
211J.M.P. Cardoso and M. Hübner (eds.), Reconfigurable Computing: From FPGAs  
to Hardware/Software Codesign, DOI 10.1007/978-1-4614-0061-5_9,  
© Springer Science+Business Media, LLC 2011

Abstract  The Cutting edge Reconfigurable ICs for Stream Processing (CRISP) 
project aims to create a highly scalable and dependable reconfigurable system con-
cept for a wide range of tomorrow’s streaming DSP applications. Within CRISP, a 
network-on-chip based many-core stream processor with dependability infrastruc-
ture and run-time resource management is devised, implemented, and manufactured 
to demonstrate a coarse-grained core-level reconfigurable system with scalable 
computing power, flexibility, and dependability. This chapter introduces CRISP, 
presents the concepts, and outlines the preliminary results of a running project.

9.1 � Project Partners

1.	 Recore Systems, The Netherlands (coordinator)
2.	 University of Twente, The Netherlands
3.	 Atmel Automotive GmbH, Germany
4.	 Thales Netherlands, The Netherlands
5.	 Tampere University of Technology, Finland
6.	 NXP Semiconductors, The Netherlands

Project Coordinator: Paul M. Heysters, Recore Systems, The Netherlands•	
Start Date: 2008-01-01•	
End Date: 2010-12-31•	
EU Program: 7th Framework Programme, FP7 ICT-2007.3.4, STREP Project •	
No. 215881
Global Budget: 4.4 M €•	

K. Sunesen (*)
Recore Systems, Enschede, The Netherlands
e-mail: Kim.Sunesen@recoresystems.com

Chapter 9
CRISP: Cutting Edge Reconfigurable  
ICs for Stream Processing

Tapani Ahonen, Timon D. ter Braak, Stephen T. Burgess, Richard Geißler, 
Paul M. Heysters, Heikki Hurskainen, Hans G. Kerkhoff,  
André B.J. Kokkeler, Jari Nurmi, Jussi Raasakka, Gerard K. Rauwerda, 
Gerard J.M. Smit, Kim Sunesen, Henk van Zonneveld, Bart Vermeulen,  
and Xiao Zhang 



212 T. Ahonen et al.

Global Funding by EU: 2.8 M €•	
Contact Author: Kim Sunesen (Recore Systems), Email: Kim.Sunesen@•	
recoresystems.com

9.2 � Introduction

Streaming applications have high market potentials and drive demands for recon-
figurable platform chips [1, 2]. It is becoming increasingly more difficult to predict 
which applications are going to be successful in the future. For this reason, applica-
tion providers are increasingly interested in programmable platform chips, which 
enable to anticipate on expected market trends and offer flexibility, if the market 
develops differently [3].

The Cutting edge Reconfigurable ICs for Stream Processing (CRISP) project 
develops a scalable and dependable reconfigurable multi-core system concept that 
can be used for a wide range of streaming applications in the consumer, automotive, 
medical and defense markets. The envisioned platform solution includes a massive 
multi-core processing architecture in combination with innovative design-time and 
run-time tools. CRISP addresses optimal utilization, efficient programming and 
dependability of reconfigurable many-cores for streaming applications. The main 
objective is to create a General Stream Processor (GSP) for tomorrow’s streaming 
applications. There are many challenges in developing massive multi-core platform 
solutions. CRISP addresses the fundamental underlying problems. The concerns 
driving this project are indirectly attributable to the miniaturizations of semiconduc-
tor technology and translate into three essential questions:

How can the intrinsic processing potential of a massive multi-core architecture be 
exploited optimally for a wide range of streaming applications?

How can multi-core systems be programmed efficiently?

How can large multi-core integrated circuits using deep submicron semiconductor 
processes be made reliable and self-repairing?

The CRISP project uses a holistic and pragmatic applied research approach to find 
answers to these questions. The project is organized around four central themes:

Streaming applications – Targeted applications range from low-end consumer 
electronics and automotive applications to demanding high-end medical and 
defense applications.

General Stream Processor (GSP) – The GSP is a dynamically reconfigurable 
many-core platform for streaming applications. The scalable architecture targets 
flexibility, high performance, low power and a small footprint.

Run-time mapping – Computational resources in a many-core can be efficiently 
utilized by resource allocation at run-time. This also enables upgrading, bug 
fixing and hardware fault diagnosis and repair at run-time.



2139  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

Dependability – Dependability and yield of deep-submicron chips are improved 
using new techniques for static and dynamic detection and localization of faults 
and (dynamically) circumventing faulty hardware.

Results of CRISP will include concrete hardware manufacturing as well as 
software development of tools, systems, and applications. This chapter dedicates a 
section to each of these themes. While the CRISP project is still running at the time 
of writing, preliminary results are achieved for all themes. The CRISP approach 
demonstrates the synergy of the four themes.

9.2.1 � Related FP Projects

The CRISP project can be seen as a successor of the 4S (“Smart chipS for Smart 
Surroundings”) FP6 project [4–6]. In 4S, reconfigurable computing proved to 
deliver high performance while being energy efficient, flexible, programmable, and 
run-time adaptable. More details can be found in the 4S project chapter of this book 
[4]. The results of 4S also revealed new research topics concerning scalability of 
multi-core systems and dependability of deep submicron technologies. On this 
background, three 4S project partners Atmel, Recore Systems, and University of 
Twente joined with NXP Semiconductors, Thales Netherlands, and Tampere 
University of Technology to form the CRISP Consortium to break new grounds in 
scalable and dependable high-performance computing using dynamically reconfig-
urable many-core platforms.

9.2.2 � Chapter Structure

The remainder of this chapter is organized along the themes of CRISP. The next 
four sections introduce and explain the concepts of streaming applications including 
the specific CRISP demonstrators, the CRISP General Stream Processor, run-time 
resource management, and dependability. Before concluding, we present prelimi-
nary results of CRISP and take a look towards the future.

9.3 � Streaming Applications

CRISP research focuses on efficient embedded hardware and software solutions for 
stream processing used in a wide range of streaming applications including base-
band processing for wireless communications, multimedia, sensor, medical image, 
and intelligent antenna signal processing. Streaming applications can be modeled as 
data flow graphs with streams of data items (the edges) flowing between computation 



214 T. Ahonen et al.

kernels (the nodes) [1, 7]. Streaming applications inherently hold locality and 
concurrency properties. Key characteristics include:

High data-throughput between computing intensive kernels;•	
Local processing on data items;•	
Hard real-time throughput guarantees;•	
Semi-static operation life-time.•	

The kernels and communication topology of the data flow graph, the data band-
width between kernels, data item sizes and real-time guarantees vary with every 
application.

In the consumer market there are strong trends towards integrating more and 
more streaming applications into a single device, ever faster changing standards and 
algorithms demanding ever more processing power, as well as a trend of rising 
upfront investments for silicon manufacturing. In the medical, defense, and security 
markets, there is a trend towards reducing development and maintenance costs as 
well as using state-of-the-art technology by choosing commercial off-the-shelf 
components. Together these trends fuel the need for reconfigurable ICs that com-
bine some of the flexibility known from Field Programmable Gate Arrays (FPGAs) 
with the speed, size, and energy advantages known from Application Specific 
Integrated Circuits (ASICs).

In CRISP, concrete streaming applications are worked out for digital beamform-
ing and Global Navigation Satellite System (GNSS) reception. Digital beamforming 
is chosen as a typical example of a high-end application with high throughput and 
computing demands. Digital beamforming is used in defense and space applications 
but is also becoming increasingly popular in consumer electronics applications such 
as femto-cell and wireless access gateways. Satellite navigation systems have 
become omnipresent in e.g. cars, smart phones, and wrist watches. GNSS is chosen 
as a typical example of a low-end consumer application. The ambition of the CRISP 
platform is to scale from low-end to high-end applications using the same recon-
figurable System-on-Chip (SoC) template. Both applications play their role in vali-
dating the success of the CRISP approach.

9.3.1 � Digital Beamforming

Digital beamforming is used in an increasing range of products like sonar systems, 
radar systems, radio astronomy telescope systems, and base stations for wireless 
telecommunications. In the CRISP project, the digital beamforming application is 
derived from the radar field [8, 9] where requirements are demanding in terms of 
both data throughput and processing power. For instance, a system with 64 antenna 
receive channels typically has input rates of tens of Giga bytes per second and 
requires several Giga Multiply Accumulate (MAC) operations per channel.

Figure 9.1 depicts the functional architecture of a beamformer system. In the 
analog part, signals are received from multiple antennas and converted into digital 
signals. In the digital part, antenna processing is applied to each signal for calibration 



2159  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

or equalization and beamforming combines signals into beams that are further 
processed. Below, in the section on preliminary results further details on how the 
digital processing of the beamformer system is mapped on the CRISP platform.

9.3.2 � Global Navigation Satellite System Application

Satellite navigation applications of today range from cheap, single-frequency receiv-
ers embedded in mobile phones to expensive, multi-frequency, centimeter-accurate 
scientific receivers. In the CRISP project, the GNSS application is specified and 
designed to support the existing U.S. based NAVSTAR Global Positioning System 
(GPS) [10] and the future Galileo (European satellite navigation system) [11] sig-
nals transmitted in the L1 frequency band.

Three main blocks in any GNSS receiver can be identified as (i) a radio front-end 
for analogue signal processing (shown as Radio in Fig. 9.2), (ii) a digital baseband 
processing part for navigation data decoding and signal time-of-arrival measure-
ments (shown as Digital Baseband Processing in Fig. 9.2), and (iii) navigation cal-
culus to determine position, velocity and time (PVT) (shown as Navigation Task in 
Fig. 9.2) [12].

The digital baseband processing tasks are: acquisition (search of satellites) by 
using long FFTs and tracking, data decoding and signal time-of-arrival measure-
ments by means of serial correlation. These receiver domains are present in all 
GNSS receivers through the whole range from inexpensive mass market devices to 
high-end scientific receivers. In the CRISP implementation, four to eight acquisi-
tion or tracking processes are expected to be active at any point in time.

Most of the current state-of-the-art GNSS receivers are using dedicated hardware 
for digital signal processing (ASIC technology), but the trend is going towards 
Software Defined Radio [13]. The Software Defined Radio approach is motivated by 
the challenges faced due to the modernization efforts in satellite navigation systems. 
The European Galileo system together with systems from Russia (GLONASS) and 
China (Compass) are emerging to compete with U.S. based GPS, which is also under-
going a modernization program. The specifications of new systems are still evolving 

ADC

Analog Processing Digital Processing

Antenna Array

Antenna
Processing

Inform.
Processing

Beam
Forming

Front-
End

Fig. 9.1  Functional architecture of a digital beamformer system



216 T. Ahonen et al.

and also the algorithm development in the field of multi-system reception is active. 
Thus, future receivers should have high computational power and flexibility for 
updates. A scalable platform with multiple reconfigurable processing tiles meets 
both of these requirements.

9.4 � General Stream Processor (GSP)

The General Stream Processor (GSP) is a scalable platform template for performing 
virtually any streaming application, from low-end consumer applications to high-
end applications. The GSP architecture is essentially a heterogeneous many-core 
system-on-chip (SoC) containing general purpose processor cores (e.g. ARM9™), 
reconfigurable cores (e.g. Xentium®), and memory tiles.

The proposed GSP architecture is designed with the principles of locality-of-
reference and concurrency in mind. Hence, different levels of storage are defined 
in the CRISP many-core architecture; local data memories are incorporated in 
Xentium processing tiles and distributed on-chip memory is available in the GSP 
by means of the Smart Memory Tiles. Moreover, concurrent processing of com-
putation kernels in the streaming applications can be performed on the many 
parallel Xentium processing tiles in the GSP. The Network-on-Chip and the 
distributed on-chip memories provide the communication infrastructure in the 
GSP to manage the data streams between the computation kernels in the streaming 
applications.

Within the scope of the CRISP project, a scalable GSP platform is built and sub-
sequently demonstrated using many multi-core devices that are connected to each 
other to create a large many-core system-of-chips.

The GSP demonstrator is built from two kinds of chips: a General Purpose pro-
cessor Device (GPD) and Reconfigurable Fabric Devices (RFD). The GSP depicted 
in Fig. 9.3 combines one GPD and five RFDs to build a many-core with 46 process-
ing cores: one ARM® processor and 45 Xentium DSP cores. The Xentium DSP core 
is explained in more detail below. The inter-chip connection is handled by a dedi-
cated Multi-Channel Port (MCP) chip-to-chip interface that extends the Network-
on-Chip (NoC) of the RFDs across multiple chips. The MCP enables off-chip 
communication and is instrumental in demonstrating scalability as it allows NoC 
communication to extend seamlessly across chip boundaries.

Fig. 9.2  Illustration of GNSS application tasks



2179  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

F
ig

. 9
.3

 
Il

lu
st

ra
tio

n 
of

 a
 G

SP
 d

em
on

st
ra

to
r 

co
nn

ec
tin

g 
on

e 
G

PD
 c

hi
p 

an
d 

fiv
e 

R
FD

 c
hi

ps
 in

 a
n 

of
f-

ch
ip

 n
et

w
or

k.
 T

hi
s 

G
SP

 c
on

ne
ct

s 
fo

rt
y-

fiv
e 

X
en

tiu
m

 D
SP

 
co

re
s 

an
d 

on
e 

A
R

M
®
 c

or
e 

in
 o

ne
 n

et
w

or
k.

 F
ig

. 9
.4

 a
nd

 F
ig

. 9
.5

 d
ep

ic
t, 

re
sp

ec
tiv

el
y,

 th
e 

G
PD

 a
nd

 th
e 

R
FD

 in
 m

or
e 

de
ta

il



218 T. Ahonen et al.

9.4.1 � General Purpose Processor Device (GPD)

The GPD is based on a traditional bus-based architecture and is depicted in Fig. 9.4. 
It is designed to run at a clock frequency of 200 MHz, and contains an ARM926 
processor, ROM, SRAM and a wide range of peripherals. Among the common 
interfaces of the GPD, special focus has been given to the chip-to-chip (C2C) inter-
face. In the GSP demonstrator (refer to Fig. 9.3) the C2C interface bridges the GPD 
with the packet-switched NoC of the RFDs. The GPD has full access to all resources 
of these RFDs using the C2C interface.

9.4.2 � Reconfigurable Fabric Device (RFD)

The RFD contains the reconfigurable hardware blocks of the GSP platform. The RFD 
is a tiled processor comprising a grid of tiles interconnected via a packet-switched 
NoC. It is a complete SoC with I/O, testing infrastructure, and clock and reset man-
agement. In CRISP, a twelve-tile SoC architecture is implemented. The diagram of the 
twelve-instance RFD is given in Fig. 9.5. The RFD contains the following operational 
components that can be used to implement streaming DSP applications:

9 Xentium processing tiles•	
2 Smart Memory Tiles (SMT)•	

GENERAL
PURPOSE

DEVICE

ARM926

Logic

Cache

Power
Clock
Reset

Test
Manager

JTAG

SRAM

ROM

OSC

EBIC2CSPII2CUSBUART

GPIO

Fig. 9.4  General purpose processor device



2199  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

Dependability Manager tile (DM) + Infrastructural IP•	
6 Multi-Channel Ports (MCP) + Die Link Interfaces (DLI)•	
Packet-Switched Network-on-Chip•	

The main communication infrastructure in the RFD is provided by the NoC. All 
Xentium processing tiles and memory resources are accessible via the NoC. 
Moreover, the NoC can be used to configure the clock manager of the RFD, and to 
access scan chains and memory Built-In Self-Test units of the Xentium tiles.

9.4.2.1 � Scalable On-Chip and Off-Chip Communication Infrastructure

A packet-switched NoC connects the tiles in the RFD. The NoC provides means for 
on-chip scalability of the GSP template. Hence, larger many-core SoCs can be 
designed by increasing the number of routers in the NoC.

In the GSP demonstrator, off-chip scalability is addressed by extending the NoC 
across the RFD chip boundaries using dedicated MCP interfaces. The MCP pro-
vides a transparent off-chip interface to bridge two RFDs or to connect the RFD 
with the C2C interface of the GPD. The MCP interfaces enable prototyping of large 
many-core systems-of-chips as depicted in Fig. 9.3.

Fig. 9.5  Reconfigurable fabric device



220 T. Ahonen et al.

Scaling the packet-switched NoC to larger dimensions results generally in 
increased NoC routing overhead because of the increasing number of hops in the 
NoC. Therefore, the CRISP project researches hierarchical addressing and NoC 
routing. The DLI provides means for hierarchical addressing to the GSP.

The NoC is designed to run at a clock frequency of 200 MHz (in 90 nm CMOS) 
and provides an on-chip bandwidth of 6.4 Gbps in each direction of each link. The data 
rate of the external MCP interface is 100 Mbps per external pin using a double data 
rate transfer scheme to reduce signal distortion at PCB level. With an input and output 
data width of 8 bits, the bandwidth of the MCP interface is 800 Mbps in each direction. 
The difference in bandwidth with the external inter-chip links results in higher com-
munication costs. Hence, on-chip communication between tiles is preferred over off-
chip communication between chips. The run-time resource management software 
takes those increased communication costs into account in the resource allocation.

9.4.2.2 � Xentium Tile

The Xentium tile is a programmable high-performance fixed-point digital signal 
processing (DSP) core. High-performance and energy-efficiency are achieved by 
optimizing parallel operation at instruction level.

All communication with the Xentium tile is performed using memory-mapped 
I/O; all modules in the Xentium tile are given a dedicated address range in the 
Xentium memory map.

The Xentium tile is designed to operate at a clock frequency of at least 200 MHz (in 
90 nm CMOS technology, worst case conditions). If required, methodologies from sim-
ple clock gearing up to sophisticated dynamic voltage and frequency scaling (DVFS) 
can be implemented locally in the Xentium tile to reduce the power consumption of the 
processing tile. The area requirement of the tile equipped with 16 kBytes of data mem-
ory and 8 kBytes of instruction cache is ~1.8 mm2 in 90 nm CMOS technology.

The core modules of the Xentium tile are the Xentium core, tightly coupled data 
memory and a NoC interface as shown in the block diagram in Fig. 9.6. Moreover, 
the Xentium tile contains additional logic that is used to control scan chains and 
memory Built-In Self-Test at run-time. The additional logic is part of the 
Dependability Infrastructural IP, described below in the section on Xentium tile 
dependability, where it is referred to as Xentium Tile Wrapper.

Xentium datapath:  The Xentium datapath contains parallel execution units and 
register files. The different execution units can all perform 32-bit scalar and vector 
operations. For vector operations the operands are interpreted as 2-element vectors. 
The elements of these vectors are the low and high half-word (16-bit) parts of a 
32-bit word. In addition several units can perform 40-bit scalar operations for 
improved accuracy. All operations can be executed conditionally. The Xentium 
datapath provides powerful processing performance:

800 16-bit Mega MACs per second or•	
400 32-bit Mega MACs per second or•	
400 16-bit complex Mega MACs per second•	



2219  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

Xentium control:  The control block in the Xentium core performs instruction 
fetching and decoding, and controls the execution units in the datapath. Instructions 
are fetched from Xentium-external memory (e.g. Smart Memory Tile) and are stored 
in the Xentium instruction cache. The programmer can indicate that a section of a 
Xentium program has to be prefetched by the control to ensure that the instructions 
of that section of the program are cached. This prevents cache misses during execu-
tion, which makes the execution time of the prefetched section of the program pre-
dictable (provided that the execution time of the data loads and stores in the section 
are predictable). The prefetch mechanism provides means to reconfigure the 
Xentium tiles in the RFD with the required DSP functions. The run-time resource 
management software (running on the GPD) can, for instance, issue a prefetch com-
mand in order to force one of the Xentium tiles in the RFD to reconfigure with new 
DSP functionality.

Xentium tightly coupled data memory:  The tightly coupled data memory is orga-
nized in parallel memory banks to allow simultaneous access by different resources. 
The data memory can be simultaneously accessed by the Xentium core as well as by 
the Xentium NoC interface. By default the data memory in the Xentium tile is orga-
nized in four banks of 4 kbytes each, implemented using SRAM cells. The size of 
the memory banks is parameterizable at design-time.

9.4.2.3 � Smart Memory Tile

In the RFD, the Smart Memory Tiles (SMT) provide shared memory that is acces-
sible through the NoC. The SMT contains parallel memory banks with a total memory 
size of 64 kBytes per memory tile in the RFD.

Besides being accessible with random access, the SMT has multiple reconfigurable 
Address Generation Units (AGU). The AGU can generate a sequence of addresses 

Fig. 9.6  Xentium tile



222 T. Ahonen et al.

autonomously. Multiple AGUs can be linked, giving the possibility to configure FIFO 
functionality or implement elastic buffering.

Memory tiles are key to efficiently implement reconfigurable many-core SoCs:

multiple memory tiles are used as distributed data memory to reduce the required •	
bandwidth to a single shared memory;
memory tiles are used as local code caches to store the binaries of reconfigurable •	
tiles in the SoC;
memory tiles can function as elastic buffers in the SoC (e.g. to buffer input or •	
output data streams from I/O interfaces).

9.5 � Run-Time Resource Management

Due to the scalability of the GSP platform, some configuration effort is required to 
load an application onto the processing elements. This includes the assignment of 
tasks to specific Xentium cores, and configuring the routing tables of the NoC with 
routing information. When a programmer performs these steps (manually) at design-
time, an assumption must be made on the availability of resources. This results in 
potential conflicts, when resources are in use by other applications, or when resour-
ces are unavailable due to hardware faults. A more extensive design-time analysis 
can only consider a limited number of use-cases, and event- or user-triggered actions 
are difficult to anticipate on. Any change in the application or in the platform that 
is not captured by the design-time analysis, results in incorrect or unpredictable 
behavior.

Even in application specific platforms, where less flexibility is required, resource 
allocation at run-time may have additional advantages in fault tolerance. For exam-
ple, when faults are detected by a postproduction test, otherwise disabled spare parts 
may be used to replace the malfunctioning components; this is called static redun-
dancy [14]. A chip then may still be usable if the number and type of faults are non-
critical. This approach is used in the manufacturing process of e.g. the Cell processor, 
where not all eight Synergistic Processing Elements are required, resulting in a higher 
production yield [15]. Such scenarios only work when the application mapping to the 
architecture can deal with these deficiencies. On the other hand, safety critical sys-
tems often use online fault detection mechanisms. With redundant resources avail-
able, the system may continue its operation if a detected fault can be isolated. Thus, 
to provide support for fault tolerance, a run-time resource manager should be in place 
to account for the free, allocated and faulty resources in the system.

Larger systems, such as heterogeneous computing clusters, use a distributed 
memory model to overcome the high communication overhead of shared memory 
systems. Such systems often use middleware to present the system in a homoge-
neous manner. However, distributed memory multi-processor systems are in general 
heterogeneous [16], and it may be quite expensive in terms of performance and 



2239  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

energy consumption to expose them as homogeneous systems. Keeping the property 
of homogeneity may even be considered impossible, due to asymmetric resource 
allocation for multiple applications simultaneously running in the system. Considering 
parallel programming, the most complex platform is a multi-user, heterogeneous 
cluster made up of processors of different architectures, interconnected via a hetero-
geneous communication network [16].

The GSP platform incorporates a distributed memory model, and besides the 
efficiency arguments, the Xentiums are not designed to run any middleware. 
Therefore, the GPD manages the resources of the connected RFDs in a centralized 
manner. Each application requests the amount and type of resources required for its 
execution. The resource manager determines whether these requests can be ful-
filled. The resource manager must shield the tasks that are already present on the 
platform from the interference caused by newly started applications. A resource 
management policy [17] should enforce such conditions:

•	 admission control – an application is only allowed to start if the system can allo-
cate, upon request, the resources the application required to meet its performance 
constraints;

•	 guaranteed resource provisions – the access of a running task to its allocated 
resources cannot be denied by any other task.

If an application cannot be added to the system without a violation of this policy, 
then the resources for the application will not be allocated. Hence, in that case the 
application is refrained from execution on the system by the run-time resource 
manager.

9.5.1 � The Resource Allocation Problem

The resource allocation problem concerns two dimensions: the spatial and tempo-
ral dimension. Explicitly considering the (relative) location of resources within a 
platform may avoid inefficient resource allocations, where efficiency may be mea-
sured in the amount of resources being allocated, or in energy consumption of the 
platform. Orthogonal to the spatial dimension, we consider the temporal dimen-
sion. This does impose some uncertainty, as we assume that we do not know in 
advance which applications are started or stopped at a certain time. Therefore, 
optimal solutions cannot be guaranteed because it depends on future events. The 
resource management algorithms thus resort to finding feasible solutions, while 
optimizing towards secondary objectives, such as minimal energy consumption or 
highest performance. Additionally, in the case that multiple applications may be 
executed simultaneously on the platform, a reasonable platform state has to be 
maintained that allows for more than one resource request to be fulfilled. Given 
these properties and the complexity of the problem, heuristics are used to tackle the 
problem.



224 T. Ahonen et al.

A graph representation of applications and platform is used to reason about the 
connectivity of the resource demands and provisions, respectively. In spatial resource 
allocation, the problem is to find specific locations to fulfill the resource require-
ments of the tasks T and communication channels C in an application A = (T,C). 
A platform P = (E,L) provides resources through the processing elements E, which 
are connected with the links L Í E × E. In Fig. 9.7, the graph of tasks T

i
 describes an 

application A, which needs to be mapped on a set of resources E
i
 composing platform P. 

Mapping M denotes the specific assignment of tasks to resources. Each task needs 
to communicate with at least one other task in the same application; otherwise, that 
task would compose a problem instance of its own. For each pair of communicating 
tasks, the communication infrastructure has to provide a communication route with 
enough bandwidth between their assigned processing elements. The combination of 
these problems may be formulated as a constraint optimization problem.

The topological aspect limits the number of possible task assignments. Therefore, 
exploiting the topology of the application and the topology of the platform vastly 
reduces the search space. The resource manager incorporates a heuristic that uses 
divide-and-conquer to break the resource allocation problem into sub-problems of 
variable size, depending on the density of the task graph.

The sub-problems that have to be solved are instances of the common generalized 
assignment problem, which is NP-hard [18]. Taking the communication requirements 
between tasks into account, for each subset of tasks T

i
 a subset of candidate elements E

i
 

is selected. For every e Œ E
i
, the cost of mapping each task t Œ T

i
 is calculated. This 

procedure is applied to each subset of tasks T
i
 in application A. Thus, following the 

topology within application A, mapping M is incremented by each mapping M
i
 of tasks 

T
i
 to a set of resources E

i
. In-depth details about the implementation are explained in 

[19]. If all tasks in the application can be mapped to a certain location in the platform 
and if sufficient communication resources are available, the application may be started.

Fig.  9.7  The resource allocation problem is partitioned in multiple sub-problems, using the 
structure of the task graph



2259  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

One important aspect of resource allocation is to maintain clear and consistent 
state information of the GSP. Therefore, the resource management system software 
needs to know which cores and links in the SoC are available to map tasks. By 
using feedback from dependability software as discussed in the next sections, the 
resource manager receives feedback regarding broken links and erroneous cores in 
the GSP [20].

9.6 � Dependability

The dependability of large scale multi-processor systems-on-chip is becoming an 
important concern, especially when the SoCs are used in mission-critical applica-
tions. Dependability is the extent to which a system can be relied upon to perform 
its intended functions under defined operational and environmental conditions at a 
given instant of time or given interval.

In the next sections, the CRISP approach for improving the dependability of the 
reconfigurable multi-core GSP is outlined. Dependability in the GSP focuses mainly 
on two aspects: making the NoC more dependable and improving the dependability 
of Xentium tiles. The first aspect ensures the correct operation of the NoC, which is 
a property that the second aspect heavily relies upon.

9.6.1 � Network-on-Chip Dependability

The NoC dependability test is a GPD-hosted utility for diagnosing (i.e. detecting and 
locating) faults within the communication infrastructure of the GSP [21]. By using a 
software-only approach and solely using the existing NoC for test access, the need 
for specialized Design for Test structures within the NoC is eliminated. This saves 
silicon area and increases the ease with which the system may be deployed.

9.6.1.1 � Network Fault Modeling

A model has been adopted which describes the NoC infrastructure in terms of 
inter-die and inter-router connections (link components) plus the switch compo-
nents inside the router (intra-router routing paths), any of which may be gener-
ally referred to as a (path) component C. Accordingly, an arbitrary path through 
the network can be represented by a series of interconnected path components, 
C

1
 to C

n
.

For example, the network path illustrated in Fig. 9.8a is modeled by the five com-
ponents C

1
 to C

5
 labeling the graph in Fig. 9.8b. Observe that C

1
, C

3
, and C

5
 are link 

components whereas C
2
 and C

4
 denote switch components. The overall fault status of 



226 T. Ahonen et al.

a path, P(C), is expressed as the logical AND of each constituent path component as 
given in Eq. 9.1, where C takes on the value of ‘0’ for faulty or ‘1’ for good:

	 1 2 3 4( ) • • • • .... • nP C C C C C C= 	 (9.1)

Therefore, P(C) = 1 denotes a fault-free path whereas P(C) = 0 indicates that at 
least one path component is faulty. A faulty path component is assumed to perma-
nently malfunction by either corrupting the packet payload or causing the packet 
itself to be miss-routed and/or dropped.

9.6.1.2 � Network Test Concept

The task of network fault diagnosis is inherently challenging due to the fact that the 
path components under test are deeply embedded within a complex interconnection 
structure and consequently their state cannot be directly observed. However, an 
examination of the path function P(C) truth table, shown in Fig. 9.8c, suggests a 
promising approach. Although there are 2n − 1 possible fault configurations (where 
n is the number of components for some arbitrary route) satisfying P(C) = 0, there is 
only a single state that satisfies P(C) = 1 which is when C

i
 = 1 for all i. The practical 

application of this is that whenever we can verify that a test packet has been success-
fully routed over some specified network path without being corrupted, it is assumed 
that the underlying components comprising that path are fault-free. So by routing 
packets through the network such that every component is part of at least one good 
path it is ultimately possible to render a complete network diagnosis on the assumed 
faulty until proven good basis.

To produce this outcome, we have proposed a route generation method based on 
an adaptation of the self-avoiding walk (SAW) [22]. The main idea is that random-
like paths are computed at a source subject to the requirement that a packet may 
not pass through a given path component more than once for a particular route. 

0
0
0
0
0

1

C1 C2 C3 C4 Cn P(C)

0     0     0     0 0
0     0     0     0 1
0     0     0     1 0
0     0     0     1 1
0     0     1     0 0

Non-observable

O
bs

er
va

bl
e

Controllable

R

Core

C1 C2

C3

C4 C5

S S

D D

NI

R

Core
NI

a b c

Fig. 9.8  Modeling of the NoC (a) Arbitrary path through the network (b) Path represented in 
terms of a connected component graph (c) Controllability and observability of path parameters



2279  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

Note that this restriction does not necessarily preclude multiple traversals via the 
same router. In addition, the following constraints are applied:

Explicitly defined start and end points;•	
The physical boundary of the network topology;•	
A maximum specified number of router hops.•	

The element of randomness afforded by SAW type routes proves to be an effec-
tive means for path discovery in the presence of unknown arbitrarily distributed 
faults. It is also this characteristic that makes the proposed approach highly ame-
nable to arbitrary network topologies.

9.6.1.3 � Diagnosing the NoC

Since the GPD is not embedded within the RFD(s) under test, the first phase of 
network diagnosis begins by testing the inter-die connectivity between the 
GPD and the RFD to which it is directly connected. This is accomplished by the 
GPD injecting one or more test packets into the RFD along a SAW type path that 
returns back to the GPD. Successful reception of a previously injected packet 
verifies the correctness of that link and enables further testing of the RFD along 
the fault-free path.

For testing the RFD, the previously described method is modified into a series 
of operations wherein the GPD writes to a designated core along one path fol-
lowed by a read from that same core along a different path, both based on a SAW. 
Terminal ports are selected systematically in order to cover all network-to-core 
connections. Router-to-router connections are exercised in a random fashion as a 
consequence of the SAW path generation for the targeted read/write operations. 
Each successful read operation establishes the fault-free status of the path compo-
nents along both the read and write paths used, as well as the associated network 
interface. Testing of RFDs indirectly linked to the GPD via one or more of the 
other RFDs requires additional tests aimed at verifying the usability of all inter-
RFD links. The final diagnosis result includes the faults from every testable path 
component.

9.6.2 � Xentium Tile Dependability

The dependability approach used for the Xentium tiles in the RFD adopts several key 
concepts from prior research to enhance the dependability of homogeneous multi-
processor architectures, including the “Know-Good-Die/Tile” concept, and concepts 
related to test reuse and majority-voting among identical processing tiles [23]. When 
we apply identical test stimuli to fault-free tiles-under-test, we expect to obtain iden-
tical test responses from these as they are all identical. If at least three tiles are tested 
in parallel, we can identify a faulty tile from the differences in its test responses 



228 T. Ahonen et al.

compared to the others, as long as no more than a minority of tiles-under-test (in this 
example one tile out of three tiles tested) becomes faulty at a time.

To permit periodic testing of tiles at run-time this method however requires addi-
tional, on-chip infrastructural IP that has to be designed and integrated in the RFD 
architecture at design-time. Our RFD dependability architecture includes a depend-
ability wrapper around each Xentium tile, and a Dependability Manager on each 
chip [24]. The wrapped tiles are connected to the NoC in the same way as the origi-
nal tiles were.

During dependability testing, the NoC is used as a test access mechanism to 
transport test stimuli to and test responses from the wrappers of the tiles-under-test. 
The NoC makes no difference between the transportation of functional data and 
dependability test data. Since the total bandwidth of the NoC therefore has to be 
shared between the application’s functional data and the dependability infrastruc-
ture’s test data, dynamically pausing and resuming of the dependability test is sup-
ported and used to ensure that the required NoC bandwidth is always available for 
the running applications. This prioritization of functional data over dependability 
test data ensures that the dependability tests do not impact the performance of the 
user application(s).

Figure  9.9 shows the RFD dependability architecture for the Xentium tiles, 
including its most important components: the Dependability Manager (DM), the 
Xentium tile wrappers around the Xentium tiles, and the GPD executing the Xentium 
tile dependability software.

Test
Vectors

Network Interface

Xentium
Wrapper
Control

Test Responses

Dependability
Manager

GPD

FSM N
I

TRE N
I

TPG N
I

DM control via
MCP and NoC

R

RR

R R

Xentium
Tile

NI
wrapper

Xentium
Tile

NI
wrapper

Xentium
Tile

NI
wrapper

RRR

Fig. 9.9  GSP dependability architecture for the Xentium tiles



2299  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

9.6.2.1 � Dependability Manager

The DM shown in Fig. 9.9 consists of a test pattern generator (TPG), a test responses 
evaluator (TRE) and a finite state machine (FSM) [25, 26]. The FSM controls the 
DM and communicates with the dependability software running on the GPD. 
Deterministic test patterns for the Xentium tile(s) (with 32 parallel scan-chains) 
have been generated at design-time using a commercially available tool. The TPG 
in the DM reproduces these deterministic test patterns using a linear-feedback shift 
register combined with a reseeding technique.

A phase-shifter packs the test stimuli into 32-bit words to suit the 32-bit wide 
NoC. Finally, each bit of such a 32-bit word fills one scan flip-flop in each of the 32 
scan chains inside the Xentium tile. The GPD, DM and Xentium Tiles are con-
nected to the NoC through NoC-routers (R). The silicon area of the DM is approxi-
mately one percent of the total area of the RFD.

9.6.2.2 � Xentium Tile Wrapper

The Xentium Tile Wrapper allows switching the operating mode of the Xentium tile 
between functional mode and dependability test mode via commands issued by the 
DM over the NoC [24]. In functional mode, the wrapper transparently delivers data 
from the NoC to the functional inputs of the Xentium tile, and passes data from the 
functional outputs to the NoC. In dependability test mode, it delivers data from the 
NoC to the test inputs (scan-chain inputs and primary inputs) of the tile. A similar 
operation is performed at the output of the tile where scan-chain outputs and pri-
mary outputs are captured and passed to the NoC by the wrapper.

9.6.2.3 � Tile Processor Dependability Software

The tile processor dependability software is an essential part of the dependability 
enhancement approach for the GSP. This software executes on the GPD, where it 
starts the background test activities. It requests sufficient RFD resources (i.e. NoC 
bandwidth and Xentium tiles) to use the DM together with two or three available 
Xentium tiles. The run-time resource manager subsequently allocates and config-
ures the required communication routes between these components. The DM itself 
does not require knowledge of which cores it is testing. This is completely deter-
mined by the routes that are configured in the NoC.

The test sequence is started when the GPD writes into an FSM control register in 
the DM. The DM subsequently switches the wrappers of the chosen Xentium tiles 
to dependability test mode, preparing the Xentium tiles for receiving the test stimuli 
generated by the TPG of the DM. The test stimuli are subsequently multicasted via 
the NoC to the target Xentium tiles, and the test responses are collected and com-
pared in the TRE of the DM.



230 T. Ahonen et al.

This test sequence is halted as soon as a difference is detected in the test responses 
from the Xentium tiles under test, or as soon as the test is completed. The Xentium 
tile that generated a test response that differs from the others is identified as the 
faulty tile. This information is encoded into a fault status report that can be retrieved 
by the dependability software executing on the GPD. The faulty Xentium tile can 
then be isolated or removed from the usable resource table of the run-time resource 
management software. If no test-response differences are detected during the 
dependability test, all tested tiles are considered fault-free, and made available to 
the run-time resource management software.

This dependability test process is repeated until all Xentium tiles are tested. This 
way, the faulty tiles, if any, are identified and isolated from the system ensuring that 
the remaining Xentium processing tiles are fault-free. Depending on the depend-
ability requirements (i.e. acceptable mean system down time / unavailability) from 
the end user, the dependability test activities can be performed at a desired 
frequency.

9.7 � Preliminary Experimental Results

Reaching the ambitious objectives of the CRISP project involves software develop-
ment, digital hardware design and manufacturing of two ICs and one Printed Circuit 
Board (PCB). The key result is prototyping the GSP platform, consisting of 45 
Xentium DSP cores with run-time resource management and dependability support 
running both high-end and low-end streaming DSP applications. At the time of 
writing, the project is still running and, therefore, only preliminary results are 
described here. We describe, first, the results of the hardware manufacturing and, 
second, how the applications will be demonstrated on the GSP prototype. 
Demonstration of the applications on the manufactured GSP hardware unites all 
topics (i.e. reconfigurable multi-core SoC, low-end and high-end streaming applica-
tions, run-time resource management, and dependability) of the CRISP project.

9.7.1 � Hardware Manufacturing

The CRISP project implements a pragmatic research and engineering schedule to 
research, conceive, implement, and manufacture two ICs and a PCB. At the point of 
writing, the PCB and the GPD chip are ready and the RFD dies have just left the 
foundry.

The PCB integrates five RFD chips and one GPD chip on a single board and pro-
totypes the instance of the GSP architecture illustrated in Fig. 9.3, with 45 Xentium 
cores and one ARM® core. On the PCB, the NoCs for the RFDs are interconnected 
via the Multi Channel Port (MCP) interfaces. Additionally, the PCB serves as a 
verification platform for implementing demonstrators and integrates various I/O 



2319  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

interfaces and an FPGA. The FPGA is connected to all RFDs via MCP interfaces. 
Hence, direct access to the NoC of every RFD is provided via the FPGA.

The GPD chip is manufactured in UMC 130  nm CMOS Technology, runs at 
200 MHz, and is delivered in a 400-pin BGA package. The supply voltage is 1.2V 
core and 3.3V I/Os. The estimated power dissipation is 400mW.

The RFD chip is manufactured in UMC 90 nm CMOS Technology. The die size 
is 44 mm2 with 344 kBytes memory on-chip. The RFD will run at 200 MHz and will 
be delivered in a 400-pin BGA package. The supply voltage is 1.0V core and 3.3V 
I/Os. To manage the complexity of the RFD design, a hardmacro was created for the 
Xentium Tile Processor Cores. The RFD integrates nine Xentium hardmacros.

Figure 9.10 gives an overview of the chip layout. The nine big grey blocks are 
Hardmacros of the Xentium Processing Tile. Two Memory Tiles are located in the 
middle and clock and power blocks are found in the lower left corner. The logic 
of the dependability manager and NoC is laid out between the processing and 
memory tiles.

9.7.2 � Beamforming Demonstrator

The CRISP beamforming demonstrator has 16 receive channels and computes 8 
beams. Figure  9.11 depicts the architecture of the beamformer on the General 
Streaming Processor (GSP) platform. The demonstrator uses all five RFDs. Four 
RFDs are used for the signal processing of the 16 receive channels; each of these 
RFDs does antenna processing for four receive channels at an input rate of 1.28 
Gbps. The beam forming function is implemented on the fifth RFD, combining the 
data from the 16 processed receive channels to compute eight beams at an output 
rate of 640 Mbps. The ongoing implementation maps the processing tasks onto 39 
of the 45 DSP cores.

Fig. 9.10  Layout of 
reconfigurable fabric device 
(RFD) chip



232 T. Ahonen et al.

F
ig

. 9
.1

1 
Il

lu
st

ra
tio

n 
of

 a
 m

ap
pi

ng
 o

nt
o 

th
e 

G
SP

 p
la

tf
or

m
 o

f 
th

e 
16

 c
ha

nn
el

 /
 8

 b
ea

m
s 

di
gi

ta
l 

be
am

fo
rm

in
g 

de
m

on
st

ra
to

r. 
Fo

ur
 R

FD
s 

ar
e 

us
ed

 f
or

 a
nt

en
na

 
pr

oc
es

si
ng

; 
ea

ch
 p

ro
ce

ss
in

g 
th

e 
in

pu
t 

of
 f

ou
r 

ch
an

ne
ls

 a
t 

an
 i

np
ut

 r
at

e 
of

 1
.2

8 
G

bp
s.

 O
ne

 R
FD

 i
s 

us
ed

 t
o 

fo
rm

 e
ig

ht
 b

ea
m

s 
fr

om
 t

he
 s

ix
te

en
 c

ha
nn

el
s 

at
 a

n 
ou

tp
ut

 r
at

e 
of

 6
40

 M
bp

s



2339  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

9.7.3 � GNSS Demonstrator

The GNSS application is demonstrated on the CRISP verification platform containing 
five RFDs using a commercial off-the-shelf radio front end. The resulting digital 
data stream received by the front end is fed to the verification platform and inserted 
in the RFD using the MCP interface.

The tasks of the GNSS application are illustrated in Fig. 9.2. All digital baseband 
processing can be done on one RFD. The parallel digital signal processing tasks are 
assigned to multiple Xentium processing tiles in the RFD and include acquisition 
(search of satellites using long FFTs) and tracking (data decoding and signal time-
of-arrival measurements by means of serial correlation). This part of the application 
benefits from the parallel nature of RFD. The parallel tasks are preceded by a single 
task that preprocesses the input signal to ease the computational burden of the paral-
lel tasks.

Figure 9.12 illustrates an example mapping of the GNSS application to the RFD 
and GPD. Three kinds of processes are mapped onto the RFD. Input preprocessing 
is closest to the inserting point of the input stream coming from the GNSS RF front 
end through the FPGA. Two acquisition processes are executed in the upper part of 
the RFD and four processes tracking satellite signals are executed on the right half. 
The outcome of the acquisition and tracking is forwarded to a single task of naviga-
tion, which is performed on the GPD. GPD forwards the navigation solution to an 
external PC via a serial connection. The implementation steps towards the CRISP 
GNSS application are explained in more detail in [27, 28]. The GNSS application is 
able to solve the position, velocity, and time of the receiver when four or more satel-
lites are tracked successfully [12]. Thus, the receiver application should always 
(after an initial acquisition stage) have four or more cores running a tracking pro-
cess to enable navigation.

9.7.4 � Enabling Graceful Degradation by Reconfiguration

Dynamic resource management allows for fault-tolerance in the case that hardware 
faults can be circumvented, using a disjoint set of resources. However, the amount 
of resources required by the application does not change. In case that the platform 
is either seriously compromised, or its available resources are near depletion, appli-
cations may be refrained from execution. For robustness reasons, even more flexi-
bility may thus be added to an application. By providing multiple quality-of-service 
levels the probability may increase that an application is allowed to start, albeit in a 
reduced form. This scenario is already demonstrated within the CRISP project with 
the GNSS application.

The next challenge is to seamlessly switch between the quality-of-service levels 
provided by an application. Scenarios exist where it is preferred to scale down run-
ning applications to allow additional functionality to be performed on the same 



234 T. Ahonen et al.

platform. In other scenarios, hardware faults may trigger a reconfiguration of an 
application, such that it gracefully degrades by running in a reduced mode on a 
(slightly) different set of resources.

9.8 � Outlook

New projects such as STARS [29] and NEST [30] have been launched to continue 
research along the path set out by CRISP and to pick up on CRISP results. 
Furthermore, CRISP motivations and goals remain highly relevant. It is expected 
that conventional computing architectures will be replaced by more flexible recon-
figurable multi-core computing platforms and streaming applications are expected 
to create a huge drive and momentum for this shift.

The CRISP project anticipates on this expected architectural shift by researching 
streaming applications, reconfigurable IP cores, interconnect technologies, run-time 
tools and dependability issues. Europe is a major player in the embedded arena 
today and this holistic approach is necessary for European companies to achieve world 
leading positions in computing solutions and products for streaming applications. 

Fig.  9.12  Illustration of mapping of GNSS tasks onto the GSP using seven Xentiums on one 
RFD



2359  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

CRISP aims at the important domain of streaming applications, which is expected 
to grow faster than other application domains with the adoption of new standards. 
The CRISP project will deliver a novel reconfigurable multi-core computing 
platform. These types of platforms are urgently needed, since hardwired logic (i.e. 
ASIC) is getting prohibitively expensive for an ever wider range of products. 
Currently, many products make use of fine-grained reconfigurable FPGAs. Their 
usage, however, results in severe overheads unacceptable for most mass market 
applications. These overheads are related to device area, power consumption, and 
unit costs.

Embedded systems increasingly profit from the integration of signal processing 
capabilities of new energy-efficient multi-core architectures with added flexibility. 
By combining techniques from application domain and computer engineering, 
embedded systems can improve the production of solutions both concerning costs 
and time:

Reduction of costs – by reusing IP building blocks in SoC designs, the development and 
verification costs of a design cycle will be reduced and design productivity be 
increased. Ultimately, reconfigurable multi-core platform chips can be used for a 
large variety of applications by reconfiguring the same chip after fabrication;

Reduction of time to market – by using energy-efficient general-purpose multi-core 
architectures as proposed in CRISP and abstracting from the application-specific 
platform, the development time of new solutions can be drastically reduced.

Moreover, the ability to reconfigure a system and to use this capability to make 
systems dependable is extending product lifetime. Because users can reconfigure 
their purchased product to increase service levels, hardware can be used for a longer 
period of time. Furthermore, built-in dependability techniques allow for graceful 
degradation. Because of these aspects, products will have a longer life cycle, become 
cheaper, and be less of a burden to the environment.

Dependable and reconfigurable multi-core systems will serve various application 
domains ranging from consumer electronics to mission critical space applications. 
For instance, in space applications, extending lifetime under harsh conditions, and 
easy upgrading are important aspects when designing dependable and reconfigu-
rable systems. However, for consumer electronics faster time-to-market is a differ-
entiator to win the competition. Both orthogonal application domains focus on 
improving dependability in combination with reconfigurable multi-core hardware, 
however, motivated by partly different grounds.

9.9 � Conclusions

The holistic and pragmatic approach of CRISP includes hardware design and manu-
facturing as well as development of application, system, and development software. 
This approach enables research into fundamental trade-offs in the intersection of 



236 T. Ahonen et al.

hardware and software where reconfigurable computing resides. The scalable NoC-
based many-core General Stream Processor (GSP) architecture developed in CRISP 
delivers sufficient and scalable stream processing performance for a wide range of 
applications in both high- and low-end markets. The GSP is equipped with a sophis-
ticated run-time resource management system that can dynamically change the allo-
cation of application tasks to processing cores and data transfers to communication 
channels. The run-time resource management turns the GSP into a flexible and effi-
ciently programmable coarse-grained reconfigurable computing platform. Moreover, 
CRISP combines the run-time management with dedicated dependability hardware 
and software to create a self-repairing dependable GSP. The approach is a novel 
way to exploit the inherent redundancy of NoC-based many-cores and to address 
tomorrow’s predicted issues with accelerated degradation of ICs as processing 
geometries continue to shrink.

Acknowledgments	 CRISP is a multi-disciplinary endeavor. To achieve the project objectives, 
highly specialized knowledge is required about applications, front-end and back-end hard-
ware design as well as development and system software. The work reported in this chapter is 
a team effort and the authors would like to thank the many experts from the consortium, who 
worked on CRISP including Sébastien Baillou, Helmut Baur, Arjan Boeijink, Werner Brugger, 
Christoph Büchler, Jan de Wilde, Jeroen Flierman, Michael Günther, Matthias Hofinger, Klaas 
Hofstra, Henk Holdijk, Philip Hölzenspies, Thomas Janz, Erik Karstens, Ben Kemper, Roy 
Krikke, Pieter Maier, Rene Meerman, Rik Portengen, Jordy Potman, Johannes Schäfer, Jeroen 
Scholten, Hans Schurer, Lodewijk Smit, Hermen Toersche, Rene van Hees, and Mark 
Westmijze. Further, the authors would like to thank the European Community’s Seventh 
Framework Programme FP7/2007-2013 for supporting the CRISP project, and the project 
officers and project reviewers for their support and help in guiding the project towards its 
objectives.

References

	 1.	Dally W. et al. Stream Processors: Programmability with Efficiency, ACM Queue, pp. 52–62, 
2004.

	 2.	U.J. Kapasi, S.R. Rixner, W.J. Dally, B. Khailany, J.H. Ahn, P. Mattson, and J.D. Owens. 
Programmable stream processors. In IEEE Computer 36(8), pp 54–62, 2003.

	 3.	 International Technology Roadmap for Semiconductors (ITRS), http://www.itrs.net.
	 4.	4S Project Chapter of this book.
	 5.	4S Project web pages http://www.recoresystems.com/research/.
	 6.	G.Smit, E. Schuler, J. Becker, J. Quevremont, and W. Brugger: Overview of the 4S project. In 

Proc. 7th International Symposium on System-on-Chip (SoC’05), 2005.
	 7.	M.J.G. Bekooij et  al. Dataflow Analysis for Real-Time Embedded Multiprocessor System 

Design. In Dynamic and Robust Streaming between Connected CE Devices, Kluwer, 2005.
	 8.	H. J. Visser, Array and phased array antenna basics. Chichester, West Sussex, UK: Wiley, Sep. 

2005.
	 9.	M. I. Skolnik, Introduction to Radar Systems, 3 rd ed. New York, NY, USA: McGraw-Hill, 

2001.
	10.	GPS Interface Control Document (ICD-GPS-200D), IRN-200 C-004, U.S. Air Force, 2004.
	11.	“Galileo Open Service, Signal In Space Interface Control Document (OS SIS ICD),” European 

GNSS Supervisory Authority, draft 1, 2008.



2379  CRISP: Cutting Edge Reconfigurable ICs for Stream Processing

	12.	M. Braasch and A. J. Van Dierendonck. GPS Receiver Architectures and Measurements. In 
Proc. of the IEEE, vol. 87, no. 1, pp. 48–64, 1999.

	13.	D. Akos. The role of Global Navigation Satellite System (GNSS) software radios in embedded 
systems. In GPS Solutions, 2003.

	14.	S.K. Eo, S. Yoo, K.M. Choi. An industrial perspective of power-aware reliable SoC design. In 
Proc. Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 555–557. IEEE 
Computer Society Press, 2008.

	15.	J. Kurzak, A. Buttari, P. Luszczek, and J. Dongarra. The Playstation 3 for High-Performance 
Scientific Computing. In Computing in Science & Engineering, Vol. 10, Issue 3, IEEE 
Computer Society, 2008.

	16.	J. Dongarra, A. Lastovetsky. An overview of heterogeneous high performance and grid com-
puting. In Engineering the Grid: Status and Perspective, 2006.

	17.	O.M. Moreira, M.J.G. Bekooij. Self-timed scheduling analysis for real-time applications. In: 
EURASIP Journal on Advances in Signal Processing, vol. 2007, pp. 24–37, 2007.

	18.	M.L. Fisher, R. Jaikumar, and L.N.V. Wassenhove. A multiplier adjustment method for the 
generalized assignment problem. In Management Science 32(9), pp 1095–1103, 1986.

	19.	T.D. ter Braak, P. K.F. Hölzenspies, J. Kuper, J. L. Hurink, and G. J.M. Smit. Run-time Spatial 
Resource Management for Real-Time Applications on Heterogeneous MPSoCs. In Proc. 
Conference on Design, Automation and Test in Europe (DATE), pp. 357–362, 2010.

	20.	T.D. ter Braak, S.T. Burgess, H. Hurskainen, H.G. Kerkhoff, B. Vermeulen, X. Zhang: On-Line 
Dependability Enhancement of Multiprocessor SoCs by Resource Management. In Proc.12th 
International Symposium on System-on-Chip (SoC’10), p103–110, 2010.

	21.	S. Burgess, T. Ahonen, and J. Nurmi: Software Based Approach to Fault Diagnosis for Multi-
Die Networks-on-Chip. In Proc. System, Software, SoC and Silicon Debug, 2010.

	22.	B. Hayes. How to avoid yourself. In American Scientist, vol. 86, no. 4, 1998.
	23.	H.G. Kerkhoff, O. Kuiken, and X. Zhang: Increasing SoC Dependability via Known Good Tile 

NoC Testing. In Proc. Conf. on Dependable Systems and Networks (DSN’08), 2008.
	24.	X. Zhang, H.G. Kerkhoff, B. Vermeulen. On-Chip Scan-Based Test Strategy for a Dependable 

Many-Core Processor Using a NoC as a Test Access Mechanism. In Proc. 13th Euromicro 
Conference on Digital System Design (DSD), 2010.

	25.	O.J. Kuiken, X. Zhang and H.G. Kerkhoff. Built-In Self-Diagnostics for a NoC-Based 
Reconfigurable IC for Dependable Beamforming Applications. In Proc. IEEE Intern. Symp. 
on Defect and Fault Tolerance in VLSI Systems (DFT’08), 2008.

	26.	H.G. Kerkhoff and X. Zhang. Design of an Infrastructural IP Dependability Manager for a 
Dependable Reconfigurable Many-Core Processor. In Proc. DELTA’10, 2010.

	27.	H. Hurskainen, J. Raasakka, T. Ahonen, and J. Nurmi. Multicore Software-Defined Radio 
Architecture for GNSS Receiver Signal Processing. In EURASIP Journal on Embedded 
Systems, vol. 2009, Article ID 543720, 10 pages, 2009.

	28.	J. Raasakka, H. Hurskainen, T. Paakki, and J. Nurmi. Modeling Multi-Core Software GNSS 
Receiver with Real Time SW Receiver. In Proc. ION GNSS, 2009.

	29.	Sensor Technology Applied in Reconfigurable Systems for sustainable Security (STARS) 
Project, National Dutch Project, http://www.starsproject.nl.

	30.	Nederland Streaming (NEST) Project, Dutch Technology Foundation STW Project,  
http://caes.ewi.utwente.nl/caes/index.php/research/recently-started-projects/nest


	Chapter 9: CRISP: C utting Edge R econfigurable I Cs for S tream P rocessing
	9.1 Project Partners
	9.2 Introduction
	9.2.1 Related FP Projects
	9.2.2 Chapter Structure

	9.3 Streaming Applications
	9.3.1 Digital Beamforming
	9.3.2 Global Navigation Satellite System Application

	9.4 General Stream Processor (GSP)
	9.4.1 General Purpose Processor Device (GPD)
	9.4.2 Reconfigurable Fabric Device (RFD)
	9.4.2.1 Scalable On-Chip and Off-Chip Communication Infrastructure
	9.4.2.2 Xentium Tile
	9.4.2.3 Smart Memory Tile


	9.5 Run-Time Resource Management
	9.5.1 The Resource Allocation Problem

	9.6 Dependability
	9.6.1 Network-on-Chip Dependability
	9.6.1.1 Network Fault Modeling
	9.6.1.2 Network Test Concept
	9.6.1.3 Diagnosing the NoC

	9.6.2 Xentium Tile Dependability
	9.6.2.1 Dependability Manager
	9.6.2.2 Xentium Tile Wrapper
	9.6.2.3 Tile Processor Dependability Software


	9.7 Preliminary Experimental Results
	9.7.1 Hardware Manufacturing
	9.7.2 Beamforming Demonstrator
	9.7.3 GNSS Demonstrator
	9.7.4 Enabling Graceful Degradation by Reconfiguration

	9.8 Outlook
	9.9 Conclusions
	References


