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Abstract Unstructured textual data such as students’ essays and life narratives can provide 

helpful information in educational and psychological measurement, but often contain 

irregularities and ambiguities, which creates difficulties in analysis. Text mining techniques 

that seek to extract useful information from textual data sources through identifying interesting 

patterns are promising. This chapter describes the general procedures of text classification 

using text mining and presents an alternative machine learning algorithm for text 

classification, named the product score model (PSM). Using the bag-of-words representation 

(single words), we conducted a comparative study between PSM and two commonly used 

classification models, decision tree and naïve Bayes. An application of these three models is 

illustrated for real textual data. The results showed the PSM performed the most efficiently 

and stably in classifying text. Implications of these results for the PSM are further discussed 

and recommendations about its use are given.  
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Introduction 

Language is magic that diversifies our lives. The way individuals talk and write provides a 

window into their emotional and cognitive worlds. Yet despite the interesting attributes of 

textual data, analyzing them is not easy. One of the major reasons is that textual data are 

generally more diverse than numerical data and are often unstructured, neither having a 

predefined data model nor fitting well into relational patterns. The irregularities and 

ambiguities make it even harder to classify textual data compared with structured data stored 

in field form in databases. Thus, to address the challenge of exploiting textual information, 

new methods need to be developed. 

The development of information technology demonstrated breakthroughs in handling 

unstructured textual data during the past decade. A promising technique is text mining, which 

exploits information retrieval, information extraction, and corpus-based computational 

linguistics. Analogous to data mining, text mining seeks to extract useful information from 

textual data sources by identifying interesting patterns.  



However, a preprocessing step is required to add transforming unstructured data stored in 

texts into a more explicitly structured intermediate format (Feldman & Sanger, 2007). 

Text mining techniques are used, for example, for text classification, where textual 

objects from a universe are assigned to two or more classes (Manning & Schütze, 1999). 

Common applications in educational measurement classify students’ essays into different 

grade levels with automated scoring algorithms, e.g., Project Essay Grade (PEG; Page, 2003) 

and automated scoring of open answer questions, e.g., E-raters (Burstein, 2003). Feature 

extraction and machine learning are the two essential sections in text classification, playing 

influential roles in classification efficiency. During feature extraction, textual components are 

transformed into structured data and labeled with one or more classes. Based on these 

encoded data, the most discriminative lexical features are extracted by using computational 

statistic models, such as the chi-square selection algorithm (Oakes, Gaizauskas, Fowkes, 

Jonsson, & Beaulieu, 2001) and likelihood ratio functions (Dunning, 1993). In the machine 

learning section, documents are allocated into the most likely classes by applying machine 

learning algorithms such as decision trees (DTs), naïve Bayes (NB), support vector machines 

(SVM), and the K nearest neighbor model (KNN). Although many machine learning 

classifiers have been tested efficiently in text classification, new alternative models are still 

being explored to further improve text classification performance and accelerate the speed of 

word processing (see more in Duda, Hart, & Stork, 2001; Vapnik, 1998). 

This chapter briefly describes the general procedure for supervised text classification 

where the actual status (label) of the training data has been identified (―supervised‖), 

introduces an effective and much used feature extraction model, i.e., the chi-square selection 

algorithm, and presents an alternative machine learning algorithm for text classification, 

named the product score model (PSM). To evaluate the PSM performance, a comparative 

study was conducted between PSM and two standard classification models, DTs and NB, 

based on an example application for real textual data. The research questions focus on (a) 

whether the PSM performs more efficiently in classifying text compared to the standard 

models, and (b) whether the PSM maintains stable and reliable agreement with the human 

raters’ assessment.  

 

Supervised Text Classification 

Supervised text classification is a commonly used approach for textual categorization, which 

generally involves two phases, a training phase and a prediction phase (Jurafsky & Martin, 

2009; see Figure 1).  



During training, the most discriminative keywords for determining the class label are 

extracted. The input for the machine learning algorithm consists of a set of prespecified 

keywords that may potentially be present in a document and labels classifying each document. 

The objective of the training phase is to ―learn‖ the relationship between the keywords and the 

class labels. The prediction phase plays an important role in checking how well the trained 

classifier model performs on a new dataset. The test set should consist of data that were not 

used during training. In the testing procedure, the keywords extracted from the training are 

scanned in each new input. Thus, the words that were systematically recognized are fed into 

the ―trained‖ classifier model, which predicts the most likely label for each new self-narrative. 

To ensure proper generalization capabilities for the text classification models, a cross-

validation procedure is generally applied.  

 

 

Note: Supervised text classification generally involves two phases, training and prediction. The objective of the 

training phase is to model (i.e., to learn) the relationship between the keywords and labels. The prediction is used 

to check how well the trained classifier model performs on a new dataset.   

Figure 1 The framework of supervised text classification 



 

To improve the efficiency of the training and prediction procedure, a preprocessing routine is 

often implemented. This involves screening digital numbers, deducting noninformative ―stop 

words‖ (e.g., ―I‖, ―to‖), common punctuation marks (e.g., ―.‖, ―:‖), and frequently used 

abbreviations (e.g., ―isnt‖, ―Im‖), and ―stemming‖ the rest of words, for instance, with the 

Porter algorithm (Porter, 1980) to remove common morphological endings. For example, the 

terms ―nightmares,‖ ―nightmaring,‖ and ―nightmared,‖ though in variant lexical forms, are 

normalized in an identical stem ―nightmar‖
1
 by removing the suffixes and linguistic rule-

based indicators.  

 

Chi-Square Feature Selection Algorithm 

A classifier extraction can be designed to capture salient words or concepts from texts using a 

feature selection algorithm that compares the frequency of each word type in the text corpus
2
 

of interest to the frequency of that word type in the whole text corpora (Conway, 2010). 

Forman (2003) reviewed many feature selection methods for text classification, in which the 

chi-square selection algorithm (Oakes et al., 2001) was recommended for use due to its high 

effectiveness in finding robust keywords and testing for the similarity between different 

corpora. Thus, we briefly introduce this algorithm here and then apply it in the example data.  

To apply the chi-square algorithm for feature selection, the N word types in the 

training set are compiled into an N-by-2 table, schematically shown in Table 1. The two 

columns correspond to the two corpora, 
1C  and 

2C . Each row corresponds to a particular word 

i . The number of word occurrences in 
1C  and 

2C  is indicated by
in and

im , respectively. The 

sum of the word occurrences in each corpus is defined as the corpus length,  
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Table 1 Structuralizing Textual Data in a Binary Classification 

 1C  
2C  

Word 1 45 1 

Word 2 23 0 

…
 

…
 

…
 

Word i in  
im  

…
 

…
 

…
 

Word k kn  
km  

Total )( 1Clen  )( 2Clen  

Note: C represents the class label of text corpus, and
in and 

im  represent the number of occurrences of a word i 

in two corpora, respectively 

 

Table 2 Confusion Matrix for Word i in the 2-by-2 Chi-Square Score Calculation 

 1C   2C  

Word i  in  im  

¬ Word i  inClen )( 1  imClen )( 2  

Note: C represents the class label of text corpus, and 
in and 

im  represent the number of occurrences of a word i 

in two corpora, respectively 

 

Each word is then compiled into its own 2-by-2 contingency table as shown in Table 

2. The values in each cell are called the observed frequencies (
ijO ). Using the assumption of 

independence, the expected frequencies (
ijE ) are computed from the marginal probabilities. 

The chi-square statistic sums the differences between the observed and the expected values in 

all squares of the table, scaled by the magnitude of the expected values, as the following 

formula: 
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To ensure the reliability of the calculation, as Manning and Schütze (1999) suggested, in 

practice features or words that occur fewer than five times are usually eliminated. However, 

for a small sample, the number of word occurrences could be even lower, perhaps three times. 

Based on the chi-square scores, all words are ranked in descending order, and those standing 

at the top are extracted as robust classifiers.
3
 Further, if the ratio ii mn /  is larger than the ratio 

)(/)( 21 ClenClen , the word is regarded as more typical of corpus 
1C  (as a ―positive indicator‖); 

otherwise, it is more typical of corpus 
2C  (as a ―negative indicator‖) (Oakes et al., 2001).  

 

Text Classification Models 

Training text classifiers is the procedure where machines ―learn‖ to automatically recognize 

complex patterns, to distinguish between exemplars based on their different patterns, and to 

make intelligent predictions on their class. Among various machine learning algorithms, 

decision trees (C4.5; Quinlan, 1993) and naïve Bayes are two of the most widely used text 

classification models (see more algorithms in Kotsiantis, 2007).  

 

Decision Trees 

A decision tree is a well-known machine learning approach to automatically induce 

classification trees based on training data sets. In the tree structures, leaves represent class 

labels, and branches represent conjunctions of features that lead to those class labels. The 

feature that best divides the training data is the root node of the tree. There are numerous 

methods for finding the feature that best divides the training data such as information gain 

(Hunt, Marin, & Stone, 1966) and the Gini index (Breiman, 1984). The objects at each node 

are split into piles in a way that gives maximum information gain and stopped until they are 

categorized into a terminate class. 

 

Naive Bayes 

Naive Bayes is a probabilistic classifier applying Bayes’s theorem with strong (naive) 

independence assumptions (Lewis, 1998). It is simple but effective in practice (Hand & Yu, 

2001). In text classification, the basic idea behind NB is to estimate probabilities of categories 

given a text document by using the joint probabilities of words and categories with the 

assumption of word independence. Namely, 
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where C  represents a specific class and w represents the keyword vectors. )(Cp is the prior 

probability of a certain class, and )|( Cwp i
is the conditional probability of a word occurs in a 

certain class. In the binary classification, the two probabilities from categories 
1C and 

2C could 

be simply compared in a ratio R . That is, 
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If 1R , the object is classified in category 
1C ; else it is classified in category 

2C .  

 

Product Score Model 

The product score model (He, Veldkamp, & de Vries, 2012) is an alternative machine 

learning algorithm, which features in assigning two weights for each keyword (in binary 

classification)—the probability of the word i occurs in the two separate corpora, iU and iV —

to indicate to how much of a degree the word can represent the two classes. The weights are 

calculated by  
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Note that a smoothing constant a  (we use 5.0 a in this study) is added to the word 

occurrence in Formula (5) to account for words that do not occur in the training set, but might 

occur in new texts. (For more on smoothing rules, see Manning & Schütze, 1999; Jurafsky & 

Martin, 2009.) 

The name product score comes from a product operation to compute scores for each 

class, i.e., 1S and 2S , for each input text based on the term weights. That is, 
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where a  is a constant, and )(CP is the prior probability for each category given the total 

corpora. The classification rule is defined as: 
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where b  is a constant.
4
  

To avoid mismatches caused by randomness, unclassification rules are also taken into 

account. As mentioned above, based on the chi-square selection algorithm, the keywords are 

labeled as two categories, positive indicator and negative indicator. Thus, we define a text as 

―unclassified‖ when either one of the following conditions is met: (a) no keywords are found 

in the text; (b) only one keyword is found in the text; (c) only two keywords are found in the 

text, and one is labeled as a positive indicator while the other as a negative indicator. 

 

Example Application 

Data 

As part of a larger study exploring the relationship between life narratives and students’ 

personality adaption, 656 life stories were collected from 271 undergraduate students at 

Northwestern University, in the United States. The classification target was to label the life 

stories into four categories: redemption (RED), contamination (CON), redemption and 

contamination (BOTH), and neither redemption nor contamination (NEITHER). In the 

narrative research in the discipline of personality psychology, redemption and contamination 

are the two most important sequences for revealing the ―change‖ tendency in people’s 

emotional well-being through writing (McAdams, 2008). In a redemption sequence, a 

demonstrably ―bad‖ or emotionally negative event or circumstance leads to a happy outcome, 

whereas in a contamination scene, a good or positive event or state becomes bad or negative. 

Three experienced experts were invited to label each story based on McAdams’s manual 

coding system (McAdams, 2008). The Kappa agreement among the three human raters was 

0.67.  



The label for each story was defined as the decision made by at least two human raters, 

and was identified as the ―standard‖ for the training process. According to the human raters’ 

assessment, 231 stories were labeled ―change‖ (i.e., redemption or contamination or both), 

and 425 stories were labeled ―no change‖ (i.e., neither redemption nor contamination). 

 

Method 

Given concerns about the common feature—―the change‖ tendency—in the redemption and 

contamination sequences, a two-stage classification framework was constructed. On the first 

stage, all the input was divided into two groups, ―change‖ and ―no change.‖ A further detailed 

classification was conducted at the second stage to categorize the preliminary results as 

redemption and contamination. To illustrate the application of the text classification models, 

we focused only on the first stage in the present study. The dataset was randomly split into a 

training set and a testing set, 70% and 30%, respectively. The ―stop word list‖ and the Porter 

algorithm were used in the preprocessing to deduct the noninformative words and normalize 

the words into their common lexical forms. The robust classifiers were extracted by using the 

chi-square selection algorithm. Three machine learning models, DC, NB, and PSM, were 

applied for a comparative study.  

Six performance metrics, accuracy, sensitivity (recall), specificity, positive predictive 

value (precision) (PPV), negative predict value (NPV), and F1 measure, were used to evaluate 

the efficiency of the three employed machine learning algorithms. A contingency table was 

used to perform calculations (see Table 3). All six indicators are defined in definitions (1) 

through (6), respectively. Accuracy, the main metric used in classification, is the percentage 

of correctly defined texts. Sensitivity and specificity measure the proportion of actual 

positives and actual negatives that are correctly identified, respectively. These two indicators 

do not depend on the prevalence (i.e., proportion of ―change‖ and ―no change‖ texts of the 

total) in the corpus, and hence are more indicative of real-world performance. The predictive 

values, PPV and NPV, are estimators of the confidence in predicting correct classification; 

that is, the higher predictive values, the more reliable the prediction would be. The F1 

measure combines the precision and recall in one metric, which is often used in information 

retrieval to show classification efficiency. This measurement can be interpreted as a weighted 

average of the precision and recall, where an F1 score reaches its best value at 1 and worst 

value at 0.  

Further, to check the stability of the three classification models, we explored all the 

metrics with an increasing number of word classifiers by adding 10 keywords, five from 



positive classifiers (i.e., ―change‖) and five from negative classifiers (i.e., ―no change‖), each 

time. The number of keywords included in the textual assessment ranged from 10 to 2,600.  



 

Table 3 Contingency Table for Calculating Classification Metrics 

 True Standard 

 1C  
2C  

Assigned 
1C  a  B 

Assigned 
2C  c  d  

Note: a is a true positive value (TP), b is a false 

positive value (FP), c is a false negative value (FN), 

and d is a true negative value (TN) 
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Notes: 

1 
The stemming algorithm is used to normalize lexical forms of words, which may generate stems without an     

authentic word meaning, such as ―nightmar.‖  

2 
A body of texts is usually called a text corpus. The frequency of words within the text corpus can be interpreted 

in two ways: word token and word type. Word token is defined as individual occurrence of words, i.e., the 

repetition of words is considered, whereas word type is defined as the occurrence of different words, i.e., 

excluding repetition of words. 

3 
Since we are interested only in ranking the chi-square score for each word to find the optimal classifier, 

assessing the significance of the chi-square test is not important in this way. 

4 
In principle, the scope of threshold b could be set to be infinite. However, in practice, (–5,+5) is recommended 

as a priori for b. 

 



 

 

Results 

Among the top 20 robust positive classifiers (i.e., keywords representing a ―change‖ 

tendency), the expressions with negative semantics, e.g., ―death,‖ ―depress,‖ ―scare,‖ ―lost,‖ 

―anger,‖ ―die,‖ ―stop,‖ took a one-third proportion; whereas among the top 20 robust negative 

classifiers (i.e., keywords representing ―no change‖ tendency), expressions with positive 

semantics, e.g., ―peak,‖ ―dance,‖ ―high,‖ ―promo,‖ ―best,‖ ―excite,‖ ―senior,‖ accounted for 

the most, around 35%.  

This result implies that people generally describe life in a happy way. The words with 

negative semantics would be informative for detecting the ―change‖ tendency in the life 

stories. 

The performances of three classification models are shown in Figure 2 with six 

metrics. Note that the three models resulted in a similar overall accuracy rate of around 70%, 

although the PSM was a bit superior to the other two, yet not robust. Further, the PSM ranked 

the highest in the F1 measure, which suggested that this model performed more efficiently 

than the DT and the NB in the text classification. In the sensitivity analysis, the NB yielded 

the highest specificity (more than 90%) but sacrificed too much in sensitivity (around 10%). 

The PSM performed worst on specificity (around 75%) but yielded the best result in 

sensitivity (around 60%). The PSM was more sensitive in detecting ―change‖ life stories but a 

bit less capable of finding ―no-change‖ stories than the other two models. However, among 

the three models, the PSM was the most balanced between sensitivity and specificity; that is, 

this model showed relatively satisfactory sensitivity without losing too much specificity. 

Another noticeable point was that the PSM showed the highest value in the NPV. This implies 

that we could have the most reliable prediction to deduct ―no-change‖ life stories from the 

further stage by using the PSM rather than the DT and the NB. In the PPV plot, the NB curve 

ranked highest but it waved substantially with the increasing number of keywords, whereas 

the DT and the PSM remained stable throughout the whole processing.  

The PSM and DT showed relatively low PPV values (around 60%), suggesting that 

the confidence for reliable prediction of ―change‖ life stories was not that strong. However, 

since at this preliminary stage we targeted discarding the ―no-change‖ life stories from further 

classification, PPV is less important than NPV in this sense.  



 

Note: The horizontal axis indicates the number of keywords included in the textual assessment. The text analysis 

started with 10 keywords with the highest chi-square scores, i.e., five keywords labeled as positive classifiers 

and five keywords labeled as negative classifiers, and ended with 2600 keywords, i.e., 1300 keywords from 

either classifier label 

 

Figure 2 Comparisons of text classification models, DT, NB and PSM based on the example application 



 

Discussion 

The example study demonstrated that the PSM is a promising machine learning algorithm for 

text (binary) classification. Although the three classification models showed a similar overall 

accuracy rate, the PSM performed the best in the F1 measure and remained stable as the 

number of keywords increased, implying better efficiency in text classification and more 

reliable agreement with the human raters’ assessment than the other two standard models. 

Similar results were found in a recent study by He et al. (2012), where the PSM was validated 

in text classification for posttraumatic stress disorder (PTSD) patients’ self-narratives 

regarding their stressful events and physical and mental symptoms. Analogous to the example 

application, the PSM successfully classified the self-narratives written by individuals with 

PTSD and non-PTSD in high agreement (82%) with the psychiatrists’ diagnoses and 

presented stable results as the number of keywords increased. 

Further, to help practitioners select an optimal algorithm for their own problems, the 

following pros and cons of each model can be considered and compared. The DT model is 

one of the most comprehensive models for visually tracking the path in classification. It is 

easily understood why a decision tree classifies an instance as belonging to a specific class. 

However, this model may result in low accuracy, especially for a small sample dataset. The 

DT uses splits based on a single feature at each internal node. Thus, many features are 

necessary to extract from the training set. Another frequent problem that may occur in 

applying DT algorithms is the overfitting. The most straightforward way of using them is to 

preprune the tree by not allowing it to its full size (Kotsiantis, 2007) or establish a nontrivial 

termination criterion such as a threshold test for the feature quality metric (see more in 

Elomaa, 1999; Bruha, 2000). 

The major advantages of NB are its short computational time for training and its 

simple form of a product with the assumption of independence among the features. 

Unfortunately, the assumption of independence among words is not always correct, and thus, 

the NB is usually less accurate than other more sophisticated learning algorithms. However, 

the NB is still a very effective model in classification. Domingos and Pazzani (1997) 

performed a large-scale comparison of the NB with state-of-the-art algorithms, e.g., DT, 

instance-based learning, and rule induction, on standard benchmark datasets, and found it to 

be sometimes superior to the other learning schemes, even on datasets with substantial feature 

dependencies.  



 

Despite adopting the same assumption of word independence in the NB, the PSM has more 

flexibility in the model decision threshold. As shown in Formula (7), the decision threshold 

b could be set as an unfixed constant in practice. For instance, in a clinical setting such as the 

PTSD screening process, on one hand, psychiatrists may want to exclude people without 

PTSD from further tests, which needs a relatively higher specificity value.  

On the other hand, when psychiatrists focus on treatment for patients with PTSD, a 

more sensitive result from the text analysis is probably required to detect potential patients as 

precisely as possible. With the example data in the current study, to yield satisfactory 

sensitivity in finding the ―change‖ elements in life stories without sacrificing too much 

specificity, an optimal threshold of PSM log ratio score could be set at 4b . However, since 

the PSM allocates a set of term weights for each key feature, more time and more storage 

space are expected in the training and validation process, which might reduce the PSM’s 

effectiveness in a large sample.  

In addition to the applications of text classification within the field of psychology and 

psychiatry, the PSM is also expected to extend its usage in educational measurement. For 

instance, this model might be used as an alternative approach to classify students’ essays into 

different grade levels, to retrieve information about students’ noncognitive skills by analyzing 

their writing components, e.g., diaries, posts, blogs, and short messages, and further to extract 

patterns among students’ noncognitive skills and their academic grades. 

In conclusion, the present study introduced the general procedure of text classification 

within the framework of text mining techniques and presented an alternative machine learning 

algorithm, the PSM, for text classification. In the comparative study with two standard 

models, DT and NB, the PSM was shown to be very promising in text (binary) classification. 

It might be interesting to extend the PSM into a generalized multiple classification algorithm 

in future work, and to find out whether and how educational measurement could benefit from 

this new procedure.  
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