. PageRank is only part of the
mechanism determining what results get displayed high up in a Google output.
For example, there is some evidence to suggest that Google is paying a lot of
attention these days to the text in a link’s anchor when deciding the relevance
of a target page. PageRank remains, however, an interesting algorithm. Below
we will describe one of the first versions of the algorithm.

PageRank

The original PageRank algorithm as described by Brin and Page is given by:

PR(A) = (1 − d) + d

(

PR(T1)

C(T1)
+· · ·+

PR(Tn)

C(Tn)

)

, (4.18)

where PR(A) is the PageRank of page A, PR(Ti) is the PageRank of a page
Ti, C(Ti) is the number of outgoing links (=references) from the page Ti, and
d is a damping factor in the range 0 < d < 1, usually d = 0.85.

So, the PageRank of a Web page is the sum of the PageRanks of all pages
referring to the page (its incoming links), divided by the number of links on
each of those pages (its outgoing links). This means that the influence of a
referring page is positively related to its PageRank and negatively by the
number of references it makes.

PR is a recursive function: To compute PR(A), we must know PR(Ti) of
all pages referring to A. But to compute these PR’s we need to know the PR
of referring pages (may be from page A), and so on. An iterative algorithm
solves this problem after assigning a starting PageRank value of 1 to each
page on the web.

Example

Consider a small Web consisting of three pages A, B, and C. Page A refers
to B and C; page B to A and C, and page C to B. Let us assume that
the damping factor d = 0.5. Actually, the damping factor appears to have a
significant influence on the convergence characteristics of the algorithm, but
for explanation purposes it is not relevant. Now we get:

4 Searching for Text Documents 119

PR(A) = 0.5 + 0.5

(

PR(B)

2

)

PR(B) = 0.5 + 0.5

(

PR(A)

2
+ PR(C)

)

PR(C) = 0.5 + 0.5

(

PR(A)

2
+

PR(B)

2

)

.

Solving these equations results in the following PageRank values for the pages:

PR(A) =
4

5
; PR(B) =

6

5
; PR(C) = 1.

The sum of all PR’s equals the total number of Web pages (= 3).
Page and Brin published a second version of the algorithm to compute

PR. In that version the term 1−d is divided by N , the total number of pages
on the web. It can be shown that the PageRanks now form a probability
distribution over the web pages, so they sum up to one.

Random Surfer Model

In their publications, Page and Brin describe the random server model which
is a justification for the PageRank formula. The random server visits a Web
page with a probability which is derived from the PR of the page. Now the
surfer randomly selects one link on the page and follows that link. However,
from time to time (probability (1−d)/N) the surfer gets bored, does not follow
a selected link, but jumps to another random page instead. In this way an
intuitive reasoning for the computation of PR results.

Remark

It may be commercially interesting for a Web page to get a high ranking. So
Google pays a lot of attention to obstruct efforts of Webmasters to elude the
system. For instance, Google introduced the concept of the “importance” of
the page. This may help to minimize the effect of artificially generated Web
pages which refer to a certain page in order to increase its ranking.

4.4 Term Weighting

Of the models presented in Section 4.3, the vector space model, the p-norm
model and the Bayesian network models all need an additional term weight-
ing algorithm before they can be implemented. Weighting of search terms is
the single most important factor in the performance of information retrieval
systems. The development of term weighting approaches is as much an art
as it is a science: Literally thousands of term weighting algorithms were used
experimentally during the last 25 years, especially within the Smart projects.

120 Henk Blanken and Djoerd Hiemstra

These algorithms often imply the use of some statistics on the terms, that is,
they somehow take into account the number of occurrences of terms in the
documents or in the index to compute rankings.

In this section we give an example of term weighting and choose the tf.idf
weights of the original Smart retrieval system. This system was developed at
Harvard University in the early 1960s and later developed at Cornell Univer-
sity. Salton [31] experimented with weighting algorithms that use the so-called
inverse document frequency. They suggested to combine it with the frequency
of a term within a document, the term frequency, tf for short. The assump-
tion is that if a term occurs frequently, it is likely to be characteristic for a
document.

The document frequency df of a term is defined by the number of docu-
ments a term occurs in. A term with a low document frequency is more specific
than a term with a high document frequency. Sparck et al. [35] suggested that
therefore, the system should treat matches on non-frequent terms as more
valuable than ones on frequent terms. An intuitive way to relate the matching
value of a term to its document frequency is suggested by a Zipf-like distribu-
tion of words in a vocabulary [17]. If f(df) = m such that 2m−1 < df ≤ 2m,
and N is the number of documents in the collection, then the weight of a term
that occurs df times is f(N)−f(df).3 A continuous approximation of f is the
logarithm to the base 2. The ranking algorithm is displayed in Figure 4.10.
The weight log(N/df) will be called the “inverse document frequency”: idf for
short.

cosine: score(d,q) =

P

m

k=1
dk · qk

p
P

m

k=1
(dk)2 ·

p
P

m

k=1
(qk)2

term weights: dk = qk = tf · log
N

df

Fig. 4.10. Original tf.idf with cosine normalization (tfc.tfc).

The introduction of the so-called tf.idf weights is one of the major break-
throughs of term weighting in information retrieval. Most modern weighting
algorithms are versions of the family of tf.idf weighting algorithms. Salton’s
original tf.idf weights perform relatively poor, in some cases even poorer than
simple idf weighting.

Salton [28] summarizes the results of 20 years of research into term weight-
ing with the Smart system. A total of 1800 different combinations of term
weight assignments were used experimentally, of which 287 were found to be

3 The adding of 1 used by Sparck–Jones [35] was ignored because it is no longer
used in later papers.

4 Searching for Text Documents 121

distinct. Experimental results of these term weighting algorithms on six doc-
ument collections were reported. Term weighting algorithms were named by
three letter combinations. The first letter indicated the tf component, the
second component indicates the idf component and the third component in-
dicates the normalization component. For instance, the three letter code tfc is
the code for the original tf.idf weights with cosine normalization introduced
above. They concluded that the best performing algorithm is one that maps
the document vectors differently in the vector space than the query vectors.
Figure 4.11 displays the tfc.nfc formula which uses a normalized tf factor for
the query term weights.

cosine: score(d,q) =

P

m

k=1
dk · qk

p
P

m

k=1
(dk)2 ·

p
P

m

k=1
(qk)2

document term weight: dk = tf · log
N

df

query term weight: qk =

„

0.5 +
0.5 tf

max tf

«

· log
N

df

Fig. 4.11. tfc.nfc term weighting algorithm.

4.5 Summary

A brief description of thirty years of IR research has been given. Two classes
of users are identified, namely professional indexers and searchers on one hand
and casual end users on the other. The formulation of queries for these two
groups is described and the process of deriving a query from a natural language
request is briefly sketched. Most attention has been paid to matching prob-
lems. The Boolean approach resulted in exact matching; other approaches
included ranking of resulting documents (which means inexact matching).
Several approaches to ranking are given. The vector space approach maps
documents and queries in a n-dimensional vector space. Relevance feedback
nicely fits into this approach. The probabilistic approach tries to estimate
the probability that a document is relevant for the user. If users are able to
characterize relevant (or irrelevant) documents this approach may be useful.
An example may be email documents where users are able to specify terms to
characterize spam. The Bayesian approach is useful when evidence from many
different sources have to be integrated. Think of evidence coming from an au-
dio, and image channel in a video. A language model is originally a (simple)
mathematical model of a language. In the meantime these models are heavily
used in IR. Systems built on these models are very competitive and perform as

122 Henk Blanken and Djoerd Hiemstra

well as, or better than, today’s top-performing algorithms. The World-Wide
Web is a collection of interconnected Web pages. Google searches the Web and
its ranking algorithm (PageRank) takes these connections (=hyperlinks) into
account. Some retrieval models perform dramatically better if query terms
that occur in documents get a weight. Some variants have been discussed, but
term frequency (how often does the term occur in a document) and document
frequency (in how many documents does the term occur) play an important
part.

4.6 Further Reading
This chapter briefly introduces probabilistic retrieval models. Fuhr [6] elabo-
rates on this topic.

IR deals with documents containing free text. For presentation purposes
free text is more and more embedded in a language like HTML. More re-
cent is the development to use XML to structure documents. This poses new
challenges to IR systems. For instance, how to deal with queries that contain
conditions related to both structure and content? Blanken et al. [2] give more
information on IR and structured data.

Retrieval models deal with structured queries, relevance feedback, ranking,
term weighting, and so on. There have been attempts to model these phenom-
ena into one framework [38]. Section 4.3.5 introduces the language model. An
extension of the model integrates structured queries and relevance feedback
into one mathematical framework [11].

Implementation aspects did not get much attention. Consider queries like:
how to store terms in an index, and how to access indexes? Efficiency is of
course an important topic. Witten et al. deal with indexing in Chapter 3 of
their book [42].

In this chapter, architectural aspects are totally neglected. Brin and
Page [3] give more information about architectural aspects of Google.

References
1. A. Berger and J. Lafferty. Information retrieval as statistical translation. In

Proceedings of the 22nd ACM Conference on Research and Development in In-
formation Retrieval (SIGIR’99), pages 222–229, 1999.

2. H.M. Blanken, T. Grabs, H.-J. Schek, and G. Weikum, editors. Intelligent Search
on XML data: Applications, Languages, Models, Implementations, and Bench-
marks, volume 2818. Springer: LNCS series, 2003.

3. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30:107–117, 1998.

4. G.G. Chowdhury. Introduction to modern information retrieval. Wiley, 1998.
5. W.B. Croft and D.J. Harper. Using probabilistic models of document retrieval

without relevance information. Journal of Documentation, 35(4):285–295, 1979.
6. N. Fuhr. Probabilistic models in information retrieval. The Computer Journal,

35(3):243–255, 1992.

4 Searching for Text Documents 123

7. N. Fuhr. Probabilistic datalog: A logic for powerful retrieval methods. In Pro-
ceedings of the 18th ACM Conference on Research and Development in Infor-
mation Retrieval (SIGIR’95), pages 282–290, 1995.

8. W.R. Greiff, W.B. Croft, and H.R. Turtle. Computationally tractable proba-
bilistic modeling of boolean operators. In Proceedings of the 20th ACM Confer-
ence on Research and Development in Information Retrieval (SIGIR’97), pages
119–128, 1997.

9. D.E. Heckerman. Probabilistic Similarity Networks. MIT Press, 1991.
10. D. Hiemstra. A linguistically motivated probabilistic model of information re-

trieval. In Proceedings of the Second European Conference on Research and
Advanced Technology for Digital Libraries (ECDL), pages 569–584, 1998.

11. D. Hiemstra and A.P. de Vries. Relating the new language models of information
retrieval to the traditional retrieval models. Technical Report TR-CTIT-00-
09, Centre for Telematics and Information Technology, 2000. http://www.ub.

utwente.nl/webdocs/ctit/1/00000022.pdf.
12. D. Hiemstra and W. Kraaij. Twenty-One at TREC-7: Ad-hoc and cross-

language track. In Proceedings of the seventh Text Retrieval Conference TREC-
7, pages 227–238. NIST Special Publication 500-242, 1999.

13. M.I. Jordan, editor. Learning in Graphical Models. Kluwer Academic Press,
1998.

14. G. Kowalski. Information Retrieval Systems: Theory and Implementation.
Kluwer Academic Publishers, 1997.

15. D.E. Losada and A. Barreiro. Using a belief revision operator for document
ranking in extended boolean models. In Proceedings of the 22nd ACM Confer-
ence on Research and Development in Information Retrieval (SIGIR’99), pages
66–73, 1999.

16. H.P. Luhn. A statistical approach to mechanised encoding and searching of
litary information. IBM Journal of Research and Development, 1(4):309–317,
1957.

17. C. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-
cessing. MIT Press, 1999.

18. D.R.H. Miller, T. Leek, and R.M. Schwartz. A hidden Markov model information
retrieval system. In Proceedings of the 22nd ACM Conference on Research and
Development in Information Retrieval (SIGIR’99), pages 214–221, 1999.

19. A.M. Mood and F.A. Graybill. Introduction to the Theory of Statistics, Second
edition. McGraw-Hill, 1963.

20. K. Ng. A maximum likelihood ratio information retrieval model. In Proceedings
of the eighth Text Retrieval Conference, TREC-8. NIST Special Publications,
to appear.

21. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

22. J.M. Ponte and W.B. Croft. A language modeling approach to information
retrieval. In Proceedings of the 21st ACM Conference on Research and Devel-
opment in Information Retrieval (SIGIR’98), pages 275–281, 1998.

23. M.F. Porter. An algorithm for suffix stripping. Program, 14:130–137, 1980.
24. B.A.N. Ribeiro and R. Muntz. A belief network model for ir. In Proceedings

of the 19th ACM Conference on Research and Development in Information Re-
trieval (SIGIR’96), pages 252–260, 1996.

25. S.E. Robertson and K. Sparck-Jones. Relevance weighting of search terms.
Journal of the American Society for Information Science, 27:129–146, 1976.

124 Henk Blanken and Djoerd Hiemstra

26. J.J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor,
The Smart Retrieval System: Experiments in Automatic Document Processing,
pages 313–323. Prentice Hall, 1971.

27. G. Salton. The SMART retrieval system: Experiments in automatic document
processing. Prentice-Hall, 1971.

28. G. Salton and C. Buckley. Term-weighting approaches in automatic text re-
trieval. Information Processing & Management, 24(5):513–523, 1988.

29. G. Salton, E.A. Fox, and H. Wu. Extended boolean information retrieval. Com-
munications of the ACM, 26(11):1022–1036, 1983.

30. G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

31. G. Salton and C.S. Yang. On the specification of term values in automatic
indexing. Jounral of Documentation, 29(4):351–372, 1973.

32. P. Savino and F. Sebastiani. Essential bibliography on multimedia information
retrieval, categorisation and filtering. In Slides of the 2nd European Digital
Libraries Conference Tutorial on Multimedia Information Retrieval, 1998.

33. F. Sebastiani. A probabilistic terminological logic for modelling information
retrieval. In Proceedings of the 17th ACM Conference on Research and Devel-
opment in Information Retrieval (SIGIR’94), pages 122–130, 1994.

34. C.E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

35. K. Sparck-Jones. A statistical interpretation of term specifity and its application
in retrieval. Journal of Documentation, 28(1):11–20, 1972.

36. H. Turtle and W.B. Croft. Evaluation of an inference network-based retrieval
model. ACM Transactions on Information Systems, 9(3):187–222, 1991.

37. H.R. Turtle. Inference Networks for Document Retrieval. PhD thesis, Centre for
Intelligent Information Retrieval, University of Massachusetts Amherst, 1991.

38. H.R. Turtle and W.B. Croft. A comparison of text retrieval models. The Com-
puter Journal, 35(3):279–290, 1992.

39. C.J. van Rijsbergen. Information Retrieval, second edition. Butterworths, 1979.
http://www.dcs.gla.ac.uk/Keith/Preface.html.

40. C.J. van Rijsbergen. A non-classical logic for information retrieval. The Com-
puter Journal, 29(6):481–485, 1986.

41. I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, 1994.

42. I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Indexing. Morgan
Kaufmann, 1999.

43. S.K.M. Wong and Y.Y. Yao. On modeling information retrieval with proba-
bilistic inference. ACM Transactions on Information Systems, 13:38–68, 1995.

44. L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

