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Abstract

In non-standard database systems performance tends to be critical. To obtain the required
response times for processing complex objects, parallelism needs to be exploited and suitable
storage structure for complex objects have to be used. In this paper we use an hierarchical
complex object model with object references. The join operations for these complex objects,
called tuple-objects, are categorized into materialized, functional and value-based joins. The
performance of these joins is analytically evaluated, giving insights into which distributed
storage structures for tuple-objects are most effective for the different kinds of joins.
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Storage structures.

1 Introduction

Data-intensive database applications such as robotics, cartography and CAD/CAM, the so-called
non-standard database applications, require a high performance in retrieving and processing
complex objects. A complex object is a large cluster of structured data that forms a logical unit.
In general, it is built by applying various complex object constructors to other complex objects
or basic values. The constructors that the system should at least support seem to be tuple,
set and list. Also, a complex object has some notion of object identity and complex objects
have relationships to each other. Those complex objects need to be stored efficiently in order to
achieve the required responsiveness.

Without special provisions the relational storage model is not very well suited to manage
complex objects. Since a complex object will be represented by several tuples of several relations,
a large number of join operations will be required to reassemble the complex object from the
corresponding database relations. Those time and resource consuming joins cannot be accepted
if performance is critical. Therefore alternative storage models for complex objects have been
proposed. Extensions of the relational model may keep the advantages of relational storage
while at the same time providing a better performance. For example, complex object may
be represented in a nested relational data model [8,10]. Nested relations might be stored in
a traditional relational database. To preserve the nested structure, join indices [14] or tuple
identifiers [3,7] can be used. Alternatively, the nested tuples might be stored contiguously on
disk [5,9]. A completely non-relational modeling of complex objects is provided by the molecule-
atom data model (MAD model), in which complex objects are modeled as a set of atoms linked
together in a network-like structure [6].

In this paper we analyse the performance aspects of several storage structures for complex
objects. In most earlier work only object retrieval is considered and no attention is paid to
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a further processing of the objects. In particular, since complex objects tend to be retrieved
in their entirety, the selection of entire objects is considered [12]. We investigate the effect of
join queries on the retrieval of complex objects. Since we need a model for what a complex
object is, we introduce the notions of tuple-objects and composed objects (section 2). A tuple-
object is a kind of nested tuple. Its attributes are existence dependent. Tuple-objects are the
unit of sharing among a number of composed objects. Notice that we do not introduce yet
another complex object model. Rather, we provide a view on complex objects which enables a
performance evaluation.

Similar to the relational join, a tuple-object join might restrict the instances of the one
tuple-object type based on the attribute values of another tuple-object type. However, in object-
oriented databases the traditional value-based join seems to play a less dominant role. More
important is the object traversal along references, leading from one tuple-object instance to
another. This navigation in a composed object is called a join as well (implicit or functional
join). Moreover, a relation valued attribute might materialize what used to be a join in a tra-
ditional relational system. A further description of tuple-object joins is presented in section 3.
Next, in section 4, we evaluate which storage structures are most effective with regard to these
join queries. Three storage structures get attention, two of which are normalized with special
features. Performance will be measured in terms of response times. The evaluation will be ana-
lytical, with disk T/O, network message, and processor (CPU) load being considered separately.
Results are presented in section 5.

We focus on a distributed shared-nothing database system based on a local area network.
Distributed systems are more and more used because they increase reliability, availability and
in particular performance. Moreover, shared-nothing systems have demonstrated speedup and
scale-up to hundreds of nodes and seem to be the basis for distributed database technology [4].
Our performance evaluation that is based on join queries shows the costs of different complex
object storage structures given various parameter values. Therefore, together with identical
results for selection queries, it may be the base for a query optimizer and/or a data allocation
manager for complex objects in a distributed database system.

2 Complex objects

2.1 Tuple-objects and composed objects

In this section we describe our vision on a complex object, which we call a tuple-object. A tuple-
object is constructed from some basic types (such as boolean, character, integer, real, string) by
applying the tuple, set and list constructors. Among the basic types are an identifier type and
a reference type as well. The constructors are completely orthogonal, i.e. they can be applied
in any order. However, the top level construct must be a tuple. Tuple-objects are instances of
a tuple-object type. All tuple-objects of the same type have an identical structure. Connected
to each tuple-object is a unique system generated identifier or surrogate of the type OID. It
distinguishes the object from all others. Identifiers are unique, can’t be affected by user updates
and are used by tuple-objects to refer to each other.

Figure 1 shows an example of a tuple-object of the type Doctor. The symbols ( ) denote a
tuple, { } a set and [] alist. A tuple-object of type Doctor is a tuple containing four attributes:
two atomic attributes (identifier and name) and two non-atomic attributes. The non-atomic
attribute private is a tuple containing two attributes that are both non-atomic again: address is
a tuple of three atomic attributes and phone is a list of atomic values. The non-atomic attribute
specialization is a set of atomic values. The type REF(Disease), a reference type, has as potential
values the identifiers of the tuple-objects of the type called Disease.

A tuple-object is hierarchically structured and resembles the NF? and extended NF? data



TUPLE-OBJECT Doctor = {{

identifier: 01D,
name: STRING,
private: ( address: ( street: STRING,
nr: INTEGER,
city: STRING ),
phone:  [INTEGER] ),

specialization:  {REF(Disease)}

Figure 1: Declaration of a Doctor tuple-object.

models [8,10]. The characteristic property of a tuple-object is its existence dependency. The
removal of a tuple-object includes the deletion of all its components. As a consequence there is
no sharing of data between tuple-objects. However, data sharing is still possible since a tuple-
object as a whole is the unit of sharing among a number of composed objects. A composed object
is a collection of tuple-objects linked together by the references between them. Starting from a
specific root tuple-object, the whole composed object can be retrieved by traversing these links.
Again, we may consider types and instances. Composed objects resemble the molecules in the
MAD model [6].

2.2 A direct storage model for tuple-objects (DSM)

Tuple-objects may be mapped directly into a single storage unit and, as far as possible, be stored
contiguously on disk. Storing tuple-objects (or rather complex objects) as a whole is called direct
storage model [15], which we will refer to as DSM. In the direct storage model there is a 1-1
correspondence between the conceptual tuple-object and the internally stored object. Obviously
the retrieval of an entire tuple-object will be efficient. The retrieval of a few attributes, on the
contrary, may be inefficient since probably the whole tuple-object has to be retrieved. Figure 2
shows the direct representation of the Doctor tuple-object of figure 1. The figures 3 through 5
show yet three other example tuple-objects that we will use throughout this paper. Tuple-object
occurrences of the same type form a single nested relation. We will refer to these relations as
the DOCTOR, PATIENT, ILLNESS and HOSPITAL relations respectively.

Several implementations for DSM exist [5,9]. In our performance evaluation we assume an
arbitrary implementation, provided that all tuple-objects of a single type are stored, one behind
another, in a single sequence of pages (file). The effective page occupation will be less than
100% due to the fact that storage space may be wasted or used for structure information. We
assume an indezx on the tuple-object identifier, which translates this identifier into the necessary
page information. In our distributed shared-nothing environment the homogeneous nodes are
connected by a local area network. Each node consists of a processor, internal memory and disk
drive. The nodes communicate to each other by message passing over the network, which is the

DOCTOR

(private)
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Figure 2: Direct representation of the Doctor tuple-object
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Figure 3: Direct representation of the Patient tuple-object

ILLNESS

{{symptom)}

SNAMeEiring | deSCFiptiOﬂst,,.ing

identifier ;4 | N@aMesiring treatment,ping

Figure 4: Direct representation of the lliness tuple-object

only resource they share. Each node owns a disjunct portion of the database data. So with DSM
the tuple-objects will be randomly (and equally) distributed over the nodes. Each node stores a
horizontal fragment of the nested relation that is formed by all tuple-objects of the same type.

2.3 A normalized storage model for tuple-objects (NSM)

The hierarchically structured tuple-object can be seen as a nested tuple, a tuple with relation
valued attributes. However, since set and list attributes do not necessarily consist of tuples, we
have to regard each set as a set of tuples (= a relation) and each list as a list of tuples (= an
ordered relation). For example, a set of integers is considered as a set of unary tuples with an
integer valued attribute.We may store all the sub-relations of a nested relation independently in
traditional flat relations. We refer to this storage model as normalized storage model or NSM.

NSM provides a better performance for partial tuple-object retrieval. It allows to retrieve
first those parts of the tuple-object that have the highest probability to make further disk
I/Os superfluous. Projection on many attributes is one of the best supported operations. In
general, the retrieval of an entire tuple-object is acceptably efficient if additional support for
the reconstruction of the tuple-object is provided. Such additional support generally consists of
a mechanism that appends to each tuple in each relation a unique identifier. These identifiers
are used to store the tuple-object structure, either by using them as pointer values [1,14], or by
constructing them in such a way that they contain information about root and parent tuples [3,
7).

We assume an NSM implementation in which each tuple in each relation has a tuple-identifier
(tid) consisting of three parts. The first part is the identifier of the tuple-object the tuple belongs
to (‘root part’). The second part is an identification of the parent non-atomic attribute of this
tuple (‘parent part’). Finally, there is an identifier for the tuple itself (‘own part’). In this
way, the hierarchical tuple-object structure is tied up in the tid’s and the normalization of a
nested tuple and its inverse are unambiguous. Notice that a tid is generated by the system and
invisible to the users. The tuples of each relation with an equal root part in the tid are clustered
together. Within such a cluster, the same holds for tuples with an equal parent part of the tid.
In this way the tids not only keep the tuple-object structure, but also enhance the performance

HOSPITAL

identifier ;4| NaMEstring | Cityspring {doctor. . s(poctor) } {patient, . ¢(patient) }

Figure 5: Direct representation of the Hospital tuple-object



DOC_ROOT DOC_DISE

identifier,;q | N@MEsiring

DOC_ADDR DOC_PHON

specialization,.. ¢(iiiness)

X Streetstring Nfinteger Cityst,,.,,j,,,g e phoneinmgw

Figure 6: Normalized representation of the Doctor tuple-object

of tuple-object retrieval. We assume that each flat relation is stored in a separate file (sequence
of pages). The pages of these file contain some wasted space. An index on the root part of the
tid exists. This index is not necessarily dense. Per relation, one entry per tuple-object instance
or per page may be sufficient.

Figure 6 shows a normalized representation of the Doctor tuple-object. Tuple-objects of
the type Doctor are stored in four flat relations, referred to as DOC_ROOT, DOC_ADDR,
DOC_PHON and DOC_DISE. Notice that there is no ‘DOC_PRIV’ relation because the private
attribute is a tuple that contains only non-atomic attributes. The identifier attribute in the
DOC_ROQT relation makes a tid superfluous. Since a list of integers is regarded to as a list
of unary tuples, the own part of the tid in the DOC PHON relation is related to the phone
attribute and may be used to preserve the list ordering. The tid’s in the DOC DISE relation
have no parent part since on the first level of nesting the parent is equal to the root.

In a distributed environment, the tuples of all relations are distributed over the nodes. We
may distinguish two situations. First, all flat tuples belonging to a single tuple-object occurrence
may be allocated to a single node. We will refer to this case as t-NSM (tuple-objects on a node
NSM). Second, the tuples of a single tuple-object instance may be randomly (and per relation
equally) distributed over the nodes. We refer to this case as f-NSM (fragments of tuple-objects
on a node NSM).

3 Joins on tuple-objects

In a traditional relational environment the join of two relations applies a selection on the Carte-
sian product of these two relations. Actually, the tuples of the one relation are selected based
on the attribute values in the other relation (primary/foreign keys). In database systems with
objects and object references this join based on matching attribute value pairs plays a less
dominant role. More important are object accesses along reference chains leading from one
object instance to another. This object traversal is called a join as well, the so-called implicit
or functional joins. In general, a join for tuple-objects is an operation that correlates different
(complex) attributes of arbitrary tuple-object types. We will make a distinction between three
different kinds of joins: materialized, functional and value-based joins. In all cases, we consider
the results of the join queries as data (structured values) rather than tuple-objects. Using the
tuple-object types as described in section 2, we will show some examples. An extended version
of SQL is used to express the example queries. In section 4 the example queries will be used to
evaluate the storage models for tuple-objects in a distributed database.

3.1 Materialized joins

Since tuple-object attributes may be complex valued, operations that would be a join in the
traditional relational environment might become the retrieval of some attributes with tuple-
objects. The join has been materialized in the tuple-object structure.



Example 1 For each illness we want to know all symptoms. The output is a set of binary tuples. The
first attribute is the name of the illness, the second attribute is a set of binary tuples, the attributes
giving the symptom name and description respectively.

SELECT {{(name, symptom)}
FROM lliness

The brackets in the SELECT clause show that in this case the result is a set of binary tuples. Notice
that the non-atomic attribute symptom in the lliness tuple-object is a set of (binary) tuples. O

3.2 Functional joins

Tuple-objects are connected to each other by links. The navigation from tuple-object to tuple-
object by following these links means joining them (implicit joins).

Example 2 We want to find all doctors who are working in the hospital called ‘central’. The output
contains all the available data of these doctors.

SELECT {d}

FROM d N Doctor,
h IN Hospital

WHERE h.name — ‘central’ AND
d.id IN h.doctor

The brackets in the SELECT clause show that in this case the result is a set. Since d is a tuple-object,
the result is a set of (nested) tuples, each tuple containing the data of a doctor. O

The example query consists of two parts. First the selection of (a) tuple-object(s) of the type
Hospital where the value of the attribute name is ‘central’. Second the selection of a number
of tuple-objects of the type Doctor. The identifiers of these tuple-objects have to be in the set
attribute doctor of a selected Hospital tuple-object. This second part of the query involves the
traversal of links between tuple-objects. It is the selection of a number of tuple-objects of a
certain type where the identifiers are given by the value of an attribute of another tuple-object
instance. This latter part of the query is what we call a functional join. A functional join
is always an equi-join since identifiers can’t be ordered. Also, a functional join between two
tuple-objects does not involve multiple join attributes.

3.3 Value-based joins

Tuple-objects can be joined in the traditional relational sense: the Cartesian product of two
sets of tuple-objects and a selection on the result. The selection predicate tests the attribute
values of the tuple-objects. However, there are some important differences with the traditional
relational join. The atomic join attributes in a single tuple-object are not necessary part of the
same ‘sub-relation’ of the hierarchically structured tuple-object. In section 4 we will see that
whether the join attributes in a (single) tuple-object are part of the same sub-relation or not
influences the performance of the join query. Such problems do not occur in the first normal
form relational model.

Also, the join attributes may be tuple, set or list constructed rather than atomic. As a conse-
quence, the join predicate might contain operators specific for sets, like SUBSET (C), SUPERSET
(D) or IN (€)', or lists, like HEAD and TAIL. With non-atomic join attributes, tuples, sets or
lists have to be compared with identically structured values. Since tuples, sets and lists may
contain non-atomic attributes again, this process is a recursive one. Notice that only identically
structured attributes can be compared with each other. For example, we can not compare a set

! Actually we already used the IN operator in example 2, though that was just a simple non-recursive case



of integers with a set of characters and even not with a set of unary tuples containing an integer.
The next example shows the use of set inclusion in the join predicate.

Example 3 We want to find the names of the doctors who have been specialized in all the diseases
Mr. Brown suffers from. The output is a set of doctor names.

SELECT {d.name}
FROM d N Doctor,

p IN Patient
WHERE d.specialization 2 ( SELECT {i.disease}
FROM i IN p.illness
WHERE p.name = ‘Brown’ ) O

The latter example query appears to be what we call a DIVIDE operation in the traditional
relational algebra. Set inclusion showing up in the join predicate is unknown to the traditional
relational model. However, though equality tests may be more complex and performance aspects
may be different, the general idea of comparing sets is not different from comparing atomic values.

4 Performance evaluation

4.1 Building the query results from the base (nested) relations

The SQL-like queries as presented in the previous section are translated to some kind of relational
algebra which has been generalized for tuple-objects. The resulting equations show how the join
results are built from the basic database relations. These basic relations may be distributed
or nested. The translation into algebraic equations has been performed manually, using some
heuristics. It is supposed to be a very clever (or even optimal) translation. The next subsection
shows how to translate these equations into system response times. For reasons of space, only a
global indication of our cost analysis is given. A more detailed presentation can be found in an
additional report [13].

While constructing algebraic equations for the example queries, we used some basic assump-
tions about the query execution strategies. Since we may not expect from a user to be able to
handle large tuple-objects that have been represented as a first normal form relation, results
might be represented in a direct (DSM) form, even if NSM is used. This is no problem since
results are not generated to be stored in the database, but to be shown to a user. Also, message
passing over the network is minimized. CPU time might even be offered in order to reducing
the network load. Therefore, as much as possible the data are processed where they have been
allocated. Parallelism is used as much as possible. The results are always sent over the network
to an output, which is not one of the N nodes in the system. Finally, all relations are equally
distributed over the nodes. Of course, this is true only as far as the number of tuples and the
clustering mechanisms (NSM) allow such a distribution. With DSM and t-NSM it is known
which tuple-objects have been stored on which nodes. With f-NSM it is known on which nodes
the root tuples of the tuple-objects have been stored. We assume that a hash function applied
on the tuple-object identifier gives this node information.

We show a few examples. With DSM the query of example 2, find the doctors working in
the hospital ‘central’, becomes (the notation should be rather self explanatory):

TEMPI, := (0 ame—scontrar HOSPITAL,) - doctor (1 < ¢ < N),

N

RESULT2 := U(TEI\/IPI] N doctor—identificr DOCTOR,)  (TEMPI, # () (1)

=1



In parallel all N nodes perform a selection on the HOSPITAL nested relation fragment they own,
and project matching tuples on the doctor attribute. As we assume that there is only a single
hospital called ‘central’, all TEMPI, are empty except for TEMPI,, which is a set of doctor
identifiers and has to be replicated on all nodes. Replicating a relation (or fragment) on all
nodes means creating a copy of the entire relation (fragment) on all nodes. However, since it is
known which tuple-objects are stored on which nodes, TEMPI, will be distributed (rather than
replicated) over the nodes. That is, each tuple of TEMPI, is only sent to a single node only.
TEMPI, is used by all nodes to select the corresponding doctors (the semi-join), whereupon the
result is collected (the union).

The next example shows how the result of the query of example 1 (names and symptoms of all
illnesses) will be built with f-NSM. ILL_ROOT is the vertical fragment of ILLNESS containing
the attributes identifier, name and treatment. ILL_SYMP contains sname and description.

N N

RESU LTl := U (7Tnu,'m,e,sna,me./desc’l'ipt'i,a'n,(l LL—ROOTJ Nidentiﬁer:tid(” (U ”—L—SYM PI))) (2)

=1 =1

First, ILL.SYMP is replicated on all nodes as shown by the second union symbol. Actu-
ally ILL_SYMP need not to be replicated entirely on all nodes. Rather, ILL SYMP will be
(re)distributed over the nodes since for each tuple in ILL_SYMP there is only a single corre-
sponding tuple in ILL_ROOT. The node this particular tuple has been stored on can be found
by applying a hash function on the tuple-object identifier that has been stored in the tid at-
tribute. Notice that by using intra tuple-object clustering (t-NSM) this redistribution step could
be omitted. In parallel the nodes construct result tuples by executing a join and a projection.
Finally the result is sent to the output (the union). The result is a traditional relation.

4.2 How to compute the response times

The algebraic formulas have to be translated into average response times. Using these times,
the performance of the different storage structures under different system loads (join queries)
can be compared. Given the equations, the queries will be evaluated as efficiently as possible.
Selections, projections and dot operations are combined to a single action in order to save CPU
and 10 time. To prevent intermediate results from being stored on disk, pipelining is used
wherever possible. In particular, when relations are redistributed over nodes the received tuples
are processed in a pipelined way. Pipelining is used even when a join (to reconstruct doctors)
and a division (to construct result) are executed behind each other (example 3, NSM).

We need some parameter settings to be able to determine response times. Table 1 shows
the system system parameters. The parameters should be self-explanatory. Most settings have
been based on values as presented in the literature [11]. We need some tuple-object parameters
as well. We assume the next average values. A tuple-object of the type Doctor contains 2
phone numbers and 100 references to a specialization. A Patient tuple-object has 5 illnesses.
Each lliness tuple-object has 5 symptoms. A tuple-object of type Hospital has 25 references to
a doctor and 500 references to a patient. Finally, a string attribute is 40 bytes and all other
attributes (inclusive identifier attributes) are 8 bytes.

We present the 1/0, network and CPU times independently of each other. The advantage
of such an approach is that it facilitates the conversion (adaptation) of our conclusions to other
systems or new technologies. The following notation is used. If R is a (nested) relation, ||R|]
is the number of tuples in R, tuple_size(R) is the size of a tuple in R and |R]| is the number of
pages used to store R on. Obviously |R| = ||R]||xtuple_size(R)*F,,,./PG. Notice that the CPU
costs due to disk I/O and message passing are not included in the processor costs, but in the
disk I/O and message costs respectively. Therefore the disk 1/O, message and processor times
may be added to a single response time, not considering a possible overlap.



Parameter Description Setting

Frash comparison overhead factor for a hash join 1.2

Fpgoc number of pages to store PG byte of data 1.4 (~ 100%/70%)
(= 100% / degree of page occupation)

M main memory size per node for data 512 pages (=1 1\/[byte)2

N number of nodes in system 10 nodes

PG size of a memory/disk page 2048 byte

sel query selectivity (divide operation) 0.01

teomp CPU time to compare two values 0.2 s

thash CPU time to hash a value 0.9 us

timove CPU time to move data 0.1 us/byte

tro time to read/write a disk page 20 ms/page

tmsa average time to send a network message 1.5 us/byte®

Table 1: Default system parameters.

Disk I/0

On each node local indices map tuple-object identifiers to page numbers. With our default
values, index accesses appear to be no bottleneck. Therefore, we assume a tuple-object identifier
can be transformed to a physical page address without any costs to be considered. Fach page
access takes t;o ms. All nodes may input data in parallel. So if a (nested) relation R has been
distributed over N nodes, the time needed to retrieve relation R from disk will be (|R|/N)xt .

If only some of the tuple(-object)s that have been stored on a sequence of pp pages are needed,
possibly not all the pp pages need to be fetched from disk. Suppose tf randomly distributed
tuple(-object)s have to be fetched, given their identifiers. Bernstein [2] derived a formula for the
number of pages to input:

tf if  tf <pp/2
page-fetches(pp,tf) = (tf +pp)/3  if  pp/2 <tf <2xpp (3)
pp if 2xpp<tf

The formula assumes that tuples do not span pages. However, with large tuples or even entire
tuple-objects, the tuple(-object) size ts may be larger than the disk page size PG. Therefore we
use the next formula as an estimate for the number of page accesses.

ts — 0.5

PG J
The formula can be explained as follows. If a tuple(-object) is smaller in size than a page, it is
just Bernstein’s formula. Since the unit of size is an entire byte, the ‘0.5’ takes care of rounding
problems. If a tuple(-object) is larger in size than a page, preferably it will be stored on a
minimum number of pages. Since a tuple(-object) is stored contiguously on disk, [#522] page
fetches per tuple(-object) fetch are necessary anyhow. For the tf tuple-object parts that still
need to be fetched from the remaining pages we use Bernstein’s formula.

The tuples might be clustered, rather than randomly distributed over the pages. Suppose
tf tuple(-object)s have to be fetched. They have been clustered in groups of cs tuple(-object)s.
Entire clusters are fetched from disk. The size of a tuple(-object) is ts and the clusters have been
randomly distributed over the pp pages. Then, the number of page accesses pages‘(pp,tf,ts,cs)
becomes:

pages(pp,tf,ts) = tf * | + page._fetches(pp-tfi| Bs22 | tf) (4)

pages” (pptf,ts,cs) = pages(pp, ¥ tsxcs) (5)

2This value seems ridiculously small. However, our example tuple-objects are small as well (in size and number).

8Obviously tysc might depend on the message size since there will be a fixed overhead per message that is
independent of the message size. However, we assumed an average message transfer rate in which message set up
times have been included.



Network messages

The communication is on a point-to-point basis (no broadcasting). So, as opposed to disk I/O
and processor times, communication times are added if two or more nodes send in parallel. We do
not consider collisions explicitly, but assume that the time for retransmitting messages has been
included in the network parameter tyrs¢. If a (nested) relation R has to be sent over the network
the corresponding network message time is ||R||*tuple_size(R)*t55. Often occurring situations
are that a relation fragment is either replicated on all nodes in its entirety, or fragmented and
distributed over the nodes.

Processor (CPU) time

We illustrate the processor costs by examining the join RXS. All other operations are han-
dled in a rather analogous way. Suppose a hash-based join algorithm with R as the inner
(smaller) relation. First a hash table is built for the inner relation. The processor costs:
[|R||*(thasnt+tuple_size(R)*t,,00.). Then the outer relation is probed against this hash table:
||S||*(thasn+F nasn*teomp). Finally a result tuple is constructed for each pair of matching join at-
tributes: ||R||x||S||*selx(tuple_size(R)+tuple_size(S))*tmon.. The parameter ‘sel’ is used to indi-
cate the join selectivity. If the inner relation does not fit in main memory, both operand relations
will be partitioned into a number of buckets by hashing on the join attribute. In this way a large
join is split into a number of smaller joins for which enough main memory space is available.
The buckets will be temporarily stored on disk. The total costs for a bucket forming phase will
be ||R||*(thasn+tuple_size(R) st moue) + ||S||*(thasnttuple_size(S)ktmove) + (|R|+|S|)*2%t10. If the
join attribute is the identifier attribute, on which an index exists, a bucket forming phase can
be omitted. For, since there is clustering on identifiers a partition based on the join attribute
already exists. With a semi-join R >4S the result is constructed from the attributes of S only.
Consequently tuple_size(R)+tuple_size(S) becomes tuple_size(S) in the result construction phase.

5 Results

5.1 Response times for example 1 (materialized join)

Table 2 shows some response times if our default parameter values are used. We analyze the
results query by query. For the query of example 1, the selection of all lliness names and
symptoms, the disk I/O time for all three storage structures is about equal (figure 7). All data
of all tuple-objects of the type lliness has to be retrieved from disk. With NSM the Iliness data

| [ DISK 1/O + MESSAGES + PROCESSOR = TOTAL |

example 1 (a materialized join)
DSM 6.67 + 6.60 + 0.0440 = 133
f-NSM 7.22 + 14.9 + 0.172 = 223
t-NSM 7.22 + 9.00 + 0.0754 = 16.3
example 2 (a functional join)
DSM 0.636 + 0.0360 + 0.000311 = 0.673
£-NSM 0.741 + 5.87 + 0.0993 = 6.71
t-NSM 0.232 + 0.0360 + 0.0303 = 0.298
example 3 (a value-based join)
DSM 24.0 + 0.00204 + 0.0605 = 24.1
£-NSM 8.93 + 5.40 + 0.252 = 146
t-NSM 8.93 + 0.00204 + 0.189 = 913

Table 2: Calculated default response times (s) for the example join queries.
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Figure 7: 1/O, message and CPU times for the query of example 1 (‘materialized’ join).

is distributed over two relations. Therefore DSM has a small advantage in I/O time but the
advantage is small, about 10%.

The network message cost are minimal for DSM as well. Only for sending the result to the
output communication is needed. This holds true for t-NSM as well, but then the result is larger
since it is in a relational (rather than direct) representation. With f-NSM, much communication
is needed since initially the illness’ name and symptoms are not necessarily stored on the same
node. N.B. The vertical scales in figure 7 are different!

As with the message costs, the processor costs are smallest for DSM and largest for f-NSM.
In the former case there is only a projection on the right attributes. In the latter case there is a
real join (due to the normalized storage model). Moreover, since there is no intra tuple-object
clustering with f-NSM, processor time is involved with redistributing the relations in order to
get the data that has to be joined on the same node. Notice that the CPU times as presented in
this paper only include the CPU time as relevant for the specific join algorithms. Not included
are the CPU times involved with disk I/O and message passing, which have been included in
the correspondingly named times. The CPU time for swapping, garbage collection, etc. has not
been considered too. Therefore the actual processor load will be much larger.

With other parameter choices the trends remain identical, except for one particular point to
mention. The response time for DSM is (for this example query) rather independent of the main
memory size. However, with NSM we have joins. If the main memory is too small (or the local
relations too large) the large join has to be split into a number of smaller joins. Such a bucket
forming phase, which was not needed with the default values, involves much processor and disk
I/0 time. Moreover, with f-NSM a small main memory will cause data that is received from the
other nodes after redistribution to be temporarily stored on disk. This effect can be seen from
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Figure 8: Total response time while varying the number of nodes with the query of example 1



figure 8. With less than eight nodes the relation ILL_SYMP can not be kept in main memory
after its redistribution and the response time for f-NSM increases. As indicated by figure &,
for all storage models the total response time (t;o+tiysg+tcpy) decreases with an increasing
number of nodes. The disk /O and processor load is distributed over more nodes. If N — oo
the total response time even approaches the communication time ty . The communication
time is independent of N with DSM and t-NSM and slightly increases with N for f-NSM, since
distributing the data over more nodes makes the probability that a tuple has initially been stored
on the correct node (where it has to be after redistribution) smaller.

Concluding, for this example query the overall costs are minimal with a direct storage model.
A normalized storage model is worse, but with intra tuple-object clustering it is not much worse.
A normalized model, and in particular one without intra tuple-object clustering is more sensitive
to the available main memory.

5.2 Response times for example 2 (functional join)

For the query of example 2, select all doctors working in the hospital ‘central’, the disk /O time
is minimal for t-NSM (figure 9). The I/O time of DSM is worse since DSM inputs all tuple-
objects of the type Hospital in their entirety, though only a single one is needed. A normalized
model, on the contrary, only inputs the root tuples in their entirety. From these root tuples the
identifier of the relevant hospital is found. Only for the selected tuple-object the remaining data
is retrieved. However, for the second part of the query, namely the input of entire tuple-objects
of the type Doctor where the identifiers are known, DSM appears to be faster than NSM with
regard to the disk I/O time. For, with DSM the data is clustered. With t-NSM all tuples
belonging to a single doctor are stored on a single node, clustered together per relation. With
f-NSM these relation fragments are distributed over the nodes. This makes the average cluster
size of -NSM smaller as compared with t-NSM. Therefore more and smaller clusters of tuples
have to be retrieved, which makes the disk 1/O less effective. Therefore, the disk I/O time of
f-NSM is the worst of all.

The communication time is worst for f-NSM and almost entirely determines the total response
time for this storage structure. All the data belonging to a tuple-object of the type Doctor has
to be collected on a single node to make its reconstruction possible. Many network messages
are involved. On the contrary, the communication costs for the other storage models is almost
negligible. Since there’s almost no communication with DSM and t-NSM, the total response
time (t;o+twse+topy) decreases if the number of nodes is increased (not shown in a figure).
For, the disk I/O and CPU load are distributed over more nodes. On the contrary, with {-NSM
the total response time is determined by t ;55 and increases with an increasing number of nodes.
As long as there is no main memory overflow, this increase is only small.

The processor time is minimal with DSM since, as opposed to the normalized models, no
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Figure 9: 1/0, message and CPU times for the query of example 2 (‘functional’ join).



joins are needed to reconstruct a tuple-object from its normalized representation. In order to
collect the information of each doctor on a single node, f-NSM has to redistribute relations over
the nodes, involving a hash on each tuple, thus involving additional CPU time.

Deviating from our default values and assumptions, f-NSM needs special attention. As
opposed to DSM and t-NSM, which both exploit parallel disk 1/O on an inter tuple-object level,
f-NSM uses intra tuple-object parallelism with regard to disk 1/O (for a single tuple-object has
been distributed over multiple disks). In the example query, a number of tuple-objects of the
type Doctor are fetched from disk in parallel. Suppose we have either skew (the tuple-objects
that have to be fetched are not equally distributed over the nodes) or only a few number of
tuple-objects to be retrieved (there are more nodes than tuple-objects). In both cases f-NSM
has the advantage over DSM and t-NSM to enable more parallel disk 1/Os [12].

Concluding, for this example query the costs are minimal with a normalized storage model
with intra tuple-object clustering. A normalized storage model without intra tuple-object clus-
tering requires too much communication to get acceptable response times. A direct storage
model, fast though it is in fetching the Doctor tuple-objects, is less flexible in selecting a single
tuple-object and therefore results in a non-optimal overall performance.

5.3 Response times for example 3 (value-based join)

For the query of example 3, find the names of the doctors who can treat all Mr. Brown’s diseases,
the disk I/O time is minimal with the normalized storage models (figure 10). This, again, is due
to the fact that DSM inputs all tuple-objects in their entirety. In particular this is ineffective
with the Patient tuple-objects. Although only the attribute name has to be tested to be valued
‘Mr. Brown’, entire tuple-objects are retrieved. The normalized models are less bothered by
retrieving superfluous information.

As with the query of example 2, f-NSM severely suffers from communication overhead. Again
processor costs are minimal with DSM (no joins to reconstruct a tuple-object from its normalized
representation) and maximal with f-NSM (the overhead for redistributing data over the nodes).
It is interesting to notice that, once the data have been fetched from disk and shipped to the
right nodes, the specific operation that implements the value-based join (namely the divide) is
as expensive for all storage models. Therefore we expect the same trends in the results of other
(application specific) value-based joins.

Varying the number of nodes in the system (figure 11) shows that with DSM and t-NSM
the total response time is almost inversely proportional to the number of nodes. This is obvi-
ous since the response time is almost entirely determined by disk 1/Os. These disk 1/Os are
distributed over the nodes. With f-NSM, main memory overflow occurs if the number of nodes
becomes smaller than six. Then the relation DOC_DISE will be temporarily stored on disk after
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Figure 10: /0, message and CPU times for the query of example 3 (‘value-based’ join).
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Figure 11: Total response time while varying the number of nodes with the query of example 3

redistribution. However, even for this situation DSM still has a larger response time.

Concluding, for this example query the costs are minimal with a normalized storage model
with intra tuple-object clustering. A normalized storage model without intra tuple-object clus-
tering suffers very much from communication overhead. A direct storage model suffers from the
necessity to input entire tuple-objects.

6 Comments on the results and conclusions

We investigated the performance of three different storage models for complex objects, based
on the possible join queries for complex objects. Attention was paid to disk I1/Os, network
messages and processor loads. In order to be really able to determine the best overall storage
structure, other queries (and in particular updates!) need to be considered as well. Also, other
storage structures or in-between storage structures may need attention. Using an index on a
non-identifier attribute might give new insights as well. Nevertheless, some main conclusions
can be drawn.

The direct storage model (DSM) is the best storage model with regard to network commu-
nication and processor load. The retrieval of an entire tuple-object is very fast. However, the
retrieval of a single attribute of a tuple-object is not well supported. Consequently, a small and
simple operation on a large tuple-object may degrade the overall query performance enormously.

A normalized storage model is much more flexible with regard to disk 1/Os. In general it
uses (in particular with intra tuple-object clustering) the fewest disk accesses. Only when tuple-
objects need to be fetched from disk in their entirety a direct storage model is better. Although
joins will be needed to reconstruct a tuple-object from its normalized representation, tuple
identifiers seem to support such a reconstruction very well, provided that enough main memory
space is available. However, without intra tuple-object clustering (not clustering all data of a
single tuple-object on a single node) the communication overhead becomes unacceptable.

Concluding, a materialized join seems to be best supported by a direct storage model. A
functional join may be well supported by DSM as well. However, since a normalized storage
model with intra tuple-object clustering (t-NSM) is more flexible (e.g. in finding the identifiers
themselves) and gives reasonable performance in tuple-object retrieval (and assembly), such a
storage model may be preferable. For a value-based join the same conclusion can be drawn
since the operations that are specific for such a join do not favour a particular storage model.
So, a normalized storage model with intra tuple-object clustering seems to give the best overall
performance. But, of course this may depend on the overall database load and system char-
acteristics. In particular, since in non-standard database environments the materialized joins



seem to be important, a direct storage model (DSM) might be the best as well.

The fact that we showed the results for disk 1/O, network messages and processor costs as
being independent of each other makes our results easily adaptable for other database systems
(provided they are shared nothing). Actually one only has to pay attention to the relative
importance of disk I/O versus network messages versus processor load and might change the
conclusions correspondingly. Moreover, a close look at the results shows that for our parameters
CPU costs seem to be unimportant whereas the disk I/O costs are a bottleneck*. Therefore, the
conclusions based on our parameters may be interesting for many systems since in the parallel
database world there is a general consensus that CPU costs are no bottleneck and that the I/O
bandwidth is a severe bottleneck [4].
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“With the possible exception of a normalized storage model without intra tuple-object clustering. Then the
network messages are the bottleneck. However, this storage structure has been found to be inferior.



