
Transformation Systems and Nondeclarative

Properties

Annalisa Bossi1 and Nicoletta Cocco1 and Sandro Etalle2

1Dipartimento di Informatica, Università di Venezia
via Torino 155, 30172 Venezia, Italy

{bossi,cocco}@dsi.unive.it

2 University of Twente and CWI, Amsterdam
Department of Computer Science

PO Box 217, 7500 AE Enschede, The Netherlands
etalle@cs.utwente.nl

Abstract

Program transformation systems are applied both in program synthesis
and in program optimization. For logic programs the “logic” component
makes transformations very natural and easy to be studied formally. But,
when we move to Prolog programs, the “control” component cannot be ig-
nored. In particular we need to cope with termination properties which are
essential for ensuring the reachability of solutions for a given query.

We give an overview of the main proposals in the field of transforma-
tion systems for logic programs and we emphasize how they cope with those
properties of logic programs which are not strictly declarative. We focus in
particular on how the transformation can affect the termination of a program.

1 Introduction

Virtuous programming methodology, which consists in focusing on correctness of
programs at first and on their efficiency only afterwards, fits particularly well with
the logic programming paradigm, as stated by the famous motto: Algorithm = Logic
+ Control [Kow79]. This encourages the application of transformation systems to
logic programs both for synthesizing a correct program from a logic specification
[Dev90] and for optimizing it [TS84].

The main requirements for a practical transformation systems are on one hand
to guarantee the preservation of interesting program properties and on the other
hand to be supported by an automatic or semi-automatic tool. The most important
program properties are characterized by the “Logic” component, namely declara-
tive semantics describing the intended results of computations. But nondeclarative
properties, the “Control” component, namely the actual behaviour of the inter-
preter, are extremely relevant.

The logic programming paradigm, in its pure form, knows two sources of non-
determinism:

ND1 The choice of the atom in the query (selection rule),

1

ND2 The choice of the clause to resolve it.

The Prolog interpreter however gives up the first one by employing a fixed left-
most selection rule, and the second one with a fixed top-down selection method.
This latter nondeterminism is recovered (thought not entirely, for the possibility on
nontermination) by the use of backtracking. Between pure logic programming and
pure Prolog, we find the well-studied paradigm of “logic programming + leftmost
selection rule”, which is of theoretical relevance.

The influence of (ND1) and (ND2) varies according to the kind of observable
behaviour, observable for short, we focus on. For instance, if the observable is the
Success Set of the program, then, by the well-known result of the independence
from the selection rule, (ND2) can compensate for the absence of (ND1). For other
observables this does not apply: for instance, if one observes the Finite Failure Set
of the program, then (ND1) is of influence, while (ND2) is not. The same holds for
(universal) termination.

A program transformation system is characterized by a set of basic transforma-
tion operations and a strategy which combines them for a given aim. The transfor-
mation operations are generally constrained by applicability conditions which ensure
their correctness, that is, the preservation of the observables of interest. These ap-
plicability conditions should balance between the need to capture the majority of
cases and the need to allow for a simple verification, if possible they should be purely
syntactical in order to be automatically verified by the system. Similarly, the strat-
egy should strike a balance between being powerful and being automatizable, thus
reducing interactions with the user to the minimum.

When transformation techniques, formulated for logic programs in general, are
applied to real programs, Prolog’s choices wrt (ND1) and (ND2) become relevant for
preserving the observables one is interested in. Useful observables usually represent
the results of computation, which for Prolog programs can be characterized by the
Computed Answer Substitutions [FLMP93] and the Finite Failure Set (when nega-
tion is used). But since Prolog replaces (ND2) by backtracking, also termination
properties are essential, as they guarantee the effective reachability of solutions.

In this paper we intend to give an overview of some of the transformation systems
which have been proposed for logic programs and we look at how they influence the
observables of a program. We shall look especially at nondeclarative properties, and
at termination in particular. In fact, transformation systems preserving termination
are suitable to deal with pure Prolog programs. We think that the field is mature
enough to allow for a comparison and a classification of such systems by consid-
ering the basic transformation operations, the preserved termination property, the
purpose and the level of automatization.

The paper is organized as follows. In Section 2 we give some notation on general
logic programs and briefly recall the major termination properties. In Section 3 we
define the simplest unfold/fold transformation system, which is common to the
majority of transformation systems. We illustrate the properties of both the basic
operations, unfold and fold, and we discuss the problems related to preserving
termination and the proposed solutions. We also discuss the need of reordering
literals in clause bodies during transformations and define a switch operation. In
Section 4 we introduce the powerful replacement operation, discuss its properties
and the proposals for preserving termination. A short conclusion follows in Section
5.

2

2 Preliminaries

2.1 General Programs and LDNF-Resolution

Let P be a finite set of predicate symbols (or relations). An atom is an object of
the form p(t1, . . . , tn) where p ∈ P is an n-ary predicate symbol and t1, . . . , tn ∈ T .
A literal is either an atom A (a positive literal) or the negation of an atom ¬A
(a negative literal). A general query is a possibly empty finite sequence of literals
L1, . . . , Ln (n ≥ 0). Following the convention adopted by Apt in [Apt97], we use
bold characters (e.g. B) to indicate sequences of objects, typically B indicates a
sequence of literals, B1, . . . , Bn, t indicates a sequence of terms, t1, . . . , tn, and x
denotes a sequence of variables, x1, . . . , xn. A general clause is a construct of the
form H ← B where H is an atom (the head) and B is a general query (the body).
When B is empty, H ← B is written H ← and is called a unit clause. A general
program is a finite set of general clauses.

Apart from this, we use the standard notation of Lloyd [Llo87] and Apt [Apt97].
In particular, given a syntactic construct E (so for example, a term, a literal or
a set of equations) we denote by Var(E) the set of the variables appearing in E.
Given a substitution θ = {x1/t1, ..., xn/tn} we denote by Dom(θ) the set of variables
{x1, . . . , xn}, and by Ran(θ) the set of variables appearing in {t1, . . . , tn}. Finally,
we define Var(θ) = Dom(θ) ∪ Ran(θ).

A substitution θ is called grounding if Ran(θ) is empty, and it is called a renam-
ing if it is a permutation of the variables in Dom(θ). By Pred(E) we denote the
set of predicate symbols occurring in the expression E.

We use a notation introduced in [AP93], and we say that a predicate p is defined
in the program P iff there is a clause in P that uses p in its head.

Definition 2.1 Let P , Q be programs, which define different predicates, and p, q
relations in Pred(P).

(i) We say that p refers to q in P if there is a clause in P that uses p in its head
and q in its body.

(ii) We say that p depends on q in P , and write p w q, if (p, q) is in the reflexive,
transitive closure of the relation refers to.

(iii) We say that P extends Q, P w Q, if there is no q ∈ Pred(Q) which refers (in
Q) to a predicate p defined in P .

(iv) Let B be an atom, by P |B we denote the set of clauses of P that define the
predicates which the predicate of B depends on. Similarly by P |p we denote
the set of clauses of P that define a predicate p and all the predicates which
it depends on. �

We consider SLDNF-resolution with Prolog selection rule, that is the leftmost
selection rule. As usual, we call this form of resolution LDNF-resolution.

Following Apt and Pedreschi’s approach in studying the termination of general
programs [AP93], we view the LDNF-resolution as a top-down interpreter which,
given a general program P and a general query Q, attempts to build a search tree for
P ∪{Q} by constructing its branches in parallel. The branches in this tree are called
LDNF-derivations of P ∪ {Q} and the tree itself is called LDNF-tree of P ∪ {Q}.
Negative literals are resolved using the negation as failure rule which calls for the
construction of a subsidiary LDNF-tree. If during this subsidiary construction the

3

interpreter diverges, the (main) LDNF-derivation is considered to be infinite. An
LDNF-derivation is finite also if during its construction the interpreter encounters
a query with the first literal being negative and non-ground. In such a case we
say that the LDNF-derivation flounders. An LDNF-tree is called non-floundering
if none of its derivations flounders.

By termination of a general program we actually mean termination of the under-
lying interpreter. Hence in order to ensure termination of a query Q in a program
P , we require that all LDNF-derivations of P ∪ {Q} are finite.

We use the following abbreviations for a program P : MP for the least Herbrand
model of P , and comp(P) for Clark’s completion of P [Cla78].

2.2 Termination Properties

We recall in this section some important termination properties for logic programs
which have been studied in the literature. We refer all definitions to general pro-
grams.

Definition 2.2 (Terminating Program) A program P is called terminating iff
all SLDNF-derivations of P starting in any ground query are finite.

This is a very strong termination property since it must hold for any selection rule.
If we consider only the leftmost selection rule of Prolog, namely LDNF-resolution,
the following property of left termination is more appropriate.

Definition 2.3 (Left Terminating Program) A program P is called left termi-
nating iff all LDNF-derivations of P starting in any ground query are finite.

For verifying a termination property on a program, a common technique is
to find a measure on queries which, under certain conditions, can only decrease
during the computation. Such measure is based a level mapping, namely a map
from ground literals to natural numbers. Two important classes of programs had
been characterized by means of properties of level mappings: Acyclic programs and
Acceptable programs.

Acyclic programs were introduced by Cavedon [Cav89] and have been further
studied by Apt and Bezem [AB91]. An acyclic program is characterized by the fact
that for any ground instance of any clause, the level mapping of the head is greater
than the level mapping of each literal in the body.

We can relate acyclic and terminating programs: If P is an acyclic program then
P is terminating. Moreover if P is a definite program, then P is terminating iff P
is acyclic. When negation is allowed in clause bodies, there are programs which
are terminating but not acyclic. This is caused by the presence of floundering
derivations, since non-ground negative literals are not selected and some infinite
branches of the search tree cannot be explored [AB91]. Note that if a program is
terminating or acyclic, it is also left terminating.

The concept of acceptable program generalizes the one of acyclic program and
had been introduced by Apt and Pedreschi in [AP90, AP93] to characterize left
terminating programs.

In the two previous definitions, all ground queries were requested to terminate.
Vasak and Potter in [VP86] introduced two different termination properties which
refer to a specific query Q in a program: Universal termination and existential
termination.

4

Definition 2.4 (Universal and Existential Termination)

• A query Q is universally terminating in P iff all LDNF-derivations for Q in
P are finite.

• A query Q is existentially terminating in P iff there exists at least one LDNF-
derivation for Q in P which is finite.

Note that if every ground query universally terminates in a program P , then P is
left terminating. Conversely, if P is left terminating then every ground query is
universally terminating in it.

In order to characterize programs where every query is universally terminating,
we introduced also the following very strong termination property.

Definition 2.5 (Always Left Terminating Program) A program P is called
always left terminating iff all LDNF-derivations of P starting in any query are
finite. �

In an always left terminating program no computation can diverge. These programs
are generally defined by clauses which are not recursive or by built-ins and used to
perform some checks.

Note that if a program is always left terminating, then it is also left terminating.
Hence the class of left terminating programs includes the ones of terminating, acyclic
and always left terminating programs.

Another interesting class of queries we will refer to, and which contains all the
ground ones, is the class of well-moded queries. Modes are extensively used in the
literature on logic programs, usually they indicate how the arguments of a relation
should be used. A mode is a function that labels as input (+) or output (-) the
positions of each predicate in order to indicate how the arguments of a predicate
should be used. Most predicates have a natural moding, which reflects their in-
tended use. For example, the natural moding for the usual program append, when
used for concatenating two lists, is append(+,+,-). When talking about moded
programs, we assume that each predicate symbol has a unique mode associated to
it; multiple modes may be obtained by simply renaming the predicates. If Q is a
query, we denote by In(Q) (resp. Out(Q)) the set of terms filling in the input (resp.
output) positions of predicates in Q.

The concept of well-moded program is essentially due to Dembinski and Maluszyn-
ski [DM88]. Intuitively a program is well-moded when the modes of literals in each
clause, which reflect the dataflow taking place in it, are consistent with the left-to-
right selection rule. The definition of well-moded program and query has been given
for definite programs but it can be extended to general programs, as in [BCER01].
Moded level mappings are introduced in [EBC99], they do not take into account
output terms, but only input terms. The relevance of well-moding and moded level
mappings for termination is studied for definite programs in [EBC99]. We give here
an extended definition for general programs.

Definition 2.6 (Well-Terminating Program) A program is called well-termina-
ting iff all its LDNF-derivations starting in any well-moded query are finite.

Notice that a well-terminating program is also left terminating.

5

3 A Simple Transformation System: Unfold and
Fold

In their seminal papers [TS84, ST84], Sato and Tamaki adapted to definite logic
programs the ideas on program transformations firstly introduced by Burstall and
Darlington for functional programs [BD77]. They defined the basic unfold/fold
transformation system, based on the operations of new definition, unfold and fold.
Then they made it more powerful with replacement and further with clause addition
and clause deletion. They studied the system wrt to a declarative semantics given
by the least Herbrand model. This was the starting point for a number of studies on
transformations preserving properties of logic programs, both definite and general,
which can be expressed by a declarative semantics, such as: Success Set, Computed
Answer Substitutions and Finite Failures Set, see for example [Mah87, KK90, Sek91,
GS91, BCE92, AD93, BC93] just to quote some of these efforts.

We start by considering the basic operation: Unfold. From now on, standard-
ization apart is always assumed.

3.1 Unfold

Unfold is the fundamental operation for partial evaluation [LS91] and it consists
in applying a resolution step to an atom in a clause body, by using all possible
resolving clauses.

Definition 3.1 (Unfold) Let cl : H ← J, L,K. be a clause of a program P , L a
positive literal and {A1←B1., . . . , An←Bn.} the set of clauses of P whose heads
unify with L, by mgu’s {θ1, . . . , θn}.

• unfolding L in cl consists of substituting cl with {cl′1, . . . , cl′n}, where, for each
i, cl′i = (H ← J,Bi,K)θi.

L is the unfolded atom, {A1←B1., . . . , An←Bn.} are called the unfolding clauses
and {cl′1, . . . , cl′n} are the unfolded clauses (unfoldings for short). �

There are a few slightly different versions of this operation. A more powerful
definition of unfold for definite programs has been given in [Gal91] where the unfold
operation is based on partial evaluation, namely it consists in building a finite
(incomplete) SLD-tree for the body of a clause H ←B. and in getting the resultants
Hαi←Gi. as unfoldings. With such a “multi-step” unfold it is possible to obtain
unfoldings which are not obtainable through a series of one step unfoldings.

Note that we define the unfold only for positive literals (atoms). In some pro-
posals also a negative literal can be unfolded: For example in [GS91], if L = ¬A
with A ground, and A has a finitely failing SLDNF-tree, then unfolding L is done
by deleting L from the clause cl. On the other hand if A has a successful deriva-
tion, then the same operation yields the removal of cl. In [AD94] another unfold
for negative literals is defined in the context of a well-founded partial evaluation:
Any negative literal ¬p(t) in the program is replaced by an atom notp(t), where
the new predicate notp is defined as the negation of the completed definition of p.

3.1.1 Declarative Properties

Thanks to its correspondence to a resolution step, the unfold operation in Definition
3.1, is safe wrt basically all the declarative semantics available for logic programs:

6

The least Herbrand model, as shown already in [TS84], the Success Set and the
Computed Answer Substitutions semantics and this was shown by [KK90]. When
used alone, unfold preserves also the Finite Failure Set, while in combination with
other transformation operations, such as fold, this is no more preserved [Sek91].

3.1.2 Fixing the Selection Rule

Let us discuss now what happens when we are interested in preserving more pro-
cedural properties as termination ones. In this Section we analyze what happens
when we give up on (ND1) by fixing the selection rule.

Let us start by considering termination. For definite programs, in [BC94] we
proved that unfold preserves universal termination of a query and as a consequence
it preserves also left termination and well-termination. Unfortunately this reasoning
does not carry over to general logic programs, due to the possibility that they
terminate by floundering. Consider:

p ← not(trigger(X)), q(X), p.
trigger(a).
q(b).

This program is left terminating. Notice however that the query p terminates
by floundering. Now, if we unfold q(X) in the first clause, we obtain a program
containing the clause p ← not(trigger(b)), p. In this program the query p
does not left terminate any longer.

This has to do with the fact that Definition 3.1 of unfold allows for a left-
propagation of the bindings: The atoms on the left of the unfolded atom might
be instantiated during the unfolding (i.e. J becomes instantiated). In the above
example this happened to not(trigger(X)). This implies that after the unfold
operation some “calls” might be more instantiated than before the unfold.

On the other hand, for general programs we can say that the unfold operation
maintains acyclicity [BE94] and acceptability [BCE96b]: If P is acyclic (resp. ac-
ceptable wrt a certain level mapping | | and a model M) and P ′ is obtained from P
by the application of an unfold operation, then P ′ is acyclic as well (resp. acceptable
wrt | | and M as well).

Another consequence of the already mentioned left-propagation of the bindings
is that unfold can “ increase termination”, namely the transformed program can
terminate with a failure also for queries which are non-terminating in the original
program. Consider the trivial program:

c1: q ← p.
c2: p ← p, r.

If we unfold r in c2 we obtain the one-line program q ← p. for which all queries
terminate since they finitely fail. This can happen also when the unfolded atom is
not finitely failing. Consider the non-left terminating program:

q ← p(X), r(X).
p(s(X)) ← p(X).
r(a).

In this program the query q does not left terminate, however, by unfolding r(X),
we obtain a left terminating program.

7

3.1.3 Pure Prolog

We now see what happens when we substitute (ND2) by a fixed clause selection
augmented with backtracking. In this setting the order of the clauses in a program
becomes relevant, and we intend to consider more procedural observables. We notice
the following: Unfold can change the order of the computed answer substitutions.
Consider:

c1: p(X) ← q(X), r(X).
c2: q(a).
c3: q(b).
c4: r(b).
c4: r(a).

The query p(X), with a Prolog interpreter, has the sequence of computed answer
substitutions {X = a, X = b}. If we unfold r(X) in c1 we obtain:

c1’: p(X) ← q(b).
c2’: p(X) ← q(a).

...

Now the query p(X) returns first the answer X=b and then the one X=a.
Even in the absence of non-logical predicates, this apparently minor fact can have

annoying consequences. In particular, unfold can deteriorate the performances of a
program. Consider:

p ← heavy(X), q(X).
heavy(X) ← lots of calculations, X is b.
q(a).
q(b)

By unfolding q(X), we obtain.

p ← heavy(a).
p ← heavy(b).
heavy(X) ← lots of calculations, X is b.

In the second program, the query p generates two calls to heavy, while in the first
one heavy was called only once.

Thus the left-propagation of bindings can deteriorate efficiency and/or spoil ter-
mination. Partial evaluation systems have different ways for dealing with this. Gal-
lagher, [Gal91] for the SP system introduces the concept of determinate unfolding.
Roughly speaking, an unfolding is determinate if it returns no more than one clause
(more precisely, no more than one live clause, where dead clauses are those that
contain an immediately failing atom). This guarantees that the amount of nonde-
terminism is not increased, which would be harmful for the efficiency. Determinate
unfolding is also used in the ECCE partial evaluation system [LMS98].

In [PP91] Pettorossi and Proietti propose two restrictive definitions of unfold
for definite programs: Unfold of the leftmost atom, which is clearly not harmful wrt
any semantics (as it trivially cannot cause any left-propagation), and deterministic
non-left-propagating unfold.

Definition 3.2 (Deterministic Non-Left-Propagating Unfold) The unfolding
of a clause cl : H ← J, A,K. wrt the atom A is deterministic non-left-propagating
iff

8

1. there exists exactly one clause whose head is unifiable with A via an mgu θ;

2. (H ← J)θ is a variant of H ← J.

They proved that both such restrictive unfold operations preserve the “sequence
of answer substitution semantics” (a semantics for Prolog programs, defined in
[JM84, Bau89], which takes into account also the order of the computed answer
substitutions, together with their multiplicity). This guarantees that if the initial
program is left terminating, then the resulting program is left terminating as well.

Also partial evaluation systems for real Prolog generally forbid left propagation of
the variable bindings. Mixtus [Sah93], for instance exploits disjunction for unfolding
Prolog programs.

Definition 3.3 (Unfold in Mixtus) Let cl : H ← J, L,K. be a clause of a pro-
gram P , L a positive literal and {A1←B1., . . . , An←Bn.} the set of clauses of P
whose heads unify with L, by mgu’s {θ1, . . . , θn}.

• unfolding L in cl consists of substituting cl with

cl′ : H ← J, (
∨n
i=1 (L = Ai,Bi)),K.

This unfold guarantees that no left-propagation is performed, which in turn
ensures that the system is correct also in the presence of extra-logical predicates.

A conceptually similar approach is used in the PADDY system [Pre92] for partial
evaluation, but the disjunction is obtained by means of the introduction of a new
definition.

3.1.4 Prolog

When extra-logical features are involved, unfold can create further problems. One of
them is the possible loss of computed answer substitutions, as shown in the following
examples. Let us consider the program

c1: p(X) ← q(X).
c2: p(a).
c3: q(b) ← !.
c4: q(c).

for the query p(X) we get the computed answer substitutions X = b, X = a.
By unfolding q(X) in c1 we get

d1: p(b) ← !.
d2: p(c).
c2: p(a).
c3: q(b) ← !.
c4: q(c).

Now, for the query p(X), we obtain only X = b. Similarly let us consider

c1: p(X) ← var(X), q(X).
c2: q(b).
c3: q(c).

9

for the query p(X) we obtain the computed answer substitutions X = b, X = c. But
if we unfold q(X) in c1, for the same query p(X) we now have a failure.

These problems are deeply connected with the left-propagation of bindings, and
are automatically avoided if one employs a definition of unfold such as Definition
3.2 or 3.3.

Unfolding in Prolog has been studied in the context of partial evaluation systems
also in [LS88, BR89, Pre93]. They proposed either to restrict unfold on extra-logical
features or to transform the program before unfolding, in order to eliminate such
extra-logical features or at least to have them only in a standard form.

3.2 Fold

Fold is possibly the transformation operation for which we find the most different
definitions. In order to approach it, we first define the concept of transformation
sequence.

Definition 3.4 (Transformation Sequence) A transformation sequence is a se-
quence of programs P0, . . . , Pn, n ≥ 0, such that each program Pi+1, 0 ≤ i < n, is
obtained from Pi by applying a basic transformation operation to a clause of Pi. �

The simplest transformation systems (and then sequences) include only three
basic operations which allow for a reasonable set of transformations: new defini-
tion, unfold and fold. In the literature we can find many different definitions for
these operations. Here we are forced to choose one and we try to choose it in
the most general way, giving a short description of other proposals. Actually, in
[TS84] the new definition operation is not explicitly considered as a transformation
operation; rather, all new definitions are assumed to be present at the beginning
of the transformation. Here we follow the same syntax and we assume that every
transformation process starts from an initial program which already contains new
definitions expressed as Prolog clauses.

Definition 3.5 (Initial Program) We call a program P0 an initial program if
it can be partitioned into two programs Pnew and Pold such that the following
conditions are satisfied:

(I1) Pnew w Pold;

(I2) Pnew is not recursive.

Pnew contains the new definitions, that is the completed definitions of the predicates
defined in Pnew which are called new predicates. The predicates defined in Pold are
instead the old ones. Similarly we say that a literal is a new (resp. old) literal iff
its predicate symbol is.

We now give the most “classical” definition of fold, equivalent to the one by
Tamaki and Sato [TS84]: Fold is the inverse of unfold when one single unfold is
possible, and it consists in substituting an atom A for an equivalent conjunction
of literals B in the body of a clause cl. The transformation sequence and the fold
operation are defined in terms of each other.

Definition 3.6 (Fold) Let P0, . . . , Pi, i ≥ 0, be a transformation sequence and P0

an initial program, cl : H ← J,B,K. be a clause in Pi, and d : D←B′. be a clause
in Pnew. Folding B in cl via τ consists of replacing cl by cl′ : H ← J, Dτ,K.,
provided that τ is a substitution such that Dom(τ) = V ar(d) and such that the
following conditions hold:

10

(F1) d is the only clause in Pnew whose head is unifiable with Dτ ;

(F2) If we unfold Dτ in cl′ using d as unfolding clause, then the result of the
operation is a variant of cl;

(C1) Either cl defines an old predicate, or at least one atom of cl is the result of
a previous unfolding.

Notice that the clause used for folding, d, does not necessarily belong to the program
Pi in which the folding is performed. The following example is inspired by one in
[Sek93].

Example 3.7 Consider the initial program

c1: path(X,X,[X]).
c2: path(X,Z,[X|Xs]) ← arc(X,Y), path(Y,Z,Xs).

c3: goodlist([]).
c4: goodlist([X|Xs]) ← good(X), goodlist(Xs).

c5: goodpath(X,Z,Xs) ← path(X,Z,Xs), goodlist(Xs).

Pnew = {c5}, thus goodpath is the only new predicate. The query goodpath(X,Z,Xs)
can be employed for finding a path Xs starting in the node X and ending in the node
Z which contains exclusively “good” nodes. As it is now, goodpath works on a “gen-
erate and test” basis: First it produces a whole path, and then it checks whether it
contains only “good” nodes or not. Of course this strategy is quite naive: Checking
if the node is “good” or not while generating the path would noticeably increase
the performances of the program. We can obtain such an improvement via an un-
fold/fold transformation. By unfolding path(X, Z, Xs) in the body of c5, we obtain

c6: goodpath(X,X,[X]) ← goodlist([X]).
c7: goodpath(X,Z,[X|Xs]) ← arc(X,Y), path(Y,Z,Xs),

goodlist([X|Xs]).

In the above clauses we can unfold goodlist([X]) and goodlist([X|Xs]). The
resulting clauses, after further unfolding goodlist([]) in the clause obtained from
c6, are

c8: goodpath(X,X,[X]) ← good(X).
c9: goodpath(X,Z,[X|Xs]) ← arc(X,Y), path(Y,Z,Xs), good(X),

goodlist(Xs).

Let P2 = {c1, c2, c3, c4, c8, c9}. Now we have reached a crucial step in the trans-
formation: According to Definition 3.6 we can fold path(Y, Z, Xs), goodlist(Xs) in
c9. The result is the following recursive clause:

c10: goodpath(X,Z,[X|Xs]) ← arc(X,Y), good(X), goodpath(Y,Z,Xs).

Let P3 = {c1, c2, c3, c4, c8, c10}. Notice that this definition is now directly re-
cursive and it checks the “goodness” of the path while generating the path itself.
�

A different definition of fold is given in [Mah87] and in [GS91]: Both cl, the
folded clause, and d, the clause used for folding, are in Pi and they must be different
clauses (hence conditions F1 and F2 must hold in Pi, while C1 can be dropped).

11

This fold is normally regarded as weaker than the Tamaki-Sato’s one, in fact it
cannot produce all the same transformed programs, but its correctness wrt the
least Herbrand model, the Success Set and the Computed Answers Substitutions is
easier to prove. The disadvantage of this fold operation is that it does not allow
us to introduce direct recursion in a definition (as done in Example 3.7), which is
generally regarded as the key aspect of the folding operation.

We should mention another definition of fold, strictly stronger than Definition
3.6. It allows for simultaneous folding of different clauses and has been proposed
in [PP94a] by extending the idea of fold as the inverse of unfold to the case when
multiple unfoldings are possible.

3.2.1 Declarative Properties

Of course, it is of primary importance to ensure the correctness of an unfold/fold
system from a declarative point of view. For the system presented here the following
properties hold in case of definite programs:

• the least Herbrand Models of the initial and final programs coincide [TS84];

• the Success Sets of the initial and final programs coincide [KK90];

• the Computed Answers Substitutions of the initial and final programs coincide
[KK90].

The first unfold/fold transformation system was later generalized to general logic
programs, and proved correct wrt the well-founded semantics [Sek93]. Aravindan
and Dung proved in [AD93] that it preserves also the so-called semantic kernel,
that guarantees that the transformation is correct wrt a number of semantics for
programs with negation.

On the other hand, the Finite Failure Set is not preserved. Consider the following
example.

Example 3.8 Let P0 be the program

c1: p ← q, h(X).
c2: h(s(X)) ← h(X).

Where Pold = {c2} and Pnew = {c1}. Notice that there is no definition for predicate
q, so p and q finitely fail. By unfolding h(X) in c1 we obtain a variant of c1:

c3: p ← q, h(Y).

Now, we can fold q, h(Y) in c3, using clause c1 for folding. The result is

c4: p ← p

The Finite Failure Set has changed: p does not finitely fail any longer. �

This problem was addressed and fixed by Seki, who in [Sek91] provides a modified
fold operation for stratified general programs which requires that C1 be modified
into

(C2) either cl defines an old atom, or all the literals in the folded part of the clause
cl, B, must result from a previous unfolding.

This restriction is sufficient to guarantee that the Finite Failure Set of the initial
and of the final programs are the same. Seki also introduces a labelling of literals
in clause bodies in order to keep track of the ones coming from previous unfolding
and to make syntactically checkable this condition.

12

Termination Properties

We discuss now what happens when we are interested in preserving more procedural
properties such as termination ones.

If we consider termination wrt all selection rules, then the system we present
here is correct: In [BE94] we proved that if the initial program is (definite and)
terminating for all selection rules, then the transformed program is terminating
for all selection rules as well. This result extends also to general programs by
considering the concept of acyclic program: If the initial program is acyclic then
the resulting one is acyclic as well.

However, many usual programs are not terminating wrt all selection rules, and
it is clearly of interest to see what happens for instance to left termination when we
apply a fold-unfold transformation sequence. First of all note the obvious fact that
when we fix the selection rule, the order of literals in the bodies becomes relevant.
This is in contrast to the way the transformation rules were originally defined in
[TS84, Sek91]. For instance in the last transformation step of Example 3.7 we have
actually swapped the two atoms path(Y,Z,Xs), good(X) before applying the fold
operation. Since Definition 3.6 is given modulo reordering of the body atoms, this
does not pose any problem in applying it. On the other hand, if one fixes the
selection rule, such a swapping can easily introduce non-termination: For instance
think about swapping the two atoms fail, loop in a clause body. Thus, in order
to apply the fold operation to Prolog or pure Prolog programs, one has to give a
definition for it which takes into account the order of the literals in clause bodies.

A first relevant result in the direction of an unfold/fold transformation system
which preserves left termination was presented by Proietti and Pettorossi in [PP91].
They propose a transformation system for definite programs which is similar to
[TS84] with three additional conditions: (a) no reordering of the atoms is allowed,
(b) unfolding is allowed only for the leftmost atom of a clause or in the case of a
deterministic non-left propagating atom, and (c) folding is allowed if C1 is modified
as:

(C3) either cl defines an old atom, or the leftmost atom of the folded clause is the
result of a previous unfolding. 1

They proved that this system preserves a very strong semantics, namely, the se-
quence of answer substitutions semantics (a semantics for Prolog programs, defined
in [JM84, Bau89]). This guarantees also that if the initial program is left terminat-
ing, then the resulting program is left terminating as well. While this system has
rather restrictive applicability conditions (e.g. the transformation of Example 3.8 is
not possible within it), we believe that in order to preserve such a strong semantics
it is hardly possible to do any better.

In our works on unfold/fold transformations systems which preserve left termi-
nation [BC94, BC97, BCE96b, BCE00] we have explored two different approaches:

• In [BC94, BC97] we have considered the preservation of universal termina-
tion for definite programs, based on the (semantic) concept of non-increasing
operation.

• In [BCE96b, BCE00] we show that the crucial aspect in preserving left termi-
nation is the reordering of the atoms in a clause and we provide – among other

1These are not exactly the conditions proposed in [PP91], but a conservative approximation of
them in terms of the concepts we have introduced so far. We do this in order to avoid introducing
too much notation and to make it easier to compare the different approaches.

13

things – novel applicability conditions for reordering which in some cases are
purely syntactic, hence of practical nature. These will be discussed in Section
3.2.2.

In [BC94] we studied the preservation of universal termination for a query with
LD-resolution. In order to capture computed answer substitutions plus universal
termination, we defined an appropriate operational semantics for definite programs
and split the equivalence condition to be satisfied between the original and the trans-
formed program wrt a query into two complementary conditions: A “completeness”
condition, which ensures that successful LD-derivations for the query are preserved,
and the condition of being “non-increasing”. This second condition is very opera-
tional since it compares the lengths of corresponding partial LD-derivations of the
query in the initial and the transformed program. Its validity ensures that a trans-
formation cannot introduce infinite derivations. We proved that, by appropriately
restricting the version with no reordering of Tamaki-Sato’s system, based on new
definition, unfold and fold, the whole transformation sequence is non-increasing
and then it preserves also universal termination for a query. As a consequence,
left termination of programs is also preserved by such a restricted transformation
sequence. The restriction we introduce into the unfold/fold transformation system
imposes that fold can be performed only after a “decreasing” unfold of the clause to
be folded. Namely let cl : H ← J,B,K. be the clause to be folded in B, we require
instead of C1 the condition:

(C4) either cl defines an old atom, or at least one reachable atom in J,B comes
from a previous unfolding,

where an atom is called reachable when it has no finitely failing or diverging atom
to its left in cl. Clearly condition C4 is not decidable in general, even if there are
sufficient conditions for it, for example condition C3.

Another related work is [Amt92], where Amtoft gives a unified treatment of
conditions for preserving termination properties in transformation systems based
on unfold and fold. He sets up a model, parametrized with respect to the evaluation
order, which allows one to reason about termination in an algebraic fashion. In such
a model he can represent most of the previous results in the literature as a special
case: He can represent the condition of folding wrt a new predicate in [TS84, KK90],
the condition C2 of [Sek91], namely that all the atoms in the folded part of the
body have to be labelled (i.e. they must result from a previous unfolding), or the
weaker one, C3, in [PP91] for Prolog leftmost selection rule, namely that at least
the leftmost atom in the clause to be folded is labelled.

3.2.2 Folding + Switching

We have already stressed that unfold/fold transformations might at some point re-
quire a reordering of body literals in order to perform a fold operation. Such a
reordering can harm the termination of a program, and – because of this – we have
seen that unfold/fold systems for (pure) Prolog programs do not allow for any per-
mutation of literals in the clause’s bodies. This restriction limits sensibly the effec-
tiveness of a transformation system; to alleviate this problem, in [BCE96b, BCE00]
we have addressed the problem of introducing in the transformation system a switch
operation for reordering the body literals and of finding suitable applicability con-
ditions for such operation in order to guarantee persistency of left termination: If

14

the original program is left terminating, then the transformed program is left ter-
minating as well. We now give a brief summary of those results, starting by the
obvious definition of switch.

Definition 3.9 (Switch) Let cl : H ← J, A,B,K. be a clause of a program P .
switching A with B in cl consists of replacing cl with cl′ : H ← J, B,A,K. �

The switch operation can be seen as a replacement (discussed in the next Section)
which trivially maintains all the declarative properties of a program. On the other
hand, the switch does not preserve left termination. For instance if we take the
contrived program

p ← q, p.

we have that at the moment the program is terminating (q fails), however, if we
swap the two atoms in the body of the clause, we get a program which is not termi-
nating. Another typical situation is the one in which we have in the body of a clause
a combination such as ...p(X,Y), q(Y,Z)... , where the rightmost atom uses
Y as input variable; in this case, bringing q(Y,Z) to the left of p(X,Y) can easily
introduce non-termination, as q(Y,Z) might be called with its arguments not suf-
ficiently instantiated. In the context of an unfold/fold transformation system, this
situation is further complicated by the presence of the other operations, in particu-
lar of fold which may introduce recursion and hence non-termination. Consider the
following example.

Example 3.10 Let P0 be the following initial program.

c1: z ← p, r.
c2: p ← q, r.
c3: q ← r, p.

Where Pnew = {c1} and Pold = {c2, c3}. Notice that r is not defined anywhere,
so everything fails and this program is left terminating. By unfolding p in c1 we
obtain the following clause:

c4: z ← q, r, r.

By further unfolding q in c4 we obtain:

c5: z ← r, p, r, r.

Now we switch the first two atoms, obtaining:

c6: z ← p, r, r, r.

Notice that this particular switch operation does preserve left termination. How-
ever, if we now fold the first two atoms, using clause c1 for folding, we obtain the
following:

c7: z ← z, r, r.

which is not left terminating any longer. �

15

Here, we have a situation in which the switch operation does preserve left termi-
nation in a local way while left termination will subsequently be destroyed by the
application of the fold operation. Notice also that such a fold operation satisfies
any of the conditions C1, . . ., C4. This shows that the switch operation requires
applicability conditions which guarantee more than the termination properties of
the actual program.

In [BCE96b] we propose a transformation system for definite programs based on
unfold, fold and switch, which when applied to a left terminating moded program,
yields a program which is left terminating as well. For this, we employ a new
condition for the fold operation. Namely if cl : H ← J,B,K. is the clause to be
folded in B, instead of C1, we require that:

(C5) either cl defines an old atom, or one of the atoms in J or the leftmost in B
comes from a previous unfolding.

(actually, this is not exactly the condition reported in [BCE96b], however, it is
substantially equivalent to it, and this formulation allows us to compare it to the
other ones reported here). This condition is clearly stronger than C1 but weaker
than C3. Then, the concept of transformation sequence is extended so that it
includes the switch operation, for which specific applicability conditions are devised.
The first applicability condition, introduced in [BCE96b] applies to moded programs
and states that switching the atom A with B in the clause cl : H ← . . . , A,B,
is allowed if

(SW2) A is an old literal, V ar(Out(A)) ∩ V ar(In(B)) = ∅, and A is non-failing
in cl,

where non-failing in cl means that any instance of A, selected by the leftmost
selection rule when cl is used in the resolution process, will eventually succeed2.
The intuitive idea is that if A is non-failing, then it cannot “hide” any potential
loops of the following atoms, hence we are allowed to move it to the right. A
drawback is that the condition of being non-failing is generally non-computable,
but for very particular classes of programs and queries [BC98], noFD programs and
queries, which cannot have finitely failing LD-derivations, the non-failing property
can be trivially guaranteed.

In [BCE00] we extend this transformation system for definite programs, by us-
ing the dual reasoning: If an atom B “never loops” then we should be able to
move it leftward. This intuitive reasoning is not entirely true (the counterexample
is still Example 3.10), however, it yields a new syntactic-based condition for guar-
anteeing the preservation of left termination, provided that the definition of B is
never modified by the transformation. For this we need a new definition of initial
program:

Definition 3.11 (Initial Program) We call a program P0 an initial program if it
can be partitioned into three programs Pnew, Pold and Pbase, such that the following
conditions are satisfied:

(I1) Pnew w (Pold ∪ Pbase) and Pold w Pbase;

(I2) Pnew is not recursive;
2Again, this is a conservative approximation of the more complex notion of non-failing used in

[BCE96b].

16

(I3) all the literals in the bodies of the clauses of Pold are labelled “f”, with the
exception of literals defined in Pbase; no other literal of the initial program is
labelled.

We assume that the transformation does not affect the clauses in Pbase. Then
we obtain this new applicability condition for the switch operation: Switching the
literal A with B in the clause cl : H ← . . . , A,B, is allowed if

(SW1) B is a base literal.

This condition allows for a complex theorem which has a number of different mod-
ular results on termination. To mention two of them which apply to definite pro-
grams: Let P0, . . . , Pn be a transformation sequence in our system (where every
fold satisfies C5 and in which every switch operation is allowed) then we have that

• If P0 is left terminating and Pbase always left terminating, then Pn is also left
terminating.

• If P0 is well moded and left terminating and Pbase well-terminating, then Pn
is also left terminating.

Summarizing, in [BCE96a, BCE00] we propose a transformation system for def-
inite programs with fold satisfying C5 and a switch operation with special applica-
bility conditions. Such system – intuitively speaking – maintains left termination
together with the usual declarative properties.

Our system is appropriate for the paradigm logic programming + leftmost selec-
tion rule. At the same time it is not suitable for Prolog with built-ins: For instance
it employs an unfolding operation which allows for left-propagation. Moreover the
switch operation can cause permutations in the sequence of answers substitutions,
which, as we have seen before, in the case of full Prolog can have serious conse-
quences on the operational behaviour of the program.

3.2.3 Prolog and Partial Evaluation

In general, the term partial evaluation indicates a transformation system which does
not include the fold operation. To this rule there are important exceptions. In the
first place, the PADDY system [Pre92] employs a fold operation which is based on
the system of Proietti-Pettorossi [PP91] (yet with a different unfolding). Sahlin’s
Mixtus [Sah93] is an automatic partial evaluator for full Prolog which incorporates
a fold operation. The latter operation employs further restrictions, among which
that the folded conjunction (B in Definition 3.6) must consist of only one atom.
Sahlin states: “Our experience indicates that the most important class of programs
to be partially evaluated, the interpreters, folding for composite goals does not seem
to be required for getting satisfactory results”.

Finally, we should mention the work on conjunctive partial deduction. [SGJ+99].
Partial deduction in its usual form (i.e. without a fold operation) cannot achieve cer-
tain optimizations which are possible by unfold/fold transformations. Conjunctive
partial deduction is an extension of partial deduction which allows for optimizations
which are typical of an unfold/fold system, for instance tupling and deforestation.
Intuitively speaking, this is achieved by extending the paradigm to one in which a
head of a clause might consist of a conjunction of atoms. In its pure form, conjunc-
tive partial deduction is correct wrt the declarative semantics of a program (basically
wrt the least Herbrand model and the Computed Answer Substitutions semantics,

17

however Finite Failure and other declarative semantics can also be accommodated).
Clearly, these semantics are independent of the selection rule.

The authors in [SGJ+99] address also the problem of conjunctive partial de-
duction in presence of a fixed left-to-right selection rule. Interestingly, the authors
come to the conclusion that one should “limit the splitting to contiguous atoms
only”, otherwise one might degrade program’s performances or even introduce non-
termination. Without getting into the details of the splitting operation, we notice
that this is very similar to forbidding any switching of two atoms.

4 An Extended System: Replacement

We can obtain a much more powerful transformation system by adding to unfold
and fold a further transformation operation: The replacement. Replacement allows
one to substitute a sequence of literals in a clause body by an “equivalent” sequence
of literals. What “equivalent” means depends on the chosen observables. We give
here a very general definition.

Definition 4.1 (Replacement) Let B′ be a sequence of literals defined in P ,
c : H ←A,B,C. be a clause in P and let c′ : H ←A,B′,C.
Let X be the set of common variables and Y be the set of private variables in B
and B′, namely X = V ar(B) ∩ V ar(B′) and Y = V ar(B,B′) \X.
Replacing B by B′ in c consists in replacing c by c′ if

(R1) the variables in Y are local wrt c and c′, that is V ar(H,A,C) ∩ Y = ∅;

(R2) B and B′ are equivalent wrt the chosen semantics, that is (with an extended
notation on existential quantifiers) ∃YB ≡S ∃YB′, where S is a specified
semantics.

Replacement may be used for applying algebraic laws as shown in the next example.

Example 4.2 Let a program P contain the clause

c: p(l1, l2, l3,Z) ← app(l1, l2, Y1), app(Y1, l3, Z).

where app is the usual append predicate and l1, l2, l3 are lists of fixed length. Let
B = app(l1, l2, Y 1), app(Y 1, l3, Z) and B′ = app(l2, l3, Y 2), app(l1, Y 2, Z). Replac-
ing B by B′ in c satisfies both the syntactic condition and the equivalence one. In
fact this replacement corresponds to applying the associative property of append.

Replacement can also be used to eliminate or add literals to a clause body, what is
called respectively thin and fatten operation in [BC93].

Clearly a transformation system including replacement has a much greater power
and it allows for a deep restructuring of the initial program. A typical use of replace-
ment is transforming non-linear recursive predicates into linear ones by introducing
accumulators or difference-lists. It is also clear that such transformations are less
automatizable and require more guidance from the programmer.

Notice also that fold can be considered as a special case of replacement. A trans-
formation system containing replacement could then drop the fold operation. This
was actually done by Cook and Gallagher in [CG94]. In fact they propose an elegant
transformation system for definite programs based on two basic operations only: A
particular form of unfold that we already described in Section 3.1 and replacement.

18

The basic difference between folding and replacement is that in the first one there
has to be a folding clause, which makes the operation of “syntactic nature”, on the
other hand, the replacement allows one to exchange any two sequences of literals,
provided he can prove their equivalence. It is then a very general operation, whose
applicability is typically undecidable.

4.0.4 Declarative Properties

The first requirement in Definition 4.1 is syntactic correctness, namely private vari-
ables Y must not produce different bindings of B and B′ with their contexts c
and c′. The second requirement imposes the equivalence of B and B′ wrt common
variables in the chosen semantics. Many different instances of this second condition
can be found in the literature.

• [GS91] requires that for all grounding θ, P |= Bθ implies P \ {c} |= B′θ′ and
vice-versa that for all grounding θ, P |= B′θ implies P \ {c} |= Bθ′, where
θ and θ′ coincide on the variables occurring in H,A,C. This guarantees the
preservation of the least Herbrand Model, MP . They study replacement also
in the context of general programs.

• In [Mah87], given that no predicate in B and B′ depends on Pred(H), the
equivalence must be provable in comp(P); then it guarantees the preservation
of the Success Set and of the Ground Finite Failure set in definite programs.

• In [BCE96a] a simultaneous replacement of many sequences of literals in many
clauses is defined. The (rather complex) condition to be satisfied allows for
dependencies between replaced sequences of literals and modified clauses and
still it guarantees to preserve the Fitting’s and Kunen’s semantics of general
programs.

• In [PP94b] the equivalence condition is parametric wrt the semantics and it
depends on P \ {c}. In order to prove it, Pettorossi and Proietti propose
unfold/fold proofs for definite and gneral programs which are naturally para-
metric wrt the semantics.

Termination Properties

Let us consider now more procedural properties such as termination ones. First
notice that when we consider control issues, the order of literals in the bodies
becomes relevant also for replacement. Note also that replacement itself can be
used for reordering literals.

As previously mentioned, Cook and Gallagher in [CG94] define a transforma-
tion system for definite programs based only on a particular unfold and replace-
ment. Such replacement depends on (semantic equivalence +) termination analysis,
namely it requires a property of termination (or left termination if we consider the
Prolog leftmost selection rule) which must hold on the resulting program. This
condition ensures that the system preserves the Success Set. If a similar termina-
tion property is required also on the program to be transformed, then the system
preserves also the Finite Failure Set. The authors suggest to check such termination
properties a posteriori, by means of any known technique for verifying termination
properties, but they also claim that one could devise sufficient conditions for the
applicability of such replacement.

19

In [BC97] we extend our simple unfold/fold system for definite programs pre-
sented in [BC94], which preserves universal termination of a query with LD-resolution.
For reordering atoms in the bodies, we introduce also a replacement operation. In
order to guarantee the non-increasing property also for replacement, besides con-
ditions R1 and R2 (referred to the semantics given by Computed Answer Substi-
tutions plus universal termination for a query), we impose a further restriction on
replacement, namely that

(R3) B′ is non-increasing in c wrt B in P .

This basically means that for any substitution θ, instantiating only common vari-
ables, any partial LD-derivation of B′θ is not longer than a corresponding one of
Bθ.

We also study how typing information and the well-typing property can simplify
the verification of such applicability conditions for replacement. In fact the major
problem is how to verify in practice such applicability conditions for preserving
universal termination since they are semantic conditions and operational in style,
not decidable in general.

5 Conclusions

Virtuous programming methodology which consists in focusing on correctness of
programs at first and on their efficiency only afterwards, fits particularly well with
logic programming [Kow79, Dev90]. This encourages the application of transforma-
tion systems to logic programs both for synthesizing a correct program from a logic
specification and for optimizing it.

The main requirements for a practical transformation systems are on one hand
to guarantee the preservation of interesting program properties and on the other
hand to be supported by an automatic or semi-automatic tool. Among interesting
properties the most basic are captured by declarative semantics, but nondeclarative
properties are also extremely relevant, such as the termination of the program.

In this paper we give a short description of the systems proposed for logic pro-
gram transformation. In particular, we focus on systems able to preserve termina-
tion and other nondeclarative properties in Prolog programs.

We consider at first simple unfold/fold systems and then more powerful ones
including the replacement or at least the switch operation. Transformation sys-
tems can include other basic transformation operations, either obtainable through
a combination of the previous ones or completely independent from them. Since
any transformation system proposes his own set of basic operations, we decided
to restrict our comparison only to the main ones: New definition, unfold, fold and
replacement. Such set of operations gives rise to systems which are powerful enough
for dealing with most applications of program transformation.

Since we focus on nondeclarative properties of Prolog programs, we have not
given a detailed account of the various results on declarative semantic, neither we
consider transformation systems dealing with extended logic programming paradigms,
such as CLP, or with modified interpreters. For a rather complete panorama of
recent proposals in the field of logic programs transformations the LOPSTR pro-
ceedings are a good reference [LOP].

20

References

[AB91] K. R. Apt and M. Bezem. Acyclic programs. New Generation Comput-
ing, 9(3&4):335–363, 1991.

[AD93] C. Aravidan and P. M. Dung. On the correctness of Unfold/Fold trans-
formation of normal and extended logic programs. Technical report,
Division of Computer Science, Asian Institute of Technology, Bangkok,
Thailand, April 1993.

[AD94] C. Aravidan and P. M. Dung. Partial Deduction of Logic Programs
w.r.t. Well-Founded Semantics. New Generation Computing, 13:45–74,
1994.

[Amt92] T. Amtoft. Unfold/fold transformations preserving termination proper-
ties. In Proceedings PLILP’92, number 631 in Lecture Notes in Com-
puter Science, pages 187–201. Springer-Verlag, 1992.

[AP90] K. R. Apt and D. Pedreschi. Studies in pure Prolog: termination. In
J.W. Lloyd, editor, Symposium on Computional Logic, pages 150–176,
Berlin, 1990. Springer-Verlag.

[AP93] K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog
programs. Information and Computation, 106(1):109–157, 1993.

[Apt97] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[Bau89] M. Baudinet. Logic Programming Semantics: Techniques and Applica-
tions. PhD thesis, Stanford University, Stanford, California, 1989.

[BC93] A. Bossi and N. Cocco. Basic Transformation Operations which preserve
Computed Answer Substitutions of Logic Programs. Journal of Logic
Programming, 16(1&2):47–87, 1993.

[BC94] A. Bossi and N. Cocco. Preserving universal termination trough un-
fold/fold. In G. Levi and M. Rodŕiguez-Artalejo, editors, Proc. Fourth
Int’l Conf. on Algebraic and Logic Programming, volume 850 of Lec-
ture Notes in Computer Science, pages 269–286. Springer-Verlag, Berlin,
1994.

[BC97] A. Bossi and N. Cocco. Replacement can preserve termination. In
J. Gallagher, editor, Proc. Sixth Workshop on Logic Program Synthesis
and Transformation, volume 1207 of Lecture Notes in Computer Science,
pages 104–129. Springer-Verlag, Berlin, 1997.

[BC98] A. Bossi and N. Cocco. Programs without failures. In R. Fuchs, editor,
Proc. Seventh Workshop on Logic Program Synthesis and Transforma-
tion, volume 1463 of Lecture Notes in Computer Science, pages 28–48.
Springer-Verlag, Berlin, 1998.

[BCE92] A. Bossi, N. Cocco, and S. Etalle. Transforming Normal Programs by
Replacement. In A. Pettorossi, editor, Meta Programming in Logic -
Proceedings META’92, volume 649 of Lecture Notes in Computer Sci-
ence, pages 265–279. Springer-Verlag, Berlin, 1992.

21

[BCE96a] A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal
programs. Journal of Logic and Computation, 6(1):79–120, February
1996.

[BCE96b] A. Bossi, N. Cocco, and S. Etalle. Transformation of Left Terminating
Programs: the Reordering Problem. In M. Proietti, editor, LOPSTR95
– Fifth International Workshop on Logic Program Synthesis and Trans-
formation, number 1048 in LNCS, pages 33–45. Springer-Verlag, 1996.

[BCE00] A. Bossi, N. Cocco, and S. Etalle. Transformation of Left Terminating
Programs. In A. Bossi, editor, Ninth International Workshop on Logic
Program Synthesis and Transformation, number 1817 in LNCS, pages
156–175. Springer-Verlag, 2000.

[BCER01] A. Bossi, N. Cocco, S. Etalle, and S. Rossi. Termination in a hierarchy
of general logic programs. Technical Report CS-2001-05, Dipartimento
di Informatica, Università Ca’ Foscari Di Venezia, Italy, March 2001.

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24(1):44–67, January 1977.

[BE94] A. Bossi and S. Etalle. Transforming Acyclic Programs. ACM Trans-
actions on Programming Languages and Systems, 16(4):1081–1096, July
1994.

[BR89] M. Bugliesi and F. Rossi. Partial evaluation in Prolog: Some improve-
ments about cut. In E.L. Lusk and R.A. Overbeek, editors, Logic Pro-
gramming: Proceedings of the North American Conference 1989, Cleve-
land, Ohio, October 1989, pages 645–660. MIT Press, 1989.

[Cav89] L. Cavedon. Continuity, consistency and completeness properties for
logic programs. In G. Levi and M. Martelli, editors, 6 International
Conference on Logic Programming, pages 571–584. MIT press, 1989.

[CG94] J. Cook and J.P. Gallagher. A transformation system for definite pro-
grams based on termination analysis. In F. Turini, editor, Proc. Fourth
Workshop on Logic Program Synthesis and Transformation, pages 51–
68. Springer-Verlag, 1994.

[Cla78] K. L. Clark. Negation as failure rule. In H. Gallaire and G. Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, 1978.

[Dev90] Y. Deville. Logic Programming. Systematic Program Development.
Addison-Wesley, 1990.

[DM88] W. Drabent and J. Maluszynski. Inductive assertion method for logic
programs. Theoretical Computer Science, 59:133–155, 1988.

[EBC99] S. Etalle, A. Bossi, and N. Cocco. Termination of well-moded programs.
Journal of Logic Programming, 38(2):243–257, 1999.

[FLMP93] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-
Theoretic Reconstruction of the Operational Semantics of Logic Pro-
grams. Information and Computation, 102(1):86–113, 1993.

22

[Gal91] J. P. Gallagher. A system for specializing logic programs. Technical
Report 91-32, University of Bristol, 1991.

[GS91] P.A. Gardner and J.C. Shepherdson. Unfold/fold transformations of
logic programs. In J-L Lassez and G. Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson. MIT Press, 1991.

[JM84] N. Jones and A. Mycroft. Stepwise Development of Operational and
Denotational Semantics for Prolog. In Sten-Åke Tärnlund, editor, Proc.
Second Int’l Conf. on Logic Programming, pages 281–288, 1984.

[KK90] T. Kawamura and T. Kanamori. Preservation of Stronger Equivalence in
Unfold/Fold Logic Programming Transformation. Theoretical Computer
Science, 75(1&2):139–156, 1990.

[Kow79] R. Kowalski. Algorithm = Logic + Control. Communications of the
ACM, 22(7):424–436, 1979.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation
– Artificial Intelligence. Springer-Verlag, Berlin, 1987. Second edition.

[LMS98] M. Leuschel, B. Martens, and D. De Schreye. Controlling General-
isation and Polyvariance in Partial Deduction of Normal Logic Pro-
grams. ACM Transactions on Programming Languages and Systems
(TOPLAS), 20(1):208–258, 1998.

[LOP] International Workshops on Logic Program Synthesis and Transforma-
tion. http://www.cs.man.ac.uk/ kung-kiu/lopstr/.

[LS88] G. Levi and G. Sardu. Partial evaluation of metaprograms in a multi-
ple worlds logic language. New Generation Computing, 6(2,3):227–247,
1988.

[LS91] J. W. Lloyd and J. C. Shepherdson. Partial Evaluation in Logic Pro-
gramming. Journal of Logic Programming, 11:217–242, 1991.

[Mah87] M.J. Maher. Correctness of a logic program transformation system. IBM
Research Report RC13496, T.J. Watson Research Center, 1987.

[PP91] M. Proietti and A. Pettorossi. Semantics preserving transformation
rules for Prolog. In ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM ’91), New Haven,
CT (U.S.A.) (SIGPLAN NOTICES, Vol.26 (9)), pages 274–284. ACM
press, 1991.

[PP94a] A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foun-
dations and Techniques. Journal of Logic Programming, 19(20):261–320,
1994.

[PP94b] M. Proietti and A. Pettorossi. Total correctness of a goal replacement
rule based of the unfold/fold proof method. In M. Alpuente, editor, Proc.
1994 Joint Conference on Declarative Programming GULP-PRODE’94,
pages 347–358. Springer-Verlag, 1994.

[Pre92] S. Prestwich. The PADDY partial deduction system. Technical Report
92-6, ECRC GmbH, Munich, Germany, 1992.

23

[Pre93] S. Prestwich. An Unfold Rule for full Prolog. In K.K. Lau and
T. Clement, editors, Proceedings LOPSTR’92, Workshops in Comput-
ing, pages 199–213. Springer-Verlag, Berlin, 1993.

[Sah93] D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New
Generation Computing, (12):7–51, 1993.

[Sek91] H. Seki. Unfold/fold transformation of stratified programs. Theoretical
Computer Science, 86(1):107–139, 1991.

[Sek93] H. Seki. Unfold/fold transformation of general logic programs for the
Well-Founded semantics. Journal of Logic Programming, 16(1&2):5–23,
1993.

[SGJ+99] D. De Schreye, R. Glück, Jesper Jørgensen, M. Leuschel, B. Martens,
and M. H. Sørensen. Conjunctive partial deduction: foundations, con-
trol, algorithms, and experiments. Journal of Logic Programming, 41(2-
3):231–277, 1999.

[ST84] T. Sato and H. Tamaki. Transformational logic program systhesis. In In-
ternational Conference on Fifth Generation Computer Systems, Tokyo,
Japan, November 1984, pages 195–201. ICOT, 1984.

[TS84] H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Pro-
grams. In Sten-Åke Tärnlund, editor, Proc. Second Int’l Conf. on Logic
Programming, pages 127–139, 1984.

[VP86] T. Vasak and J. Potter. Characterization of Terminating Logic Pro-
grams. In Proc. Third IEEE Int’l Symp. on Logic Programming, pages
140–147. IEEE Comp. Soc. Press, 1986.

24

