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Introduction
Affect-sensitive human-computer interaction 

(HCI), in order to provide the choice of adequate 
responses to adapt the computer to the affective 
states of its user, requires a reliable detection of these 
states—that is, of the user’s emotions. A number of 
behavioral cues, such as facial expression, posture, 
and voice, can be informative about these states. 
Other sources, less open to conscious control and 
therefore more reliable in situations where behav-
ioral cues are concealed, can be assessed in the form 
of physiological responses to emotional events; for 
example, changes in heart rate and skin conductance. 
A  special set of physiological responses comprises 
those originating from the most complex organ 
of the human body, the brain. These neurophysi-
ological responses to emotionally significant events 
can, alone or in combination with other sources of 
affective information, be used to detect affective 

states continuously, clarify the context in which 
they occur, and help to guide affect-sensitive HCI. 
In this chapter, we elucidate the motivation and 
background of affective brain-computer interfaces 
(aBCIs), the devices that enable the transformation 
of neural activity into affect-sensitive HCI; outline 
their working principles and their applications in a 
general framework of BCI; and discuss main chal-
lenges of this novel affect-sensing technology.

The Motivation Behind Affective 
Brain-Computer Interfaces

The brain is an interesting organ for the detec-
tion of cues about the affective state. Numerous 
lesion studies, neuroimaging evidence, and theo-
retical arguments have strengthened the notion that 
the brain is not only the seat of our rational thought 
but also heavily involved in emotional responses 
that often are perceived as disruptive to our rational 
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behavior (Damasio, 2000). Scherer’s component pro-
cess model (Scherer, 2005) postulates the existence 
of several components of affective responses that 
reside in the central nervous system, including pro-
cesses of emotional event perception and evaluation, 
self-monitoring, and action planning and execution.1

Therefore the brain seems to possess great poten-
tial to differentiate affective states in terms of their 
neurophysiological characteristics, mostly of the 
neural responses that occur after encountering an 
emotionally salient stimulus event. Such emotional 
responses occur within tens of milliseconds; they 
are not under the volitional control of a person and 
hence are reliable in terms of their true nature. Such 
fast and automatic neurophysiological responses are 
contrasted by slower physiological responses in the 
range of seconds after the event and with behavioral 
cues that are more amenable to conscious influence.

In addition to the promises for a fast and reliable 
differentiation of affective states, the complexity of 
the brain also holds the potential to reveal details 
about an ongoing emotional response elicited by 
emotional stimulus events. Visual or auditory corti-
ces reflect the modality-specific processing resources 
allocated to emotionally salient events (Mühl 
et al., 2011), allowing for conscious identification 
of the object that elicited the emotional response. 
Similarly, motor regions might reveal behavioral 
dispositions—that is, planned and prepared motor 
responses—to an emotional stimulus event.

Finally, certain patient populations that lose 
the ability to communicate with the outside world 
owing to the loss of musculature or its control; they 
need alternative communication channels—using 
the information available from unimpaired physi-
ological and neurophysiological processes—that are 
able to reflect their emotions to loved ones as well 
as to caretakers.

However, the realization of all this potential, 
including the advantages of neurophysiological sig-
nals over other sources of information on affect, is 
dependent on the advancement of research within 
several disciplines: psychology, affective neuroscience, 
and machine learning. We begin with the introduc-
tion of relevant sensor technologies and then go on to 
discuss the neurophysiological basis and the techno-
logical principles and applications of aBCIs.

Sensor Modalities Assessing 
Neurophysiological Activity

Several sensor technologies enable the assess-
ment of neurophysiological activity. Two types 
of methods can be distinguished by the way they 

function: one measures cortical electric or magnetic 
fields directly resulting from the nerve impulses of 
groups of pyramidal neurons while the other mea-
sures metabolic activity within cortical structures—
for example, blood oxygenation resulting from the 
increased activity of these structures.

The first type of electrophysiological method, 
including sensor modalities such as electroen-
cephalography (EEG) and magnetoencephalog-
raphy (MEG), has a high temporal resolution of 
neural activity recordings (instantaneous signals 
with millisecond resolution) but lacks high spatial 
resolution owing to the smearing of the signals on 
their way through multiple layers of cerebrospinal 
fluid, bone, and skin. Most of the methods of the 
second type, including sensor modalities such as 
functional magnetic resonance imaging (fMRI) or 
positron emission tomography (PET), have a high 
spatial resolution (in the range of millimeters), but 
are slow because of their dependence on metabolic 
changes (resulting in a lag of several seconds) and 
their working principle (resulting in measurement 
rhythms of seconds rather than milliseconds).

Each of the neuroimaging methods mentioned 
above has its advantages, and their use depends on 
researchers’ goals. Regarding affective computing 
scenarios, EEG seems to be the most practicable 
method: EEG has the advantage of being relatively 
unobtrusive and can be recorded using wearable 
devices, thus increasing the mobility and options for 
locations in which data are collected. Furthermore, 
the technology is affordable for private households 
and relatively easy to set up, especially the cheaper 
commercial versions for the general public, although 
these have limitations for research. Comparable 
wearable sensor modalities that are based on the 
brain metabolism, such as functional near-infrared 
spectroscopy (fNIRS), are currently not affordable 
nor do they feature a high spatial resolution.

To focus on the technologies relevant for aBCIs 
in the normal, healthy population, we briefly review 
below the affect-related neural structures of the cen-
tral nervous system and then introduce the neuro-
physiological correlates of affect that are the basis 
for aBCI systems using EEG technology as their 
sensor modality.

Neurophysiological Measurements  
of Affect
The Neural Structures of Affect

The brain comprises a number of structures that 
have been associated with affective responses by dif-
ferent types of evidence. Much of the early evidence 
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of the function of certain brain regions comes from 
observations of the detrimental effects of lesions 
in animals and humans. More recently, functional 
imaging approaches, such as PET and fMRI, have 
yielded insights into the processes occurring dur-
ing affective responses in normal functioning (for 
reviews, see Barrett, Mesquita, Ochsner, & Gross, 
2007; Lindquist, Wager, Kober, Bliss-moreau,  & 
Barrett, 2011). Here we only briefly discuss the 
most prominent structures that have been identified 
as central during the evaluation of the emotional 
significance of stimulus events and the processes 
that lead to the emergence of the emotional experi-
ence. The interested reader can refer to Barrett et al. 
(2007) for a detailed description of the structures 
and processes involved.

The core of the system involved in the translation 
of external and internal events to the affective state 
is a set of neural structures in the ventral portion 
of the brain:  the medial temporal lobe (including 
the amygdala, insula, and striatum), orbitofrontal 
cortex (OFC), and ventromedial prefrontal cortex 
(VMPFC). These structures compose two related 
functional circuits that represent the sensory infor-
mation about the stimulus event and its somato-
visceral impact as remembered or predicted from 
previous experience.

The first circuit—comprising the basolateral 
complex of the amygdala, the ventral and lateral 
aspects of the OFC, and the anterior insula—is 
involved in the gathering and binding of informa-
tion from external and internal sensory sources. 
Both the amygdala and the OFC structures pos-
sess connections to the sensory cortices, enabling 
information exchange about perceived events and 
objects. While the amygdala is coding the original 
value of the stimulus, the OFC creates a flexible 
experience and context-dependent representation 
of the object’s value. The insula represents intero-
ceptive information from the inner organs and skin, 
playing a role in forming awareness about the state 
of the body. By the integration of sensory infor-
mation and information about the body’s state, a 
value-based representation of the event or object is 
created.

The second circuit, composed of the VMPFC 
(including the anterior cingulate cortex [ACC]) and 
the amygdala, is involved in the modulation of parts 
of the value-based representation via its control over 
autonomous, chemical, and behavioral visceromo-
tor responses. Specifically, the VMPFC links the 
sensory information about the event, as integrated 
by the first circuit, to its visceromotor outcomes. It 

can be considered as an affective working memory 
that informs judgments and choices and is active 
during decisions based on intuitions and feelings.

Both circuits project directly and indirectly 
to the hypothalamus and brainstem, which are 
involved in a fast and efficient computation of 
object values and influence autonomous chemi-
cal and behavioral responses. The outcome of the 
complex interplay of ventral cortical structures, 
amygdala, hypothalamus, and brainstem establishes 
the “core affective” state that the event induced: an 
event-specific perturbation of the internal milieu of 
the body that directs the body to prepare for the 
responses necessary to deal with the event. These 
responses include the attentional orienting to the 
source of the stimulation, the enhancement of sen-
sory processes, and the preparation of motor behav-
ior. Perturbation of the visceromotor state is also the 
basis of the conscious experience of the pleasantness 
and physical and cortical arousal that accompany 
affective responses. However, as stated by Barrett 
et al. (2007), the emotional experience is unlikely 
to be the outcome of one of the structures involved 
in establishing the “core affect” but rather emerges 
on the system level as the result of the activity of 
many or all of the involved structures.2

Correlates of Affect in 
Electroencephalography

Before reviewing the electrophysiological cor-
relates of affect, we must note that because of the 
working principles and the resulting limited spatial 
resolution of the EEG, a simple measurement of 
the activation of affect-related structures, as obtain-
able by fMRI, is not possible. Furthermore, most 
of the core-affective structures are located in the 
ventral part of the brain (but see Davidson, 1992; 
Harmon-Jones, 2003), making a direct assessment 
of their activity by EEG, focusing on signals from 
superficial neocortical regions, difficult. Hence we 
concentrate on electrophysiological signals that 
have been associated with affect and on their cogni-
tive functions but also mention their neural origins 
if available.

TIME-DOMAIN CORRELATES
A significant body of research has focused on 

the time domain and explores the consequences of 
emotional stimulation on event-related potentials. 
Event-related potentials (ERPs) are prototypical 
deflections of the recorded EEG trace in response 
to a specific stimulus event—for example, a picture 
stimulus.
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ERPs are computed by (samplewise) averaging 
of the traces following multiple stimulation events 
of the same condition, which reduces sporadic 
parts of the EEG trace not associated with the func-
tional processes involved in response to the stimulus 
but originating from artifacts or background EEG.

Examples of ERPs responsive to affective manip-
ulations include early and late potentials. Early 
potentials, for example P1 or N1, indicate pro-
cesses involved in the initial perception and auto-
matic evaluation of the presented stimuli. They are 
affected by the emotional value of a stimulus; differ-
ential ERPs are observed in response to negative and 
positive valence as well as low and high arousal stim-
uli (Olofsson, Nordin, Sequeira, & Polich, 2008). 
However, the evidence is far from parsimonious, as 
the variety of the findings shows.

Late event-related potentials are supposed to 
reflect higher-level processes, which are already 
more amenable to the conscious evaluation of the 
stimulus. The two most prominent potentials that 
have been found susceptible to affective manipu-
lation are the P300 and the late positive potential 
(LPPs). The P300 has been associated with atten-
tional mechanisms involved in the orientation 
toward an especially salient stimulus—for example, 
very rare (deviant) or expected stimuli (Polich, 
2007). Coherently, P300 components show a 
greater amplitude in response to highly salient emo-
tional stimuli, especially aversive ones (Briggs  & 
Martin, 2009). The LPP has been observed after 
emotionally arousing visual stimuli (Schupp et al., 
2000), and was associated with a stronger percep-
tive evaluation of emotionally salient stimuli as 
evidenced by increased activity of posterior visual 
cortices (Sabatinelli, Lang, Keil, & Bradley, 2006).

As in real-world applications, the averag-
ing of several epochs of EEG traces with respect 
to the onset of a repeatedly presented stimulus is 
not feasible; the use of such time-domain analysis 
techniques is limited for affective BCIs. An alterna-
tive to ERPs—more feasible in a context without 
known stimulus onsets or repetitive stimulation—
are effects on brain rhythms observed in the fre-
quency domain.

FREQUENCY-DOMAIN CORRELATES
The frequency domain can be investigated with 

two simple but fundamentally different power extrac-
tion methods, yielding evoked and induced oscilla-
tory responses to a stimulus event (Tallon-Baudry, 
Bertrand, Baudry,  & Bertrand, 1999). Evoked 
frequency responses are computed by a frequency 

transformation applied to the averaged EEG trace, 
yielding a frequency-domain representation of the 
ERP components. Induced frequency responses, on 
the other hand, are computed by applying the fre-
quency transform on the single EEG traces before 
then averaging the frequency responses. Induced 
responses therefore capture oscillatory characteris-
tics of the EEG traces that are not phase-locked to 
the stimulus onset and averaged out in the evoked 
oscillatory response. In an everyday context, where 
the mental states or processes of interest are not 
elicited by repetitive stimulation with a known 
stimulus onset and short stimulus duration, the use 
of evoked oscillatory responses is just as limited as 
the use of ERPs. Therefore the induced oscillatory 
responses are of specific interest in attempting to 
detect affect based on a single and unique emotional 
event or period.

The analysis of oscillatory activity in the EEG has 
a tradition that reaches back over almost 90 years, to 
the twenties of the last century, when Hans Berger 
reported the existence of certain oscillatory charac-
teristics in the EEG, now referred to as alpha and 
beta rhythms (Berger, 1929). The decades of research 
since then have led to the discovery of a multitude 
of cognitive and affective functions that influence 
the oscillatory activity in different frequency ranges. 
Below, we briefly review the frequency ranges of 
the conventional broad frequency bands—namely 
delta, theta, alpha, beta, and gamma, their cognitive 
functions, and their association with affect.

The delta frequency band comprises the frequen-
cies between 0.5 and 4 Hz. Delta oscillations are 
especially prominent during the late stages of 
sleep (Steriade, McCormick, & Sejnowski, 1993). 
However, during waking they have been associated 
with motivational states such as hunger and drug 
craving (see Knyazev, 2012). In such states, they are 
supposed to reflect the workings of the brain reward 
system, some of the structures of which are believed 
to be generators of delta oscillations (Knyazev, 
2012). Delta activity has also been identified as a 
correlate of the P300 potential, which is seen in 
response to salient stimuli. This has led to the belief 
that delta oscillations play a role in the detection of 
emotionally salient stimuli. Congruously, increases 
of delta band power have been reported in response 
to more arousing stimuli (Aftanas, Varlamov, Pavlov, 
Makhnev,  & Reva, 2002; Balconi  & Lucchiari, 
2006; Klados et al., 2009).

The theta rhythm comprises the frequen-
cies between 4 and 8 Hz. Theta activity has been 
observed in a number of cognitive processes; its most 
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prominent form, frontomedial theta, is believed to 
originate from limbic and associated structures (i.e., 
ACCs) (Başar, Schürmann, & Sakowitz, 2001). It 
is a hallmark of working memory processes and 
has been found to increase with higher memory 
demands in various experimental paradigms (see 
Klimesch, Freunberger, Sauseng, & Gruber, 2008). 
Specifically, theta oscillations subserve central 
executive function, integrating different sources of 
information, as necessary in working memory tasks 
(Kawasaki, Kitajo, & Yamaguchi, 2010).

Concerning affect, early reports mention a 
“hedonic theta” that was reported to occur with the 
interruption of pleasurable stimulation. However, 
studies in children between 6 months and 6 years 
of age showed increases in theta activity upon expo-
sure to pleasurable stimuli (see Niedermeyer, 2005). 
Recent studies on musically induced feelings of 
pleasure and displeasure found an increase of front-
omedial theta activity with more positive valence 
(Lin, Duann, Chen,  & Jung, 2010; Sammler, 
Grigutsch, Fritz,  & Koelsch, 2007), which origi-
nated from ventral structures in the ACC. For emo-
tionally arousing stimuli, increases in theta band 
power have been reported over frontal (Balconi & 
Lucchiari, 2006; Balconi  & Pozzoli, 2009) and 
frontal and parietal regions (Aftanas et al., 2002). 
Congruously, a theta increase was also reported 
during anxious personal compared to nonanxious 
object rumination (Andersen, Moore, Venables, 
Corr, & Venebles, 2009).

The alpha rhythm comprises the frequencies 
between 8 and 13 Hz. It is most prominent over 
parietal and occipital regions, especially during the 
closing of the eyelids, and decreases in response to 
sensory stimulation, especially during visual stimu-
lation but in a weaker manner also during auditory 
and tactile stimulation or during mental tasks. More 
anterior alpha rhythms have been specifically associ-
ated with sensorimotor activity (central mu-rhythm) 
(Pfurtscheller, Brunner, Schlögl, & Lopes da Silva, 
2006) and with auditory processing (tau-rhythm) 
(Lehtelä, Salmelin,  & Hari, 1997). The observed 
decrease of the alpha rhythm in response to (visual) 
stimulation, the event-related desynchronization in 
the alpha band, is believed to index the increased 
sensory processing and hence has been associ-
ated with an activation of task-relevant (sensory) 
cortical regions. The opposite phenomenon, an 
event-related synchronization in the alpha band, 
has been reported in a variety of studies on men-
tal activities, such as working memory tasks, and 
is believed to support an active process of cortical 

inhibition of task-irrelevant regions (see Klimesch, 
Sauseng, & Hanslmayr, 2007).

The most prominent association between affective 
states and neurophysiology has been reported in the 
form of frontal alpha asymmetries (Coan & Allen, 
2004), which vary as a function of valence (Silberman, 
1986) or motivational direction (Davidson, 1992; 
Harmon-Jones, 2003). The stronger rightward lat-
eralization of frontal alpha power during positive or 
approach-related emotions compared with negative 
or withdrawal-related emotions is believed to origi-
nate from the stronger activation of left as compared 
with right prefrontal structures involved in affective 
processes. Despite fMRI studies (e.g., Engels et al., 
2007) suggesting that such simple models of lateral-
ization underestimate the complexity of the human 
brain, evidence for alpha asymmetry has been found 
in response to a variety of different induction pro-
cedures using pictures (Balconi  & Mazza, 2010; 
Huster, Stevens, Gerlach,  & Rist, 2009), music 
pieces (Altenmüller, Schürmann, Lim,  & Parlitz, 
2002; Schmidt  & Trainor, 2001; Tsang, Trainor, 
Santesso, Tasker,  & Schmidt, 2006), and film 
excerpts (Jones & Fox, 1992).

The alpha rhythm has also been associ-
ated with a relaxed and wakeful state of mind 
(Niedermeyer, 2005). Coherently, increases of 
alpha power are observed during states of relax-
ation, as indexed by physiological measures (Barry, 
Clarke, Johnstone, & Brown, 2009; Barry, Clarke, 
Johnstone, Magee,  &  Rushby, 2007) and subjec-
tive self-report (Nowlis & Kamiya, 1970; Teplan & 
Krakovska, 2009).

The beta rhythm comprises the frequencies 
between 13 and 30 Hz. Central beta activity has 
been associated with the sensorimotor system, as 
it is weak during motor activity, motor imagina-
tion or tactile stimulation, but increases afterward 
(Neuper et al., 2006). That has led to the view that 
the beta rhythm is a sign of an “idling” motor cor-
tex (Pfurtscheller et  al., 1996). A  recent proposal 
for a general theory of the function of the beta 
rhythm, however, suggests that beta oscillations 
impose the maintenance of the sensorimotor set for 
the upcoming time interval (or “signals the status 
quo”) (see Engel & Fries, 2010). Concerning affect, 
increases of beta band activity have been observed 
over temporal regions in response to visual and 
self-induced positive as compared with negative 
emotions (Cole  & Ray, 1985; Onton  & Makeig, 
2009). A general decrease of beta band power has 
been reported for stimuli that had an emotional 
impact on the subjective experience compared with 
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those that were not experienced as emotional (Dan 
Glauser & Scherer, 2008) (see gamma rhythm for 
elaboration). A note of caution for the interpreta-
tion of high-frequency bands of beta and gamma is 
in order, as their power increases during the tension 
of (scalp) muscles (Goncharova et al., 2003), which 
are also involved in frowning and smiling.

The gamma rhythm comprises the frequencies 
above 30 Hz. Gamma band oscillations are sup-
posed to be a key mechanism in the integration 
of information represented in different sensory 
and nonsensory cortical networks (Fries, 2009). 
Accordingly they have been observed in association 
with a number of cognitive processes, such as atten-
tion (Gruber, Müller, Keil, & Elbert, 1999), multi-
sensory integration (Daniel Senkowski, Schneider, 
Tandler,  & Engel, 2009), memory (Jensen, 
Kaiser, & Lachaux, 2007), and even consciousness 
(Ward, 2003).

Concerning valence, temporal gamma rhythms 
have been found to increase with increasingly posi-
tive valence (Müller, Keil, Gruber, & Elbert, 1999; 
Onton  & Makeig, 2009). For arousal, posterior 
increases of gamma band power have been associ-
ated with the processing of high versus low arousing 
visual stimuli (Aftanas, Reva, Varlamov, Pavlov, & 
Makhnev, 2004; Balconi  & Pozzoli, 2009; Keil 
et al., 2001). Similarly, increases of gamma activity 
over somatosensory cortices have also been linked to 
the awareness to painful stimuli (Gross, Schnitzler, 
Timmermann, & Ploner, 2007; Senkowski, Kautz, 
Hauck, Zimmermann, & Engel, 2011). However, 
Dan Glauser and Scherer (2008) found lower (fron-
tal) gamma power for emotion for stimuli with 
versus those without an emotional impact on the 
subjective experience. They interpreted their find-
ings as a correlate of the ongoing emotional process-
ing in those trials that were not (yet) identified as 
having a specific emotional effect, and hence with-
out impact on subjective experience. In general, 
increases in gamma power are often interpreted as 
synonymous with an increase of activity in the asso-
ciated region.

Taken together, the different frequency bands of 
the EEG have been associated with changes in the 
affective state as well as with a multitude of cog-
nitive functions. Consequently it is rather unlikely 
to find simple one-to-one mappings between any 
oscillatory activity and a given affective or cogni-
tive function. In Section 4 we elaborate on the chal-
lenge that many-to-one mappings pose for aBCI. 
Nevertheless, there is an abundance of studies 
evidencing the association of brain rhythms with 

affective responses. aBCIs can thus make use of the 
frequency domain as a source of information about 
their users’ affective states. In the following section, 
we introduce the concept of aBCIs in more detail.

Affective Brain-Computer Interfaces
The term affective brain-computer interfaces 

(aBCIs) is a direct result of the nomenclature of the 
field that motivates their existence:  affective com-
puting. With different means, aBCI research and 
affective computing aim toward the same end: the 
detection of the user’s emotional state for the enrich-
ment of human-computer interaction. While affec-
tive computing tries to integrate all the disciplines 
involved in this endeavor, from sensing of affect 
to its effective integration into human-computer 
interaction processes, aBCI research is mainly con-
cerned with the detection of the affective state from 
neurophysiological measurements. Information 
about the successful detection of affective states 
can then be used in a variety of applications, rang-
ing from unobtrusive mental-state monitoring 
and the corresponding adaptation of interfaces to 
neurofeedback-guided relaxation.

Originally, the term brain-computer interface 
was defined as “a communication system in which 
messages or commands that an individual sends to 
the external world do not pass through the brain’s 
normal output pathways of peripheral nerves 
and muscles” (Wolpaw, Birbaumer, McFarland, 
Pfurtscheller, & Vaughan, 2002). The notion of an 
individual (volitionally) sending commands directly 
from the brain to a computer, circumventing stan-
dard means of communication, is of great impor-
tance considering the original target population of 
patients with severe neuromuscular disorders. More 
recently, the human-computer interaction commu-
nity has developed great interest in the application 
of BCI approaches for larger groups of users that 
are not dependent on BCIs as their sole means of 
communication. This development and the ensuing 
research projects hold great potential for the further 
development of devices, algorithms, and approaches 
for BCI, also necessary for its advancement for 
patient populations. Along with the development 
of this broad interest for BCI, parts of the BCI 
community slowly started to incorporate new BCI 
approaches, such as aBCI, into its research portfo-
lio, thus easing the confinement of BCI to interfaces 
serving purely volitional means of control (Nijboer, 
Clausen, Allison, & Haselager, 2011).

Below, we briefly introduce the parts of the 
aBCI: signal acquisition, signal processing (feature 
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extraction and translation algorithm), feedback, 
and protocol. Then we offer an overview of the vari-
ous existing and possible approaches to aBCI based 
on a general taxonomy of BCI approaches.

Parts of an Affective Brain-Computer 
Interface

Being an instance of general BCI systems 
(Wolpaw et  al., 2002), the aBCI is defined by a 
sequence of procedures that transform neurophysi-
ological signals into control signals. In Figure 15.1, 
we briefly outline the successive processing steps 
that a signal has to undergo, starting with the acqui-
sition of the signal from the user and finishing with 
the application feedback given back to the user.

SIGNAL-ACQUISITION BRAIN-COMPUTER 
INTERFACES

These can make use of several sensor modali-
ties that measure brain activity. Roughly, we can 
differentiate between invasive and noninvasive 
measures. While invasive measures, implanted 
electrodes or electrode grids, enable a more direct 
recording of neurophysiological activity from the 
cortex and therefore have a better signal-to-noise 
ratio, they are currently reserved for patient popu-
lations and hence are less relevant for the current 
overview. Noninvasive measures, on the other hand, 
as recorded with EEG, fNIRS, or fMRI, are also 
available for the healthy population. Furthermore, 
some of the noninvasive signal acquisition devices, 
especially EEG, are already available for consumers 
in the form of easy-to-handle and affordable head-
sets.3 The present work focuses on EEG as a neuro-
physiological measurement tool, for which we detail 
the following processing steps in the BCI pipeline. 
A  further distinction in terms of the acquired sig-
nals can be made, differentiating between those 
signals that are partially dependent on the standard 
output pathways of the brain (e.g., moving the eyes 

to direct the gaze toward a specific stimulus) and 
those that are independent on these output path-
ways, merely registering user intention or state. 
These varieties of BCI are referred to as dependent 
and independent BCIs, respectively. Affective BCIs, 
measuring the affective state of the user, are usually 
a variety of the latter sort of BCIs.

SIGNAL PROCESSING—FEATURE EXTRACTION
From the signals that are captured from the scalp, 

several signal features can be computed. We can dif-
ferentiate between features in the time and in the 
frequency domains. An example of features in the 
time domain is the amplitude of stimulus-evoked 
potentials occurring at well-known time points 
after a stimulus event is observed. One of the 
event-related potentials used in BCI is the P300, 
occurring in the interval between 300 to 500 ms 
after an attended stimulus event. An example for sig-
nal features in the frequency domain is the power of 
a certain frequency band. A well-known frequency 
band that is used in BCI paradigms is the alpha 
band, which comprises the frequencies between 8 
and 13 Hz. Both the time- and frequency-domain 
features of the EEG have been found to respond to 
the manipulation of affective states and are therefore 
in principle interesting for the detection of affective 
states (see Section 2). However, aBCI studies almost 
exclusively use features from the frequency domain 
(see Table 1.1 in Mühl, 2012). Conveniently, how-
ever, frequency-domain features, such as the power 
in the lower frequency bands (<13 Hz) are corre-
lated with the amplitude of event-related potentials, 
especially the P300, and hence partially include 
information about time-domain features.

Standard BCI approaches focus on very specific 
features—for example, the mu rhythm over central 
scalp regions in the case of motor imagery paradigms 
(Pfurtscheller & Neuper, 2001), or the mean signal 
amplitude between 200 and 500 ms associated with 

BCI pipeline - signal processing

Sensory stimulation & feedback
User Application

Signal
acquisition

BCI
output

Feature extraction Translation algorithm

Fig. 15.1 The schematic of a general BCI system as defined by Wolpaw et al. (2002). The neurophysiological signal is recorded from 
the user, and the relevant features, those that are informative about user intent or state, are extracted. They are then translated into the 
control parameters that are used by the application to respond adequately to the user’s state or intent.”
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each attended stimulus in P300 spellers (Farwell & 
Donchin, 1988). To date, however, affective BCI 
approaches often lack such clear-cut information on 
affect-related responses. Most of the current aBCI 
approaches make use of a wide spectrum of fre-
quency bands, as these have been found responsive 
to affect manipulation (see Section 2.2), resulting in 
a large number of potential features. However, large 
numbers of features require a large number of trials 
to train a classifier (the “curse of dimensionality”) 
(Lotte, Congedo, Lécuyer, Lamarche,  & Arnaldi, 
2007), which are seldom available owing to the 
limitations of affect induction (e.g., the habituation 
of the responses toward affective stimulation with 
time). Therefore one of the tasks on the road toward 
affective BCI is the evaluation and identification of 
reliable signal features that carry information about 
the affective state, especially in the complexity of 
real-world environments. Another important task is 
the development of potent affect-induction proce-
dures—for example, using naturally affect-inducing 
stimuli that increase the likelihood of inducing 
affective responses.

SIGNAL PROCESSING–TRANSLATION 
ALGORITHMS

The core part of the BCI is the translation of 
the selected signal features into a command for the 
application or device, such as a cursor movement 
for active BCIs or the creation of an emotion label 
for affective BCIs. The simple one-to-one mapping 
between feature and command requires a feature 
that conveniently mirrors the state in such manner. 
Because such ideal features are rare in the neuro-
physiological signal domain, most BCI studies use 
machine learning approaches that are trained to 
find a mapping between a number of signal features 
and the labels for two or more classes (see Lotte 
et  al., 2007, for an overview of BCI classifiers). 
These classifiers have to adapt to the signal char-
acteristics of the particular user, adapt to changes 
over time and changing contexts of interaction, 
and deal with the changes in brain activity due to 
the user’s efforts in learning and adapting to the 
system. Classifiers used for affective BCI include 
linear discriminant analysis (Chanel et  al., 2005; 
Chanel, Kierkels, Soleymani, & Pun, 2009; Chanel, 
Rebetez, Bétrancourt, Pun,  & Bétrancourt, 2011; 
Makeig et al., 2011; Murugappan, 2010; Winkler, 
Jäger, Mihajlović,  & Tsoneva, 2010) and support 
vector machines (Frantzidis et al., 2010; Horlings, 
Datcu, & Rothkrantz, 2008; Koelstra et al., 2010; 
Li & Lu, 2009; Y. P. Lin, Wang, Wu, Jeng, & Chen, 

2009; Petrantonakis  & Hadjileontiadis, 2010; 
Soleymani, Lichtenauer, Pun,  & Pantic, 2011; 
Takahashi, 2004).

THE OUTPUT DEVICE/FEEDBACK
Depending on the application the affective BCI 

is serving, the output can assume different forms. 
For BCI in general, the most prominent output 
devices are monitors and speakers, providing visual 
and auditory feedback about the user and BCI per-
formance. In a few cases, robots (a wheelchair or car) 
have been controlled (Hongtao, Ting, & Zhenfeng, 
2010; Leeb et al., 2007). An exceptional example of 
BCI output, however, is control of one’s own hand 
by the BCI-informed functional electrical stimula-
tion of a paralyzed hand (Pfurtscheller, Müller-Putz, 
Pfurtscheller, & Rupp, 2005). In the case of stan-
dard BCIs, the output has a major function relating 
to the adaptation of the user to the BCI mentioned 
above. As BCI control can be considered to be a skill, 
any learning necessitates the provision of feedback 
about successful and unsuccessful performance.

In the specific case of aBCI, the same is possible, but 
the smaller proportion of applications requiring active 
and volitional mental control, typical for standard 
BCI systems, and the dominance of passive paradigms 
(see Section 3.2), make explicit performance-based 
feedback optional rather than mandatory. Depending 
on their function, aBCI systems will vary in the out-
put device and the type of feedback employed. For 
example, for implicit tagging or affect monitoring 
(for later evaluation), the feedback is not immediate. 
It might take hours, days, or weeks until the informa-
tion is used (e.g., during affect-tagged media replay) 
and then it might be in a subtle way that escapes the 
user’s attention. Such cases, in which no clear relation 
between state and feedback is perceivable, make the 
notion of feedback in these aBCI applications almost 
obsolete. However, in many other aBCI applications, 
the feedback is still existent and relevant, since the 
affective data are used to produce a system response 
in a reasonably near future. Examples are the appli-
cations that reflect the current affective state (e.g., in 
a game like Alpha World of Warcraft (Plass-Oude Bos 
et al., 2010), any neurofeedback-like application (e.g., 
warn of unhealthy states or reward healthy states), 
the active self-induction of affective states (e.g., relax-
ation), or the adaptation of games or e-learning appli-
cations to the state of the user.

THE OPERATING PROTOCOL
The operating protocol guides the operation of 

the BCI system—for example, switching it on and 
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off (how/when) if the actions are triggered by the 
system (synchronous) or by the user (asynchronous) 
and when and in which manner feedback is given to 
the user. Other characteristics of the interaction that 
are defined by the protocol are whether the infor-
mation is actively produced by the user or passively 
read by the system and whether the information 
is gathered dependent of a specific stimulus event 
(stimulus dependent/independent). These two 
characteristics of BCI, voluntariness and stimulus 
dependency, are also the basis for the characteriza-
tion of different BCI approaches in the next section.

Below, we outline the different existing appli-
cations and approaches to aBCI and try to locate 
aBCI within the general landscape of BCI.

The Different Approaches to Affective 
Brain-Computer Interfaces

There are several possible applications of 
neurophysiology-informed affect sensing that can be 
categorized in terms of their dependence on stimuli 
and user volition. In the following, a two-dimensional 
classification of some of these BCI paradigms is 
given. It is derived from the three-category clas-
sification for BCI approaches (active, reactive, and 
passive) suggested by Zander and Kothe (2011). 

The dimensions of this classification are defined by 
(1) the dependence on external stimuli and (2) the 
dependence on an intention to create a neural activ-
ity pattern as illustrated in Figure 15.2.

The horizontal axis stretches from exogenous 
(or evoked) to endogenous (or induced) input. The 
former covers all forms of BCI, which necessarily 
presuppose an external stimulus. Steady-state visu-
ally evoked potentials (Farwell & Donchin, 1988) 
as neural correlates of (target) stimulus frequencies, 
for instance, may be detected if and only if evoked 
by a stimulus. They are therefore a clear example of 
exogenous input. Endogenous input, on the other 
hand, does not presuppose an external stimulus 
but is generated by the user either volitionally, as 
seen in motor imagery–based BCIs (Pfurtscheller & 
Neuper, 2001) or involuntarily, as during the moni-
toring of affective or cognitive states. In the case 
of involuntary endogenous input—for example, 
during general affect monitoring—the distinction 
between stimulus-dependent and independent 
input might not always be possible, as affective 
responses are often induced by external stimulus 
events, though these might not always be obvious.

The vertical axis stretches from active to passive 
input. Active input presupposes an intention to 

Active

Passive

In
du

ce
d Evoked

Affect-based
control

Motor
imagery
control

P300-based
selection

P300-based
lie detection

Workload
monitoring

Affect
monitoring

Media-induced
affect estimation

Workload
probing

SSVEP-based
selection

Fig. 15.2 A classification of BCI paradigms spanning voluntariness (passive versus active) and stimulus dependency (user self-induced 
versus stimulus-evoked).
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control brain activity, while passive input does not 
require any effort on the part of the user. Imagined 
movements, for instance, can only be detected when 
users intend to perform these, making the paradigm 
a prototypical application of aBCI. All methods that 
probe the user’s mental state, on the other hand, can 
also be measured when he or she does not exhibit an 
intention to produce it. Affective BCI approaches 
can be located in several of the four quadrants (cat-
egories) spanned by the two dimensions, as quite 
different approaches to aBCI have been suggested 
and implemented.

INDUCED-ACTIVE BRAIN-COMPUTER 
INTERFACES

This category is well known in terms of neu-
rofeedback systems, which encourage the user to 
attain a certain goal state. While neurofeedback 
approaches do not necessarily focus on affective 
states, a long line of this research is concerned with 
the decrease of anxiety or depression by making the 
users more aware of their bodily and mental states 
(Hammond, 2005). Neurophysiological features 
that have been associated with a certain favorable 
state (e.g., relaxed wakefulness) are visualized or 
sonified, enabling the users of such feedback sys-
tems to learn to induce them themselves.

More recently it has been shown that affective 
self-induction techniques, such as relaxation, are 
a viable control modality in gaming applications 
(George, Lotte, Abad,  & Lecuyer, 2011; Hjelm, 
2003; but see Mühl et  al., 2010). Furthermore, 
induced passive approaches (see below) might also 
turn into active approaches—for example, when 
players realize that their affective state has an influ-
ence on game parameters and therefore begin to 
self-induce states to manipulate the gaming envi-
ronment according to their preferences.

INDUCED-PASSIVE BRAIN-COMPUTER 
INTERFACES

This category includes the typical affect-sensing 
method for application in HCI scenarios where a 
response of an application to the user state is criti-
cal. Information that identifies the affective state 
of a user can be used to adapt the behavior of an 
application to keep the user satisfied or engaged. 
For example, studies have found neurophysiological 
responses in the theta and alpha frequency bands 
to differentiate between episodes of frustrating 
and normal game play (Reuderink, Mühl, & Poel, 
2013). Applications could respond to the frustra-
tion of the user with helpful advice or clarifying 

information. Alternatively, parameters of computer 
games or e-learning applications could be adjusted 
to keep users engaged in the interaction—for 
example, by decreasing or increasing difficulty to 
counteract the detected episodes of frustration or 
boredom, respectively (Chanel et al., 2011).

Another approach is the manipulation of the 
game world in response to the player’s affective 
state, as demonstrated in Alpha World of Warcraft 
(Plass-Oude Bos et  al., 2010), where the avatar 
shifts its shape according to the degree of relax-
ation the user experiences. Such reactive games 
could strengthen the players’ association with their 
avatars, leading to a stronger immersion and an 
increased sense of presence in the game world.

EVOKED-PASSIVE BRAIN-COMPUTER 
INTERFACES

BCI research suggests that evoked responses can 
be informative about the state of the user. Allison and 
Polich (2008) have used evoked responses to simple 
auditory stimuli to probe the workload of a user dur-
ing a computer game, a measure that might reflect 
attentional and affective engagement. Similarly, 
neurophysiology-based lie detection, assessing neu-
rophysiological orientation responses (P300) to 
compromising stimuli, has been shown to be feasible 
(Abootalebi et al. 2009). A similar approach is the 
detection of error potentials in response to errors in 
human-machine interaction. It was shown that such 
errors evoke specific neurophysiological responses—
for example, the error-related negativity (ERN), 
which can be detected and used to trigger system 
adaptation (Buttfield, Ferrez,  & Millán, 2006; 
Zander & Jatzev, 2009). Given that goal conducive-
ness is a determining factor of affective responses, 
such error-related potentials could be understood as 
being affective in nature (Scherer, 2005).

More directly related to affect, however, are those 
responses observed to media, such as songs, music 
videos, or films. Assuming the genuine affective 
nature of the response to experiences delivered by 
such stimuli, it might be possible to detect the user 
states associated with them. Possible uses for such 
approaches are media recommendation systems, 
which monitor the user response to media exposure 
and label or tag the media with the affective state 
it produced. Later on, such systems could selec-
tively offer or automatically play back media items 
known to induce a certain affective state in the 
user. Research toward such neurophysiology-based 
implicit tagging approaches of multimedia content 
has suggested its feasibility (Koelstra et  al., 2012; 
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Soleymani et al., 2011). Furthermore, assuming that 
general indicators of affect can be identified using 
music excerpts or film clips for affect-induction 
protocols, such multimodal and natural media seem 
suited to collect data for the training of aBCIs that 
detect affective states occurring in rather uncon-
trolled, real-life environments.

EVOKED-REACTIVE BRAIN-COMPUTER 
INTERFACES

This category seems less likely to be used for 
aBCI approaches, as the volitional control of affect 
in response to presented stimuli is as yet unexplored. 
However, standard BCI paradigms that use evoked 
brain activity to enable users to select from several 
choices were the first approaches to BCI and have 
been thoroughly explored. A prominent example is 
the P300 speller, which relies on the enhanced P300 
potential observed in response to attended com-
pared to unattended stimuli (Farwell & Donchin, 
1988). Similarly, BCI control via steady-state 
evoked potentials relies on the increase of an EEG 
frequency response when a stimulus oscillating with 
the same frequency (e.g., a flicker, vibration, or 
sound) is attended (Vidal, 1973).

Summarizing, there are a multitude of pos-
sible applications for aBCIs that can be categorized 
according to the axes of induced/evoked and active/
passive control. Main applications, however, are 
those that cover the passive control of applications. 
The challenges that have to be dealt with in moving 
beyond proof-of-concept studies and toward aBCIs 
working reliably in the complexity of the real world 
are addressed in the final section.

Controversies, Challenges, 
Conclusion

Although the possibility of neurophysiology-based 
affect detection has been suggested by theoretical 
and empirical works (see Section 2 and 3), several 
neuroscientific and neurotechnological challenges 
remain on the way toward reliable aBCIs.

Neuroscientific Challenges
The primary neuroscientific challenge is the 

lack of reliable signal features that characterize 
affective states in noninvasive electrophysiologi-
cal measures, such as EEG. It is often argued that 
EEG has neither the spatial resolution nor the 
necessary sensitivity to register core affective neu-
ral activity from deep subcortical structures of the 
limbic system. While this might partially be true, 
especially in comparison to techniques like fMRI, 

many studies report electrophysiological correlates 
of emotion manipulations in terms of amplitude 
changes of either potentials or oscillations (see 
Section 2.2). However, it is indeed seldom assessed 
which parts of these responses to affective stimula-
tion are reflected within these differentiating signal 
features: core affective correlates versus cognitive coact-
ivations of affect. Modern emotion theories—for 
example, the component process model of Scherer 
(2005)—acknowledge the complex and interwoven 
nature of affective and cognitive concepts and pro-
cesses that are present during emotional responses. 
Therefore it must be acknowledged as well that 
different affective states are differentiated not only 
by the correlates of their core affective features but 
also by concurrent coactivations of regions and pro-
cesses that can be observed independently of affect. 
An example is enhanced sensory processing, which 
can be observed in response to emotionally arousing 
stimuli as well as during heightened levels of atten-
tion (see Mühl, 2012, for further elaboration).

Consequently, to avoid misclassification of cog-
nitive state changes as affective state changes, a 
major challenge for aBCI is the identification of the 
nature of affect correlates and the development of 
methods that allow focus on reliable indicators of 
affect while still making use of the indicative power 
of those correlates that are not of purely affective 
nature. As noted earlier, richer information about 
the response to an affective event—for example, its 
origin or its behavioral consequences—is one of the 
major promises of aBCIs. To resolve the uncertain-
ties pertaining to the nature of neurophysiological 
correlates of affect and to develop the next genera-
tion of affect-sensitive but context-aware aBCIs, the 
design of affect-induction approaches needs special 
care.4 Beside the need to carefully balance all fac-
tors but the induced emotion to avoid confounds, 
affect-induction designs should vary factors that are 
co-occurring with affective responses and known to 
be reflected in brain activity. Examples are visual or 
auditory attention processes as elicited by the use of 
stimuli in the respective sensory modalities (Mühl 
et al., 2011).

However, this requirement for a stringently 
controlled affect-induction protocol conflicts with 
another condition for the study of reliable neuro-
physiological indicators:  an ecologically valid affect 
induction. To ensure the generalization of the 
classifier from training to real-world context, the 
training samples must be collected in a context as 
similar as possible to the envisioned application 
scenario. Unfortunately this often means that the 
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affect-induction approach would be of a complex 
nature, either using complex (e.g., multimedia) 
stimuli or complex interactive tasks. The many fac-
tors involved in realistic scenarios in which affect 
detection would be used make the limitation of 
changes to the factor that is to be manipulated 
(i.e., emotion) rather difficult, leading to the occur-
rence of confounding variables (e.g., stimulus fea-
tures, motor responses). Furthermore, factoring 
out those variables that potentially reflect cognitive 
coactivations (see above) underlies practical limita-
tions of experiment design (e.g., time, number of 
participants).

To satisfy these contradictory demands on 
affect-induction protocols, researchers must care-
fully analyze the factors implied in a given appli-
cation scenario. Knowing these factors, they can 
devise experimental designs that manipulate the 
affect-relevant factors with little variation in other 
factors or that manipulate affective and nonaffec-
tive factors in an independent and counterbalanced 
manner to factor out the most prominent cognitive 
coactivations.

Related to the search for reliable correlates of 
core affect is the exploration of novel signal features 
that are informative of the affective state. As men-
tioned in Section 2, the neurophysiological features 
that have been associated with affect manipulations 
are not uniquely affective in nature. These poten-
tials and oscillations are also implied in cognitive 
processes. Therefore the discriminatory value of 
novel signal features—such as cross-regional or 
cross-frequency coherence (Miskovic  & Schmidt, 
2010), assessing the interaction between neural 
regions and mental processes, or the chronology of 
different neural processes (Grandjean  & Scherer, 
2008)—must be explored in the context of affect. 
Researchers can profit from existing neurophysi-
ological databases (Koelstra et al., 2012; Soleymani 
et al., 2011) in exploring such novel features.

Neurotechnological Challenges
Neurotechnological challenges exist for soft-

ware as well as for hardware components of aBCIs. 
Concerning software, the development of appropri-
ate signal processing and classification algorithms 
are key issues. Signal processing algorithms need to 
become able to deconstruct the electrode signals 
into their components:  neural activity originat-
ing from within the skull, and so-called artefacts, 
originating from eyes, facial musculature and other 
noneural sources. One can differ between infor-
mative and destructive artifacts. Muscular activity 

(EMG), for example, is treated as a potentially con-
founding influence in conventional EEG studies 
and hence always removed. However, in an applied 
context, EMG can, although it is not of neural ori-
gin, inform about the user state, especially taking 
into account how involved the facial musculature 
is during emotional episodes. On the other hand, 
artifacts—independent of origin—might conceal 
much smaller neural signals and therefore have to 
be removed. Nevertheless, it makes sense to also 
examine these artifacts for their informativeness. 
Techniques like independent component analysis 
(ICA)(Onton & Makeig, 2009) are able to decon-
struct the electrophysiological signals into neural, 
ocular, and muscular components and might allow 
an independent assessment of the information of 
these sources.

Classification algorithms have to be able to take 
the complexity of the neurophysiological signals 
into account. Assuming a possible differentiation 
between core affective and associated cognitive cor-
relates, machine learning approaches that are able 
to deal with these complex signals are needed. They 
need to be able to ignore or penalize the learning of 
those features that are only co-varying with affect, 
thus avoiding misclassifications due to the cog-
nitive parts of the affective response (e.g., falsely 
recognizing increased visual attention as visually 
induced emotion). Alternatively, they could learn 
to use these coactivations to differentiate contextual 
details of the emotional episode, such as its origin or 
its intended behavioral consequence.

Another challenge for learning algorithms is the 
capability to learn from relatively few examples. The 
induction of affective states is limited by effects of 
habituation and the requirement of ecological valid-
ity, leading to a restricted number of samples for 
training and testing. A  possible alternative is the 
development of classifiers that learn from a pool 
of samples of several participants, rendering their 
results subject-independent and thereby making 
subject-specific training sessions obsolete.

Concerning hardware, the main challenge con-
cerns the wearability and ease of use of aBCI sys-
tems. To ensure optimal user experience, the system 
should have as few sensors as possible, reducing the 
time for setup and its intrusiveness during use. There 
are already several commercial devices that enable 
the recording of an EEG from a small number of 
sensors (1 to 16 compared with 32 to 256 elec-
trodes in research devices) and that function with-
out conductive gel. The small number of electrodes 
minimizes the laborious optimization of electrode 
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contacts to improve signal quality and thereby 
increases usability. Furthermore, the achievable sig-
nal quality of dry or contactless electrode systems 
seems close to that of gel-based systems (Zander 
et al., 2011). However, signal processing techniques 
like ICA require a certain number of electrodes to 
deconstruct neural and nonneural signal compo-
nents, posing problems for a reliable EEG/EMG 
differentiation. As alternatives to EEG-only aBCI 
systems, such systems can be combined with other 
affect-sensing modalities assessing physiological or 
behavioral cues. Such hybrid or multimodal BCI 
systems (Pfurtscheller et al., 2010) have the poten-
tial to assess the constellation of different aspects 
of an affective response—for example, preparatory 
homeostatic or communicative aspects—but also to 
enable the use of redundant information from these 
sources and therefore decrease the susceptibility to 
artifacts and increase the reliability of the predic-
tion. For information regarding the integration of 
signals from body and brain, see the chapter by 
Kemp and colleagues in this volume.

Taken together, the main challenges for reliable 
aBCIs are affect-induction protocols that allow the 
identification and differentiation of core affective 
correlates and cognitive coactivations, preprocess-
ing methods that can differentiate between neural 
and nonneural signal sources, and classification 
methods that are able to automatically acquire 
that  information from a limited set of electrodes 
and samples. Should the development of smaller and 
cheaper sensor technology continue, wearable and 
easy- to-use aBCI systems could soon become an 
 effective alternative or addition to behavior- and 
physiology-based affect detection.
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Notes
1. See also Kemp and colleagues’ chapter in this volume, which 

highlights the importance of brain and body responses and 
their integration.

2. This constructivist position, readily compatible with func-
tional appraisal models of emotion and with evidence col-
lected by neuroimaging meta-analyses (Lindquist et  al., 
2011), is opposed by the localist position, which is defended 
by the proponents of basic emotion models. For a neuro-
imaging meta-analysis supporting the localist position, see 
(Vytal  & Hamann, 2010). The interested reader is also 

referred to the chapter by Kemp and colleagues in this 
volume.

3. Examples of such consumer EEG devices are the emotive 
headset with 14 sensors (http://www.emotiv.com) and the 
Neurosky headset with 1 sensor (http://www.neurosky.com).

4. In this regard interested readers may wish to refer to the 
Handbook of Emotion Elicitation and Its Assessment by 
Coan & Allen.
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