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Abstract

This article starts with a brief introduction to the area of computerized test construction. In the first section, the problem is
formally stated as an optimization problem, with an objective function, for example, that maximizes the amount of
information in the test or minimizes the amount of items in a test. In the second section, an overview is given of the methods
that are available for computerized test construction. In sections computerized construction of linear test forms, construction
of computerized adaptive tests, and construction of multistage tests, some specific issues related to the three most important
test forms are discussed. The article ends with a discussion on one of the recent issues in computerized test construction, the
problem of uncertainty in some of the parameters during optimization.

Test Construction as a Combinatorial Optimization
Problem

Combinatorial optimization problems are those where math-
ematical techniques are applied to find optimal solutions
within a finite set of possible solutions. The set of possible
solutions is generally defined by a set of restrictions, and the set
is too large for exhaustive search. A well-known example is the
knapsack problem, where the value of the goods carried in the
knapsack has to be maximized, while the weight of the goods
that can be carried is limited. A second example is the traveling
salesman problem, where the total traveling distance has to
be minimized while each client is visited exactly once. The
computerized test construction problem is also an example of
a combinatorial optimization problem. From a finite item
bank, a group of items has to be selected that is optimal with
respect to the goal of testing, while the resulting test has to meet
all specifications.

To formulate the test construction problem as a combinato-
rial optimization problem, a decision variable xi is introduced
that denotes whether item i¼ 1,., I, is selected (xi¼ 1) or not
(xi¼ 0), an objective function has to be formulated to be opti-
mized, and restrictions have to be identified.

Objective Functions in Computerized Test Construction

An objective function in test construction has to reflect the goal
of testing that has been set in the first step of Birnbaum’s
approach. How to translate the objectives for test construction
to psychometric properties depends on the measurement
framework that is used. When the classical test theory (CTT) is
applied to relate the responses of the candidate to a score
representing the ability (Lord and Novick, 1968), the goals of
testing are generally formulated in terms of reliability
(approximated by Cronbach’s alpha) or predictive validity of
the test. Maximizing the reliability can be formulated in
terms of the decision variable xi as

max
n

n� 1

2
66641�

PI
i¼ 1 s

2
i xi�PI

i¼ 1 siriXxi
�2

3
7775; [1]

where n denotes the test length, si the item variance, and riX the
item discrimination. Maximizing the predictive validity can be
formulated as

max

PI
i¼ 1 siriY xiPI
i¼ 1 siriXxi

; [2]

where riY is the item validity.
Within an item response theory (IRT) framework, the rela-

tionship between the responses of a candidate and the ability
are modeled by an item response function, for example, the
two-parameter logistic model (2PLM, Lord, 1980):

PiðqÞ ¼ eaiðq�biÞ

1þ eaiðq�biÞ ; [3]

where Pi(q) denotes the probability that someone with
ability q will provide a correct answer to item i, and (ai, bi),
also referred to as item parameters, denote the discrimina-
tion and the difficulty parameter of item i. Other examples of
IRT models are the Rasch model, the three-parameter logistic
model, or the normal ogive models (Lord, 1980). Within an
IRT framework, the objective functions in test construction
are generally formulated in terms of Fisher information.
Fisher information has some favorable features when it
comes to test construction. Fisher information for the
whole test is equal to the sum of Fisher information of the
items, and the inverse of Fisher information is
asymptotically equal to the variance of the ability estimate.
In other words, high information implies small uncertainty
in the resulting scores. For the 2PLM, Fisher information
for the whole test is given by

IðqÞ ¼
XI

i¼ 1

vPiðqÞ=vq
PiðqÞ½1� PiðqÞ�xi: [4]
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This test information function (TIF) can be maximized for
a single ability value or for a range of ability values, or different
targets can be set for various values of the TIF.

For an overview of objective functions, both in a CTT and in
an IRT framework, see van der Linden (2005, Chapter 5).

Restrictions in Computerized Test Construction

Restrictions in combinatorial optimization refer to specifica-
tions that have to be met for groups of items that are selected.
In computerized test construction, three types of specifications
can be distinguished: categorical, quantitative, and logical
specification. Categorical specifications refer to item attributes,
such as content, item type, or format, that categorize the items
in different subsets. For each of these subsets, the number of
items to be included in the test can be specified. Quantitative
specifications refer to attributes like response times, word
counts, or statistical attributes. The sum of the quantitative
attributes of all items selected for the test, for example, the total
word count, is restricted by these constraints. Logical specifi-
cations deal with relationships between items. Items that
belong to an enemy set cannot be selected for the same test.
Therefore, only one of the items from this subset can be
selected. Van der Linden (2005, Chapter 3) presents an exten-
sive overview of various types of constraints, and of its appli-
cations to test construction. All specifications can also be
formulated in terms of the decision variables. A complete
combinatorial optimization model for computerized test
construction is formulated in the next section.

Computerized Test Construction Model

A very general model for computerized test construction can be
formulated as

max
XI

i¼ 1

IiðqjÞxi ðobjective functionÞ [5]

subject to
X
i˛Vc

xi � bc cc ðcategorical constraintsÞ [6]

XI

i¼ 1

qixi � bq cq ðquantitative constraintsÞ [7]

X
i˛Vl

xi � bl cl ðlogical constraintsÞ [8]

XI

i¼ 1

xi ¼ n; [9]

xi ˛ f0;1g i ¼ 1; :::; I ðdecision variablesÞ: [10]

Where I is the number of items in the bank, c, q, l are indices
for the categorical, quantitative, and logical constraints, (bc, bq,
bl) denote the bounds for the constraints, and Vc and Vl denote
sets of items affected by constraints c or l. The objective in this
model is to maximize the TIF for ability level qj. This type of
objective function is generally applied for mastery testing,
where most information is needed around the cut-off point qj.

Depending on the goals of testing, other objective functions
can be applied.

Algorithms for Computerized Test Construction

Two classes of algorithms have been proposed for computerized
test construction. First of all, mixed integer programming (MIP)
solvers based on branch-and-bound algorithms can be applied.
These algorithms guarantee that an optimal solution of the test
construction problem is found, if one exists. If no solution to the
test construction problem can be found, i.e., no test can be
selected from the item bank that meets all the test specifications,
these solvers can provide feedback on sets of constraints that
together or by themselves cause the infeasibility problems
(Huitzing et al., 2005). The commercial software package CPLEX
(IBM, 2010) is one of the most powerful programs to solve test
construction problems, but alternative solvers like the
LpSolveAPI in the R-package are also available. Over the years,
MIP solvers have proved to solve most computerized test
construction problems within minutes or even seconds. Second,
various heuristics for solving test construction problems have
been proposed in the literature. These heuristics are often tailor-
made for the test construction problem at hand. They are often
easy to implement, but they approximate the optimal solution,
so it cannot be guaranteed that the optimal test is constructed.
Besides, finding the optimal settings of a heuristic might be
rather time consuming. Some well-known heuristics for
computerized test construction are the weighted deviation
model (Stocking and Swanson, 1993), the normalized
weighted average deviation heuristic (Luecht and Hirsch, 1992),
network programming (Armstrong et al., 2005), simulated
annealing (Veldkamp, 2002), genetic algorithms (Verschoor,
2007), and the MCMC (Markov Chain Monte Carlo)-based test
assembly algorithm (Belov and Armstrong, 2005).

Computerized Construction of Linear Test Forms

Linear tests can be characterized as a fixed set of items presented
in a fixed order. Paper-and-pencil tests are in this category, but
they are also administeredmore andmore often on a computer.
The model in Eqns [5]–[10] can be applied to assemble a linear
test form suitable for making mastery/nonmastery decisions
around a cut-off point qj. If the goal of the test is to measure for
a broader ability range, targets are generally formulated for
Fisher information for these ability values, and the objective
function for computerized test construction is to minimize the
distance between the TIF and its target. Instead of minimizing
the difference for all ability values, it often suffices to minimize
the difference for a number of points qk, k¼ 1,., K, spread over
the ability range of interest. This objective can be modeled as

min
k¼ 1;.;K

�����
XI

i¼ 1

IiðqkÞxi � TðqkÞ
�����; [11]

where T(qk) represents the target for Fisher information at qk.
Boekkooi-Timminga and van der Linden (1989) developed
a maximin model for this problem, in which a new variable y
is introduced, which serves as an upper bound for the
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absolute difference between the TIF and the actual information
function. In this way the optimization problem in Eqn [10] is
rewritten as an MIP problem, and standard MIP solvers or
heuristics can be applied:

min y [12]

subject to

XI

i¼ 1

IiðqkÞxi � TðqkÞ þ y [13]

XI

i¼ 1

IiðqkÞxi � TðqkÞ � y [14]

In many testing programs, more than one test has to be
constructed. It could be that several parallel test forms have to
be administered at the same time, that the test is administered
periodically, or that the test is used in a quasiexperimental pre-
posttest design (e.g., Cook and Campbell, 1979). To assemble
multiple test forms concurrently, the test construction model in
Eqns [5]–[10] is slightly modified by using decision variable xit
that indicate whether item i is selected (xit¼ 1) for test t or not
(xit¼ 0), instead of decision variable xi. When overlap between
tests is prohibited or limited, the following logical constraint
can be added to the model:

XT
t¼ 1

xit � ni i ¼ 1;.; I [15]

where ni denotes the number of times item i can be selected
concurrently. Sinceboth thenumber ofdecisionvariables and the
number of constraints grow linearly in the number of tests to be
selected, 0–1 MIP algorithms might be very time consuming.
Especially for the problemof concurrent construction ofmultiple
partlyoverlapping tests, genetic algorithmsandMCMC-based test
assembly have demonstrated to be very efficient.

Construction of Computerized Adaptive Tests

Computerized adaptive tests (CATs) are individualized tests
where the difficulty of the items is adapted to the ability of the
candidate. In CAT, items are selected sequentially. After
administration of each item, the ability of the candidate is
estimated based on the responses he or she provided to the
previous items. Then the item is selected and administered that
maximizes Fisher information at the estimated ability level.
The procedure is repeated until a stopping criterion, e.g., a fixed
number of items or a minimum level of measurement preci-
sion, has been met. The first item can be selected randomly, or
based on an initial guess of the ability level of the candidate. A
major advantage of CAT is that test length is reduced up to
40%, and tests can be administered individually when
a candidate prefers. For a thorough introduction to CAT, the
reader is referred to Wainer (2000).

In case a set of specifications has to be met, the shadow test
approach (van der Linden, 2005, Chapter 9) could be applied.
This two-stage procedure for item selection constructs
a ‘shadow test’ in every iteration of CAT from which the most
informative item is chosen to be administered. The ‘shadow
test’ consists of a group of most informative not-administered

items which in combination with the items that have been
administered already fulfill the requirements of the
specifications. The following model can be applied to
construct a ‘shadow test’ for selecting the g-th item:

max
XI

i¼ 1

Iiðq̂g�1Þxi [16]

subject to

XI

i¼ 1

xi ¼ n ðtest lengthÞ [17]

X
i˛Vc

xi � bc cc ðcategorical constraintsÞ [18]

XI

i¼ 1

qixi � bq cq ðquantitative constraintsÞ [19]

X
i˛Vl

xi � bl cl ðlogical constraintsÞ [20]

X
i˛ Sg�1

xi ¼ g � 1 ðprevious itemsÞ [21]

xi ˛ f0;1g i ¼ 1; :::; I ðdecision variablesÞ; [22]

where q̂g�1 denotes the ability to estimate after administering
(g� 1) items and Sg�1 denotes the set of items that has been
administered so far. By application of this model, the same kind
of specifications can be applied in CAT as in linear testing. An
alternative procedure for dealing with test specification in CAT
would be to apply the weighted deviation model (Stocking and
Swanson, 1993).

In CAT, some items are selected more often than others,
since they are more informative. As a result, their content might
be compromised. To prevent these security issues and to
increase item bank usage, exposure control methods can be
applied. These methods prevent the selection of popular items
either by conducting a chance experiment after selection of
each item where the probabilities of selection are inversely
related to the popularity (Sympson and Hetter, 1985) or by
temporarily excluding them when they are administered too
often (van der Linden and Veldkamp, 2004).

Construction of Multistage Tests

Multistage testing is a hybrid of linear testing and CAT. Instead
of administering a single item, a small linear test, also referred
to as a module (Luecht and Nungester, 1998), is administered
before the ability estimate is updated. After estimating the
ability, the candidate is routed to an easier or more difficult
module. A multistage test design typically consists of several
stages in which a module is administered. Each path
a candidate might follow through the test has to meet all test
specifications. An example of a multistage test design with
three stages, six modules, and four paths is given in Figure 1.

To develop a multistage test, several decisions have to be
made about the number of stages, routing rules, number of
items in a module, and psychometric properties of the modules
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(Zenisky et al., 2010). The model for constructing the modules
is equivalent to the model for the construction of a number of
(non)overlapping small linear tests, while an additional set of
specifications for each combination of tests that belong to
a path has to be met:

X
t˛ Pp

X
i˛Vc

xit � bc cc;cp; [23]

X
t˛ Pp

XI

i¼ 1

qixit � bq cq;cp; [24]

X
p˛ Pp

X
i˛Vl

xit � bl cl;cp; [25]

where p is an index denoting various paths in the design.
Zenisky et al. (2010) pointed out that it should be considered
whether specifications should be achieved within stages or
across the whole test. Meeting the constraints over the whole
test provides greater flexibility, at the cost of imposing the
additional constraints in Eqns [23]–[25] to the model.

Robust Computerized Test Construction

In all these test construction models, it is assumed that the item
parameters and item attributes are known. Fixed values are
used to compute the contribution of each item to both the
objective function and the constraints. Unfortunately, many of
them have been estimated. IRT parameters, for example, have
been estimated when the items were pretested, and they do
have uncertainty in them that is reflected by the standard error
of estimation. This uncertainty is generally not taken into
account. Hambleton and Jones (1994) already warned about
the consequences. When the objective of test construction is
to maximize the information in the test, and the uncertainty
in the item parameters is not taken into account, the amount
of information in the resulting test will be seriously
overestimated, especially when the item parameters have
been estimated with small sample sizes or when relatively

few items are selected. Since the amount of information in
the test is inversely related to the variance of the ability
estimate, this implies that overestimation of the information
in the test has serious consequences for the measurement
precision and the reliability of the test.

De Jong et al. (2009) proposed a robust test construction
algorithm to deal with these problems. Inspired by the work
of Soyster (1973), they subtracted one time the standard of
estimation from the parameter estimates, and formulated
a robust test construction model as

max
XI

i¼ 1

Iiðqj; zÞxi ðobjective functionÞ [26]

where z denotes the level of uncertainty, and

Iiðqj; zÞ ¼ IiðqjÞ � SEðIiðqjÞÞ: [27]

For small values of the standard error of estimation, the
results for the test construction problem in Eqns [5]–[10] and
its robust counterpart are almost the same, but for large values,
a considerable difference will be obtained.

See also: Classical (Psychometric) Test Theory; Psychometrics:
Classical Test Theory; Psychometrics; Reliability:
Measurement.
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