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Abstract Capitalization on chance is a huge problem in computerized adaptive testing (CAT) when 

Fisher information is used to select the items. Maximizing Fisher information tends to favor items with 

positive estimation errors in the discrimination parameter and negative estimation errors in the guessing 

parameter. As a result, information in the resulting tests is overestimated and measurement precision is 

lower than expected. Since reduction of test length is one of the most important selling points of CAT, 

this is a serious threat to both the validity and viability of this test administration mode. In this chapter, 

robust test assembly is presented as an alternative method that accounts for uncertainty in the item 

parameters during test assembly.  
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Introduction 

In computerized adaptive testing (CAT), item administration is tailored to the test taker. 

Tailoring the test turns out to entail a number of advantages. The candidate only has to answer 

items that are paired to his or her ability level, test length can be reduced, and test 

administration can be more flexible as a result of individualized testing. Besides, CATs could 

be offered continuously, on flexible locations, and even via the Web. The advantages of CAT 

turned out to be very appealing. Nowadays many CATs are run operationally in educational, 

psychological, and health measurement. Various algorithms for tailoring the test have been 

proposed. They generally consist of the following steps: 

 

1. Before testing begins, the ability estimate of the candidate is initialized (e.g., at the 

mode of the ability distribution, or based on historical data). 



 

2. Items are selected from an item bank to be maximally informative at the current ability 

estimate. Sometimes, a number of specifications related to test content or other 

attributes have to be met, which restricts the number of items available for selection. 

In this step, an exposure-control method is commonly applied to prevent overexposure 

of the most popular items.  

3. Once an item is selected, it is administered to the candidate.  

4. An update of the ability estimate is made after each administration of an item.  

5. Finally, the test ends whenever a stopping criterion has been met, for example when a 

fixed number of items have been administered or when a minimum level of 

measurement precision has been obtained. 

 

One of the assumptions underlying these CAT algorithms is that, for all items in the bank, the 

item parameters are known and can be treated as fixed values during test administration to 

calculate the amount of information provided. Unfortunately, this assumption is never met in 

practice. Item parameters have been estimated based on finite samples of candidates. The 

estimates might be unbiased, but they still have measurement error in them. This uncertainty 

is a source of concern. When test information is maximized, those items with high 

discrimination parameters will be selected from the bank. Positive estimation errors in the 

discrimination parameters will increase the amount of information provided, and therefore 

will increase the probability that the item will be selected. This phenomenon is also referred 

to as the problem of capitalization on chance. 

Hambleton & Jones (1994) were among the first to study the effects of item parameter 

uncertainty on computerized construction of linear test forms from calibrated item banks. 

They found out that not taking the uncertainty into account resulted in serious overestimation 

of the amount of information in the test. Veldkamp (2012) illustrated this effect when he 

simulated an item bank of 100 items with uncertainty in them. All 100 items had the same 

parent, that is, all item parameters were drawn from the same multivariate 

distribution ( , )N   , with   equal to the true item parameters ( 1.4, 0.0, 0.2)a b c    and   

being the diagonal matrix with the standard errors of 

estimation (  0.05,  0.10,  0.02)SE a SE b SE c   . As a result the item parameters only varied 

due to uncertainty in the parameter estimates. Parameter ranges were [1.29,1.52]a , 



[ 0.31,0.29]b  , and [0.14,0.28]c . Ten items with highest Fisher information at 0.0   were 

selected from this bank for a test.  

The resulting test information function was compared to the test information function based 

on the true item parameters ( 1.4, 0.0, 0.2)a b c   . As can be seen in Figure 1, the test 

information is overestimated by 20%, when uncertainty is not taken into account. 

 

 

Figure 1 Test information function: ATA (dashed line) or true (solid line) 

 

Hambleton & Jones (1994) demonstrated that the impact of item parameter uncertainty 

on automated construction of linear tests depended on both the calibration sample size and the 

ratio of item bank size to test length. When their findings are applied to CAT, calibration 

sample size plays a comparable role. The ratio of item bank size to test length is more of an 

issue in CAT, since only one item is selected at a time, which results in an even less favorable 

ratio. Olea, Barrada, Abad, Ponsoda, & Cuevas (2012), studied the impact of capitalization on 

chance for various settings of CAT in an extensive simulation study, and they confirmed the 

observations of Hambleton and Jones (1994). In other words, capitalization on chance is a 

huge problem in CAT when Fisher information is used to select the items. The measurement 

precision of the test is vastly overestimated. Alternative strategies for item selection in CAT 

will have to be used so as not to compromise the validity of this test administration mode.  

 

Robust Test Assembly 

In combinatorial optimization, mathematical techniques are applied to find optimal solutions 

within a finite set of possible solutions.  



The set of possible solutions is generally defined by a set of restrictions. Automated test 

assembly (ATA) problems are a special case of combinatorial optimization problems. The 

objective of ATA is often to maximize the information in the test, and the set of possible 

solutions is generally defined by the test specifications, for example, by the content 

constraints. An extensive introduction to the topic of formulating ATA problems as mixed 

integer programming (MIP) problems can be found in van der Linden (2005). 

To solve the problem of dealing with uncertainty in the item parameters in CAT, a 

first step would be to search the literature for methods that have been proposed to deal with 

parameter uncertainty in combinatorial optimization. Soyster (1973) was among the first to 

present a method for dealing with uncertainty in combinatorial optimization problems. He 

assumed that for every uncertain parameter an interval could be defined that contained all 

possible values. He replaced each uncertain parameter by its infimum and solved the problem. 

This solution served as a robust lower bound for the solution of the original problem. 

Unfortunately, this method was very conservative. It assumed a maximum error in all the 

parameters, which is highly unlikely in practice. The good thing, however, was that Soyster 

(1973) opened up a new area of research: robust optimization. The ultimate goal of robust 

optimization (Ben Tal, El Ghaoui, & Nemirovski, 2009) is to take data uncertainty into 

account when the optimization problem is solved in order to “immunize” resulting tests 

against this uncertainty. Under this approach, a suboptimal solution is accepted in order to 

ensure that the solution remains near optimal when the estimated parameters turn out to differ 

from their real values. For ATA this means that uncertainty in the item parameters or in the 

information function is taken into account during test assembly to immunize the test against 

overestimation of the test information. 

De Jong, Steenkamp, & Veldkamp (2009) applied a modified version of Soyster’s 

method to ATA,when they constructed country-specific versions of a small marketing scale. 

Instead of replacing uncertain parameters by their infima, they subtracted one posterior 

standard deviation from the estimated Fisher information as a robust alternative. Veldkamp, 

Matteucci, & de Jong (2012) studied this modified Soyster method in more detail, for 

example, they studied differences in effects of uncertainties in various item parameters in test 

assembly.  

 

 

 



Veldkamp (2012) studied a different approach based on the robust optimization method 

developed by Bertsimas and Sim (2003). Instead of doing a small correction (minus one 

standard deviation of the uncertainty distribution) for all items in the bank, a substantive 

correction (replacing the parameters by their infima) is made only for the maximum number 

of items assumed to affect the solution.  

This resembles more closely the practice of ATA, where some items in the test will 

have high positive estimation errors, while others will not. A robustness level   (i.e., the 

maximum number of item parameters that might be replaced) has to be defined beforehand.   

can vary anywhere from zero (which resembles ATA) to all items in the test (which resembles 

the Soyster method). When the ratio of item bank size to test length is small, many items will 

be selected from the item bank.   will be close to zero, because only a few of the selected 

items will have high positive estimation errors. When the ratio of item bank size to test length 

is high, only a very small proportion of the items will be selected from the bank. 

Capitalization of chance will be more of an issue, and   will be closer to the test length. 

Bertsimas and Sim (2003) proved that finding an optimal solution for a combinatorial 

optimization problem where at most   parameters were allowed to change, was equal to 

solving ( 1)  MIP problems. For details of the method, see Veldkamp (2012). 

 

Robust CAT Based on Expected Information 

Even though relatively good results were obtained for some practical test assembly problems 

with the modified Soyster method (see de Jong et al., 2009) and the Bertsimas and Sim 

method (see Veldkamp, 2012), both methods do not use information known about the 

distribution of the item parameter uncertainty. Uncertainty in the item parameters results from 

parameter estimation, and it is assumed to follow a normal distribution with a mean equal to 

the parameter estimates and a standard deviation equal to the standard error of estimation for 

maximum likelihood estimation, or to the posterior standard deviation in a Bayesian 

framework. This information could be used to calculate the expected information for each 

item, taking the uncertainty distribution of the parameters into account. Lewis (1985) already 

proposed using expected response functions (ERFs) to correct for uncertainty in the item 

parameters (Mislevy, Wingersky, & Sheehan, 1994) for fixed-length linear tests. The same 

idea might be applied at the item bank level as well, thus providing a starting point for a 

robust test assembly procedure for CAT. 

 

 



Robust Item Pool 

The first step in such a procedure would be to develop a robust item pool. Since the 

uncertainties in the parameters are assumed to follow a normal distribution, the cumulative 

distribution function can be used to calculate which percentage of the items is expected to 

have which deviation. For example, 2.5% of the items are assumed to have a positive 

deviation larger than 1.96 standard deviations.  

Based on this information, robust item information can be calculated by subtracting 

the expected deviation from the estimated item information. When all items in the bank are 

ordered from smallest to largest with respect to their maximum information, the robust item 

information can be calculated as: 

 

 ( ) ( ) * ( ( )), 1,..., ,R

i i i iI I z SD I i I      (1) 

 

where i  is the index of the item in the ordered bank, I  is the number of items in the bank, 

( )R

iI  is the robust information provided at ability level  , 
iz  corresponds to the 

100 / ( 1)i I  -th percentile of the cumulative normal distribution function, and ( ( ))iSD I   is the 

standard deviation of the information function based on estimated item parameters. Within a 

Bayesian framework, a comparable procedure has to be applied, where the posterior 

distribution is used to calculate 
iz . 

 

Empirical Example 

To illustrate the effects of expected information, robust item information was calculated for 

all items of an operational item bank. 306 items were calibrated with a three-parameter 

logistic model (3PLM): 
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where a  is the discrimination, b  is the difficulty, and c  is the guessing parameter. The item 

parameters were estimated using BILOG MG 3, for a sample of 41,500 candidates. The 

estimated parameter ranges were [0.26,1.40]a , [ 3.15,2.51]b  , and [0.00,0.50]c , and the 

average uncertainties were ( 0.02, 0.044, 0.016)a b c      .  



The maximum amount of information over all theta levels (Hambleton, & Swaminathan, 

1985, p.107) provided by the 50 most informative items is shown in Figure 2.  

 

Max Inf 

Item no. 

Figure 2 Maximum amount of information provided by the 50 most informative items 

 

All items were ranked with respect to their maximum amount of information over all 

theta levels, and the robust information was calculated by subtracting the expected deviation 

for all of the items. To illustrate how robust item information corrects for uncertainty in the 

item parameters, its performance was compared with a number of simulated item banks. 

Three item banks were simulated by randomly drawing item parameters from the multivariate 

normal distribution with a mean equal to the estimated item parameters and standard 

deviations equal to the errors of estimation. The deviance in maximum information between 

the estimated item parameters on the one hand and the robust and simulated item parameters 

on the other hand is shown in Figure 3. 

 



 

Deviation 

Item no. 

 

Figure 3 Deviations from the maximum information for the robust information (thick line) and various 

simulated item banks (thin lines) for the 50 most informative items 

 

 As expected, the robust maximum information is generally smaller than the estimated 

maximum information for the 50 most informative items, but the difference becomes smaller 

and smaller when the items are less informative. Because of the differences in ( ( ))SD I  for 

the various items, the robust maximum information does not increase monotonically. As can 

be seen in Figure 3, ( ( ))SD I   for the second item is larger than ( ( ))SD I   for the first item. 

The curves of the deviances for the simulated item banks hover around zero. By chance, the 

deviation will be positive for some of the items and negative for others. It can also be seen 

that for individual items, the deviance for the simulated information could even be larger than 

the deviation of the robust information, but for a test, which is for a group of items, the robust 

maximum information serves pretty well as a lower bound. 

 

Robust Item Selection 

The robust item information is still conservative. It assumes that uncertainty hits where it 

hurts most; that is, it assumes that the most informative items have the highest uncertainty in 

them. In practice, however, this is not the case. This can also be seen in Figure 3, where for 

the first 25 items, the robust maximum information is obviously smaller than the simulated 



maximum information. To correct for this conservatism, the Bertsimas and Sim method can 

be applied for item selection in the second step of robust CAT.  

This method assumes that uncertainty only affects the solution for at most   items in the test. 

The following pseudo-algorithm describes the application of the Bertsimas and Sim method 

for selecting the g
th

 item in CAT for a fixed length test of G items: 

 

1. Calculate 1 1( ) ( )g R g

i i id I I     for all items. 

2. Rank the items such that 
1 2 ... nd d d    

3. For 1,...,( ( 1)) 1l G g     find the item that solves: 
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 {0,1} 1,..., .ix i I   (4) 

 

4. Let 
*

1,...,
arg max


 l

l n
l G . 

5. Item g is the unadministered item in the solution of 
*lG . 

 

In step 3 of the pseudo algorithm, (G-(g-1))+1 MIP are solved, where (G-(g-1)) is the 

amount of items still to be selected. For the MIPs, it holds that 
ix  denotes whether item i  is 

selected ( 1)ix   or not ( 0)ix   (see also Equation [6]), and 1gR   is the set of items that have 

been administered in the previous ( 1)g   iterations.  

 



 

Equations (4)–(5) ensure that only one new item is selected. Finally, in (3) the amount of 

robust information in the test is maximized. This objective function consists of a part where 

the information is maximized and a part between square brackets that corrects for 

overestimation of the information. 

This correction term varies for each value of 1,...,( ( 1)) 1.l G g     ld represents the 

overestimation of the information in item l. When 1l  , ld  is equal to the largest 

overestimation of item information at the estimated ability level in the item bank, and   times 

1d  (or (G-(g-1)) 1d , when less than   items are remaining) is subtracted as a correction. This 

will be too conservative because there is only one item with the maximum overestimation of 

the information. For larger values of l , the amount of overestimation is smaller, which 

implies that the correction factor is smaller , and the solution is less conservative.  

For these values of l it is taken into account that selecting one of the items with i<l 

results in a larger overestimation, since, as a result of the ordering in step 2, .i ld d  By 

solving (G-(g-1))+1 MIPs and choosing the maximum, a robust alternative for the test 

information that is not too conservative can be calculated. For details and proofs see 

Veldkamp (2012) and Bersimas & Sim (2003).  

 

Conclusion and Discussion 

Capitalization on chance is a serious problem in CAT that might negatively affect both the 

validity and viability of this test administration mode. In this chapter, the outline of a 

procedure for robust CAT was presented as an answer to this problem. It accepts a suboptimal 

solution that remains near optimal even when item parameters turn out to be seriously 

overestimated. The next step in this research would be to carry out an extensive simulation 

study to determine its strengths and weaknesses. 

Other methods have been proposed in the literature to deal with the problem of 

capitalization on chance. Belov and Armstrong (2005) proposed using an MCMC method for 

test assembly that imposes upper and lower bounds on the amount of information in the test. 

Since there is no maximization step in their approach, item selection is not affected by the 

capitalization on chance problem. On the other hand, this approach does not take uncertainty 

in the item parameters into account at all. This could lead to infeasibility problems (Huitzing, 

Veldkamp, & Verschoor, 2005), as illustrated in Veldkamp (2012). Besides, MCMC test 



assembly was developed for the assembly of linear test forms, and therefore application to 

CAT is not straightforward. 

Olea et al. (2012) propose using item exposure control to deal with this problem. When items 

are selected based on maximum information, the most informative items tend to be selected 

more often than the others. Exposure-control methods can be implemented to limit item 

exposure and force less informative items to be selected. In this way, selection of the most 

informative items due to capitalization on chance will be prevented. Olea et al. (2012) report 

some promising results. Instead of correcting for uncertainty, this method limits the 

probability that items most vulnerable to overestimation of their information will be selected. 

A combination of robust CAT and item exposure control would probably result in a very 

strong method to prevent the capitalization on chance problem in CAT. 

Every operational CAT program seriously needs to consider the impact of uncertainty 

in the item parameters on the reported measurement precision. Various simulation studies by 

Hambleton and Jones (1994), Olea et al. (2012), Veldkamp (2012), and Veldkamp et al. 

(2012) reported overestimation of the amount of information in the test of up to 40%. When 

the uncertainty in the item parameters is known, simulation studies have to be carried out to 

determine the impact on the specific CAT program at hand. Once the impact is known, one 

can decide either to neglect the problem or to implement a method that deals with item 

parameter uncertainty either implicitly (by applying exposure-control methods) or explicitly 

by using robust CAT, or by a combination of both. 
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