
Complex Object Joins in a Distributed DatabaseWouter B. Teeuw� Henk M. BlankenUniversity of Twente, Department of Computer Science, Information Systems | DatabasesP.O. Box 217, NL{7500 AE Enschede, The Netherlands, E-mail: fteeuw,blankeng@cs.utwente.nlAbstractIn non-standard database systems performance tends to be critical. To obtain the requiredresponse times for processing complex objects, parallelism needs to be exploited and suitablestorage structure for complex objects have to be used. In this paper we use an hierarchicalcomplex object model with object references. The join operations for these complex objects,called tuple-objects, are categorized into materialized, functional and value-based joins. Theperformance of these joins is analytically evaluated, giving insights into which distributedstorage structures for tuple-objects are most e�ective for the di�erent kinds of joins.Keywords: Complex objects, Distributed databases, Join operation, Performance aspects,Storage structures.1 IntroductionData-intensive database applications such as robotics, cartography and CAD/CAM, the so-callednon-standard database applications, require a high performance in retrieving and processingcomplex objects. A complex object is a large cluster of structured data that forms a logical unit.In general, it is built by applying various complex object constructors to other complex objectsor basic values. The constructors that the system should at least support seem to be tuple,set and list. Also, a complex object has some notion of object identity and complex objectshave relationships to each other. Those complex objects need to be stored e�ciently in order toachieve the required responsiveness.Without special provisions the relational storage model is not very well suited to managecomplex objects. Since a complex object will be represented by several tuples of several relations,a large number of join operations will be required to reassemble the complex object from thecorresponding database relations. Those time and resource consuming joins cannot be acceptedif performance is critical. Therefore alternative storage models for complex objects have beenproposed. Extensions of the relational model may keep the advantages of relational storagewhile at the same time providing a better performance. For example, complex object maybe represented in a nested relational data model [8,10]. Nested relations might be stored ina traditional relational database. To preserve the nested structure, join indices [14] or tupleidenti�ers [3,7] can be used. Alternatively, the nested tuples might be stored contiguously ondisk [5,9]. A completely non-relational modeling of complex objects is provided by the molecule-atom data model (MAD model), in which complex objects are modeled as a set of atoms linkedtogether in a network-like structure [6].In this paper we analyse the performance aspects of several storage structures for complexobjects. In most earlier work only object retrieval is considered and no attention is paid to�The investigations were partly supported by the Foundation for Computer Science in the Netherlands SIONunder project 612-317-025 nicknamed Star�sh.



a further processing of the objects. In particular, since complex objects tend to be retrievedin their entirety, the selection of entire objects is considered [12]. We investigate the e�ect ofjoin queries on the retrieval of complex objects. Since we need a model for what a complexobject is, we introduce the notions of tuple-objects and composed objects (section 2). A tuple-object is a kind of nested tuple. Its attributes are existence dependent. Tuple-objects are theunit of sharing among a number of composed objects. Notice that we do not introduce yetanother complex object model. Rather, we provide a view on complex objects which enables aperformance evaluation.Similar to the relational join, a tuple-object join might restrict the instances of the onetuple-object type based on the attribute values of another tuple-object type. However, in object-oriented databases the traditional value-based join seems to play a less dominant role. Moreimportant is the object traversal along references, leading from one tuple-object instance toanother. This navigation in a composed object is called a join as well (implicit or functionaljoin). Moreover, a relation valued attribute might materialize what used to be a join in a tra-ditional relational system. A further description of tuple-object joins is presented in section 3.Next, in section 4, we evaluate which storage structures are most e�ective with regard to thesejoin queries. Three storage structures get attention, two of which are normalized with specialfeatures. Performance will be measured in terms of response times. The evaluation will be ana-lytical, with disk I/O, network message, and processor (CPU) load being considered separately.Results are presented in section 5.We focus on a distributed shared-nothing database system based on a local area network.Distributed systems are more and more used because they increase reliability, availability andin particular performance. Moreover, shared-nothing systems have demonstrated speedup andscale-up to hundreds of nodes and seem to be the basis for distributed database technology [4].Our performance evaluation that is based on join queries shows the costs of di�erent complexobject storage structures given various parameter values. Therefore, together with identicalresults for selection queries, it may be the base for a query optimizer and/or a data allocationmanager for complex objects in a distributed database system.2 Complex objects2.1 Tuple-objects and composed objectsIn this section we describe our vision on a complex object, which we call a tuple-object . A tuple-object is constructed from some basic types (such as boolean, character, integer, real, string) byapplying the tuple, set and list constructors. Among the basic types are an identi�er type anda reference type as well. The constructors are completely orthogonal, i.e. they can be appliedin any order. However, the top level construct must be a tuple. Tuple-objects are instances ofa tuple-object type. All tuple-objects of the same type have an identical structure. Connectedto each tuple-object is a unique system generated identi�er or surrogate of the type oid. Itdistinguishes the object from all others. Identi�ers are unique, can't be a�ected by user updatesand are used by tuple-objects to refer to each other.Figure 1 shows an example of a tuple-object of the type Doctor. The symbols h i denote atuple, f g a set and [ ] a list. A tuple-object of type Doctor is a tuple containing four attributes:two atomic attributes (identi�er and name) and two non-atomic attributes. The non-atomicattribute private is a tuple containing two attributes that are both non-atomic again: address isa tuple of three atomic attributes and phone is a list of atomic values. The non-atomic attributespecialization is a set of atomic values. The type ref(Disease), a reference type, has as potentialvalues the identi�ers of the tuple-objects of the type called Disease.A tuple-object is hierarchically structured and resembles the NF2 and extended NF2 data



tuple-object Doctor = fhidenti�er: oid,name: string,private: h address: h street: string,nr: integer,city: string i,phone: [integer] i,specialization: fref(Disease)gig Figure 1: Declaration of a Doctor tuple-object.models [8,10]. The characteristic property of a tuple-object is its existence dependency. Theremoval of a tuple-object includes the deletion of all its components. As a consequence there isno sharing of data between tuple-objects. However, data sharing is still possible since a tuple-object as a whole is the unit of sharing among a number of composed objects. A composed objectis a collection of tuple-objects linked together by the references between them. Starting from aspeci�c root tuple-object, the whole composed object can be retrieved by traversing these links.Again, we may consider types and instances. Composed objects resemble the molecules in theMAD model [6].2.2 A direct storage model for tuple-objects (DSM)Tuple-objects may be mapped directly into a single storage unit and, as far as possible, be storedcontiguously on disk. Storing tuple-objects (or rather complex objects) as a whole is called directstorage model [15], which we will refer to as DSM. In the direct storage model there is a 1{1correspondence between the conceptual tuple-object and the internally stored object. Obviouslythe retrieval of an entire tuple-object will be e�cient. The retrieval of a few attributes, on thecontrary, may be ine�cient since probably the whole tuple-object has to be retrieved. Figure 2shows the direct representation of the Doctor tuple-object of �gure 1. The �gures 3 through 5show yet three other example tuple-objects that we will use throughout this paper. Tuple-objectoccurrences of the same type form a single nested relation. We will refer to these relations asthe DOCTOR, PATIENT, ILLNESS and HOSPITAL relations respectively.Several implementations for DSM exist [5,9]. In our performance evaluation we assume anarbitrary implementation, provided that all tuple-objects of a single type are stored, one behindanother, in a single sequence of pages (�le). The e�ective page occupation will be less than100% due to the fact that storage space may be wasted or used for structure information. Weassume an index on the tuple-object identi�er, which translates this identi�er into the necessarypage information. In our distributed shared-nothing environment the homogeneous nodes areconnected by a local area network. Each node consists of a processor, internal memory and diskdrive. The nodes communicate to each other by message passing over the network, which is theDOCTORidenti�eroid namestring hprivateihaddressistreetstring nrinteger citystring [phoneinteger] fspecializationref(Illness)gFigure 2: Direct representation of the Doctor tuple-object



PATIENTidenti�eroid namestring hprivateihaddressistreetstring nrinteger citystring jobstringphoneinteger fhillnessigdiseaseref(Illness) fromreal tillrealFigure 3: Direct representation of the Patient tuple-objectILLNESSidenti�eroid namestring fhsymptomigsnamestring descriptionstring treatmentstringFigure 4: Direct representation of the Illness tuple-objectonly resource they share. Each node owns a disjunct portion of the database data. So with DSMthe tuple-objects will be randomly (and equally) distributed over the nodes. Each node stores ahorizontal fragment of the nested relation that is formed by all tuple-objects of the same type.2.3 A normalized storage model for tuple-objects (NSM)The hierarchically structured tuple-object can be seen as a nested tuple, a tuple with relationvalued attributes. However, since set and list attributes do not necessarily consist of tuples, wehave to regard each set as a set of tuples (= a relation) and each list as a list of tuples (= anordered relation). For example, a set of integers is considered as a set of unary tuples with aninteger valued attribute.We may store all the sub-relations of a nested relation independently intraditional 
at relations. We refer to this storage model as normalized storage model or NSM.NSM provides a better performance for partial tuple-object retrieval. It allows to retrieve�rst those parts of the tuple-object that have the highest probability to make further diskI/Os super
uous. Projection on many attributes is one of the best supported operations. Ingeneral, the retrieval of an entire tuple-object is acceptably e�cient if additional support forthe reconstruction of the tuple-object is provided. Such additional support generally consists ofa mechanism that appends to each tuple in each relation a unique identi�er. These identi�ersare used to store the tuple-object structure, either by using them as pointer values [1,14], or byconstructing them in such a way that they contain information about root and parent tuples [3,7]. We assume an NSM implementation in which each tuple in each relation has a tuple-identi�er(tid) consisting of three parts. The �rst part is the identi�er of the tuple-object the tuple belongsto (`root part'). The second part is an identi�cation of the parent non-atomic attribute of thistuple (`parent part'). Finally, there is an identi�er for the tuple itself (`own part'). In thisway, the hierarchical tuple-object structure is tied up in the tid's and the normalization of anested tuple and its inverse are unambiguous. Notice that a tid is generated by the system andinvisible to the users. The tuples of each relation with an equal root part in the tid are clusteredtogether. Within such a cluster, the same holds for tuples with an equal parent part of the tid.In this way the tids not only keep the tuple-object structure, but also enhance the performanceHOSPITALidenti�eroid namestring citystring fdoctorref(Doctor)g fpatientref(Patient)gFigure 5: Direct representation of the Hospital tuple-object
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at relation is stored in a separate �le (sequenceof pages). The pages of these �le contain some wasted space. An index on the root part of thetid exists. This index is not necessarily dense. Per relation, one entry per tuple-object instanceor per page may be su�cient.Figure 6 shows a normalized representation of the Doctor tuple-object. Tuple-objects ofthe type Doctor are stored in four 
at relations, referred to as DOC ROOT, DOC ADDR,DOC PHON and DOC DISE. Notice that there is no `DOC PRIV' relation because the privateattribute is a tuple that contains only non-atomic attributes. The identi�er attribute in theDOC ROOT relation makes a tid super
uous. Since a list of integers is regarded to as a listof unary tuples, the own part of the tid in the DOC PHON relation is related to the phoneattribute and may be used to preserve the list ordering. The tid's in the DOC DISE relationhave no parent part since on the �rst level of nesting the parent is equal to the root.In a distributed environment, the tuples of all relations are distributed over the nodes. Wemay distinguish two situations. First, all 
at tuples belonging to a single tuple-object occurrencemay be allocated to a single node. We will refer to this case as t-NSM (tuple-objects on a nodeNSM). Second, the tuples of a single tuple-object instance may be randomly (and per relationequally) distributed over the nodes. We refer to this case as f-NSM (fragments of tuple-objectson a node NSM).3 Joins on tuple-objectsIn a traditional relational environment the join of two relations applies a selection on the Carte-sian product of these two relations. Actually, the tuples of the one relation are selected basedon the attribute values in the other relation (primary/foreign keys). In database systems withobjects and object references this join based on matching attribute value pairs plays a lessdominant role. More important are object accesses along reference chains leading from oneobject instance to another. This object traversal is called a join as well, the so-called implicitor functional joins. In general, a join for tuple-objects is an operation that correlates di�erent(complex) attributes of arbitrary tuple-object types. We will make a distinction between threedi�erent kinds of joins: materialized, functional and value-based joins. In all cases, we considerthe results of the join queries as data (structured values) rather than tuple-objects. Using thetuple-object types as described in section 2, we will show some examples. An extended versionof SQL is used to express the example queries. In section 4 the example queries will be used toevaluate the storage models for tuple-objects in a distributed database.3.1 Materialized joinsSince tuple-object attributes may be complex valued, operations that would be a join in thetraditional relational environment might become the retrieval of some attributes with tuple-objects. The join has been materialized in the tuple-object structure.



Example 1 For each illness we want to know all symptoms. The output is a set of binary tuples. The�rst attribute is the name of the illness, the second attribute is a set of binary tuples, the attributesgiving the symptom name and description respectively.select fhname, symptomigfrom IllnessThe brackets in the select clause show that in this case the result is a set of binary tuples. Noticethat the non-atomic attribute symptom in the Illness tuple-object is a set of (binary) tuples. 23.2 Functional joinsTuple-objects are connected to each other by links. The navigation from tuple-object to tuple-object by following these links means joining them (implicit joins).Example 2 We want to �nd all doctors who are working in the hospital called `central'. The outputcontains all the available data of these doctors.select fdgfrom d in Doctor,h in Hospitalwhere h.name = `central' andd.id in h.doctorThe brackets in the select clause show that in this case the result is a set. Since d is a tuple-object,the result is a set of (nested) tuples, each tuple containing the data of a doctor. 2The example query consists of two parts. First the selection of (a) tuple-object(s) of the typeHospital where the value of the attribute name is `central'. Second the selection of a numberof tuple-objects of the type Doctor. The identi�ers of these tuple-objects have to be in the setattribute doctor of a selected Hospital tuple-object. This second part of the query involves thetraversal of links between tuple-objects. It is the selection of a number of tuple-objects of acertain type where the identi�ers are given by the value of an attribute of another tuple-objectinstance. This latter part of the query is what we call a functional join. A functional joinis always an equi-join since identi�ers can't be ordered. Also, a functional join between twotuple-objects does not involve multiple join attributes.3.3 Value-based joinsTuple-objects can be joined in the traditional relational sense: the Cartesian product of twosets of tuple-objects and a selection on the result. The selection predicate tests the attributevalues of the tuple-objects. However, there are some important di�erences with the traditionalrelational join. The atomic join attributes in a single tuple-object are not necessary part of thesame `sub-relation' of the hierarchically structured tuple-object. In section 4 we will see thatwhether the join attributes in a (single) tuple-object are part of the same sub-relation or notin
uences the performance of the join query. Such problems do not occur in the �rst normalform relational model.Also, the join attributes may be tuple, set or list constructed rather than atomic. As a conse-quence, the join predicate might contain operators speci�c for sets, like subset (�), superset(�) or in (2)1, or lists, like head and tail. With non-atomic join attributes, tuples, sets orlists have to be compared with identically structured values. Since tuples, sets and lists maycontain non-atomic attributes again, this process is a recursive one. Notice that only identicallystructured attributes can be compared with each other. For example, we can not compare a set1Actually we already used the in operator in example 2, though that was just a simple non-recursive case



of integers with a set of characters and even not with a set of unary tuples containing an integer.The next example shows the use of set inclusion in the join predicate.Example 3 We want to �nd the names of the doctors who have been specialized in all the diseasesMr. Brown su�ers from. The output is a set of doctor names.select fd.namegfrom d in Doctor,p in Patientwhere d.specialization � ( select fi.diseasegfrom i in p.illnesswhere p.name = `Brown' ) 2The latter example query appears to be what we call a divide operation in the traditionalrelational algebra. Set inclusion showing up in the join predicate is unknown to the traditionalrelational model. However, though equality tests may be more complex and performance aspectsmay be di�erent, the general idea of comparing sets is not di�erent from comparing atomic values.4 Performance evaluation4.1 Building the query results from the base (nested) relationsThe SQL-like queries as presented in the previous section are translated to some kind of relationalalgebra which has been generalized for tuple-objects. The resulting equations show how the joinresults are built from the basic database relations. These basic relations may be distributedor nested. The translation into algebraic equations has been performed manually, using someheuristics. It is supposed to be a very clever (or even optimal) translation. The next subsectionshows how to translate these equations into system response times. For reasons of space, only aglobal indication of our cost analysis is given. A more detailed presentation can be found in anadditional report [13].While constructing algebraic equations for the example queries, we used some basic assump-tions about the query execution strategies. Since we may not expect from a user to be able tohandle large tuple-objects that have been represented as a �rst normal form relation, resultsmight be represented in a direct (DSM) form, even if NSM is used. This is no problem sinceresults are not generated to be stored in the database, but to be shown to a user. Also, messagepassing over the network is minimized. CPU time might even be o�ered in order to reducingthe network load. Therefore, as much as possible the data are processed where they have beenallocated. Parallelism is used as much as possible. The results are always sent over the networkto an output, which is not one of the N nodes in the system. Finally, all relations are equallydistributed over the nodes. Of course, this is true only as far as the number of tuples and theclustering mechanisms (NSM) allow such a distribution. With DSM and t-NSM it is knownwhich tuple-objects have been stored on which nodes. With f-NSM it is known on which nodesthe root tuples of the tuple-objects have been stored. We assume that a hash function appliedon the tuple-object identi�er gives this node information.We show a few examples. With DSM the query of example 2, �nd the doctors working inthe hospital `central', becomes (the notation should be rather self explanatory):TEMPI{ := (�name=`central0HOSPITAL{) � doctor (1 � { � N);RESULT2 := N[{=1(TEMPI| >�doctor=identi�erDOCTOR{) (TEMPI| 6= ;) (1)



In parallel all N nodes perform a selection on the HOSPITAL nested relation fragment they own,and project matching tuples on the doctor attribute. As we assume that there is only a singlehospital called `central', all TEMPI{ are empty except for TEMPI|, which is a set of doctoridenti�ers and has to be replicated on all nodes. Replicating a relation (or fragment) on allnodes means creating a copy of the entire relation (fragment) on all nodes. However, since it isknown which tuple-objects are stored on which nodes, TEMPI| will be distributed (rather thanreplicated) over the nodes. That is, each tuple of TEMPI| is only sent to a single node only.TEMPI| is used by all nodes to select the corresponding doctors (the semi-join), whereupon theresult is collected (the union).The next example shows how the result of the query of example 1 (names and symptoms of allillnesses) will be built with f-NSM. ILL ROOT is the vertical fragment of ILLNESS containingthe attributes identi�er, name and treatment. ILL SYMP contains sname and description.RESULT1 := N[|=1(�name;sname;description(ILL ROOT| 1identi�er=tid(r) ( N[{=1 ILL SYMP{))) (2)First, ILL SYMP is replicated on all nodes as shown by the second union symbol. Actu-ally ILL SYMP need not to be replicated entirely on all nodes. Rather, ILL SYMP will be(re)distributed over the nodes since for each tuple in ILL SYMP there is only a single corre-sponding tuple in ILL ROOT. The node this particular tuple has been stored on can be foundby applying a hash function on the tuple-object identi�er that has been stored in the tid at-tribute. Notice that by using intra tuple-object clustering (t-NSM) this redistribution step couldbe omitted. In parallel the nodes construct result tuples by executing a join and a projection.Finally the result is sent to the output (the union). The result is a traditional relation.4.2 How to compute the response timesThe algebraic formulas have to be translated into average response times. Using these times,the performance of the di�erent storage structures under di�erent system loads (join queries)can be compared. Given the equations, the queries will be evaluated as e�ciently as possible.Selections, projections and dot operations are combined to a single action in order to save CPUand IO time. To prevent intermediate results from being stored on disk, pipelining is usedwherever possible. In particular, when relations are redistributed over nodes the received tuplesare processed in a pipelined way. Pipelining is used even when a join (to reconstruct doctors)and a division (to construct result) are executed behind each other (example 3, NSM).We need some parameter settings to be able to determine response times. Table 1 showsthe system system parameters. The parameters should be self-explanatory. Most settings havebeen based on values as presented in the literature [11]. We need some tuple-object parametersas well. We assume the next average values. A tuple-object of the type Doctor contains 2phone numbers and 100 references to a specialization. A Patient tuple-object has 5 illnesses.Each Illness tuple-object has 5 symptoms. A tuple-object of type Hospital has 25 references toa doctor and 500 references to a patient. Finally, a string attribute is 40 bytes and all otherattributes (inclusive identi�er attributes) are 8 bytes.We present the I/O, network and CPU times independently of each other. The advantageof such an approach is that it facilitates the conversion (adaptation) of our conclusions to othersystems or new technologies. The following notation is used. If R is a (nested) relation, jjRjjis the number of tuples in R, tuple size(R) is the size of a tuple in R and jRj is the number ofpages used to store R on. Obviously jRj = jjRjj�tuple size(R)�Fpgoc/PG. Notice that the CPUcosts due to disk I/O and message passing are not included in the processor costs, but in thedisk I/O and message costs respectively. Therefore the disk I/O, message and processor timesmay be added to a single response time, not considering a possible overlap.



Parameter Description SettingFhash comparison overhead factor for a hash join 1.2Fpgoc number of pages to store PG byte of data(= 100% / degree of page occupation) 1.4 (' 100%/70%)M main memory size per node for data 512 pages (= 1 Mbyte)2N number of nodes in system 10 nodesPG size of a memory/disk page 2048 bytesel query selectivity (divide operation) 0.01tcomp CPU time to compare two values 0.2 �sthash CPU time to hash a value 0.9 �stmove CPU time to move data 0.1 �s/bytetIO time to read/write a disk page 20 ms/pagetMSG average time to send a network message 1.5 �s/byte3Table 1: Default system parameters.Disk I/OOn each node local indices map tuple-object identi�ers to page numbers. With our defaultvalues, index accesses appear to be no bottleneck. Therefore, we assume a tuple-object identi�ercan be transformed to a physical page address without any costs to be considered. Each pageaccess takes tIO ms. All nodes may input data in parallel. So if a (nested) relation R has beendistributed over N nodes, the time needed to retrieve relation R from disk will be (jRj/N)�tIO.If only some of the tuple(-object)s that have been stored on a sequence of pp pages are needed,possibly not all the pp pages need to be fetched from disk. Suppose tf randomly distributedtuple(-object)s have to be fetched, given their identi�ers. Bernstein [2] derived a formula for thenumber of pages to input:page fetches(pp,tf) = tf(tf + pp)=3pp ififif tf � pp=2pp=2 < tf � 2 � pp2 � pp < tf (3)The formula assumes that tuples do not span pages. However, with large tuples or even entiretuple-objects, the tuple(-object) size ts may be larger than the disk page size PG. Therefore weuse the next formula as an estimate for the number of page accesses.pages(pp,tf,ts) = tf � bts� 0:5PG c+ page fetches(pp-tf�b ts�0:5PG c,tf) (4)The formula can be explained as follows. If a tuple(-object) is smaller in size than a page, it isjust Bernstein's formula. Since the unit of size is an entire byte, the `0.5' takes care of roundingproblems. If a tuple(-object) is larger in size than a page, preferably it will be stored on aminimum number of pages. Since a tuple(-object) is stored contiguously on disk, b ts�0:5PG c pagefetches per tuple(-object) fetch are necessary anyhow. For the tf tuple-object parts that stillneed to be fetched from the remaining pages we use Bernstein's formula.The tuples might be clustered, rather than randomly distributed over the pages. Supposetf tuple(-object)s have to be fetched. They have been clustered in groups of cs tuple(-object)s.Entire clusters are fetched from disk. The size of a tuple(-object) is ts and the clusters have beenrandomly distributed over the pp pages. Then, the number of page accesses pagesc(pp,tf,ts,cs)becomes: pagesc(pp,tf,ts,cs) = pages(pp, tfcs ,ts�cs) (5)2This value seems ridiculously small. However, our example tuple-objects are small as well (in size and number).3Obviously tMSG might depend on the message size since there will be a �xed overhead per message that isindependent of the message size. However, we assumed an average message transfer rate in which message set uptimes have been included.



Network messagesThe communication is on a point-to-point basis (no broadcasting). So, as opposed to disk I/Oand processor times, communication times are added if two or more nodes send in parallel. We donot consider collisions explicitly, but assume that the time for retransmitting messages has beenincluded in the network parameter tMSG. If a (nested) relation R has to be sent over the networkthe corresponding network message time is jjRjj�tuple size(R)�tMSG. Often occurring situationsare that a relation fragment is either replicated on all nodes in its entirety, or fragmented anddistributed over the nodes.Processor (CPU) timeWe illustrate the processor costs by examining the join R1S. All other operations are han-dled in a rather analogous way. Suppose a hash-based join algorithm with R as the inner(smaller) relation. First a hash table is built for the inner relation. The processor costs:jjRjj�(thash+tuple size(R)�tmove). Then the outer relation is probed against this hash table:jjSjj�(thash+Fhash�tcomp). Finally a result tuple is constructed for each pair of matching join at-tributes: jjRjj�jjSjj�sel�(tuple size(R)+tuple size(S))�tmove. The parameter `sel' is used to indi-cate the join selectivity. If the inner relation does not �t in main memory, both operand relationswill be partitioned into a number of buckets by hashing on the join attribute. In this way a largejoin is split into a number of smaller joins for which enough main memory space is available.The buckets will be temporarily stored on disk. The total costs for a bucket forming phase willbe jjRjj�(thash+tuple size(R)�tmove) + jjSjj�(thash+tuple size(S)�tmove) + (jRj+jSj)�2�tIO. If thejoin attribute is the identi�er attribute, on which an index exists, a bucket forming phase canbe omitted. For, since there is clustering on identi�ers a partition based on the join attributealready exists. With a semi-join R >�S the result is constructed from the attributes of S only.Consequently tuple size(R)+tuple size(S) becomes tuple size(S) in the result construction phase.5 Results5.1 Response times for example 1 (materialized join)Table 2 shows some response times if our default parameter values are used. We analyze theresults query by query. For the query of example 1, the selection of all Illness names andsymptoms, the disk I/O time for all three storage structures is about equal (�gure 7). All dataof all tuple-objects of the type Illness has to be retrieved from disk. With NSM the Illness dataDISK I/O + MESSAGES + PROCESSOR = TOTALexample 1 (a materialized join)DSM 6.67 + 6.60 + 0.0440 = 13.3f-NSM 7.22 + 14.9 + 0.172 = 22.3t-NSM 7.22 + 9.00 + 0.0754 = 16.3example 2 (a functional join)DSM 0.636 + 0.0360 + 0.000311 = 0.673f-NSM 0.741 + 5.87 + 0.0993 = 6.71t-NSM 0.232 + 0.0360 + 0.0303 = 0.298example 3 (a value-based join)DSM 24.0 + 0.00204 + 0.0605 = 24.1f-NSM 8.93 + 5.40 + 0.252 = 14.6t-NSM 8.93 + 0.00204 + 0.189 = 9.13Table 2: Calculated default response times (s) for the example join queries.
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DSMppppppppp ppppppppp ppppppppp ppppppppp ppppppppp ppppppppp ppppppppp ppppppppp ppppppppp pppppppppf-NSMpppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppppppppt-NSMppppppppppppppp ppppppppppppppp ppppppppppppppp ppppppppppppppp ppppppppppppppp ppppppppppppppp ppppppppppppppp ppppppppppppppp ppppppppppppppp pppppppppppppppFigure 7: I/O, message and CPU times for the query of example 1 (`materialized' join).is distributed over two relations. Therefore DSM has a small advantage in I/O time but theadvantage is small, about 10%.The network message cost are minimal for DSM as well. Only for sending the result to theoutput communication is needed. This holds true for t-NSM as well, but then the result is largersince it is in a relational (rather than direct) representation. With f-NSM, much communicationis needed since initially the illness' name and symptoms are not necessarily stored on the samenode. N.B. The vertical scales in �gure 7 are di�erent!As with the message costs, the processor costs are smallest for DSM and largest for f-NSM.In the former case there is only a projection on the right attributes. In the latter case there is areal join (due to the normalized storage model). Moreover, since there is no intra tuple-objectclustering with f-NSM, processor time is involved with redistributing the relations in order toget the data that has to be joined on the same node. Notice that the CPU times as presented inthis paper only include the CPU time as relevant for the speci�c join algorithms. Not includedare the CPU times involved with disk I/O and message passing, which have been included inthe correspondingly named times. The CPU time for swapping, garbage collection, etc. has notbeen considered too. Therefore the actual processor load will be much larger.With other parameter choices the trends remain identical, except for one particular point tomention. The response time for DSM is (for this example query) rather independent of the mainmemory size. However, with NSM we have joins. If the main memory is too small (or the localrelations too large) the large join has to be split into a number of smaller joins. Such a bucketforming phase, which was not needed with the default values, involves much processor and diskI/O time. Moreover, with f-NSM a small main memory will cause data that is received from theother nodes after redistribution to be temporarily stored on disk. This e�ect can be seen from
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�gure 8. With less than eight nodes the relation ILL SYMP can not be kept in main memoryafter its redistribution and the response time for f-NSM increases. As indicated by �gure 8,for all storage models the total response time (tIO+tMSG+tCPU ) decreases with an increasingnumber of nodes. The disk I/O and processor load is distributed over more nodes. If N ! 1the total response time even approaches the communication time tMSG. The communicationtime is independent of N with DSM and t-NSM and slightly increases with N for f-NSM, sincedistributing the data over more nodes makes the probability that a tuple has initially been storedon the correct node (where it has to be after redistribution) smaller.Concluding, for this example query the overall costs are minimal with a direct storage model.A normalized storage model is worse, but with intra tuple-object clustering it is not much worse.A normalized model, and in particular one without intra tuple-object clustering is more sensitiveto the available main memory.5.2 Response times for example 2 (functional join)For the query of example 2, select all doctors working in the hospital `central', the disk I/O timeis minimal for t-NSM (�gure 9). The I/O time of DSM is worse since DSM inputs all tuple-objects of the type Hospital in their entirety, though only a single one is needed. A normalizedmodel, on the contrary, only inputs the root tuples in their entirety. From these root tuples theidenti�er of the relevant hospital is found. Only for the selected tuple-object the remaining datais retrieved. However, for the second part of the query, namely the input of entire tuple-objectsof the type Doctor where the identi�ers are known, DSM appears to be faster than NSM withregard to the disk I/O time. For, with DSM the data is clustered. With t-NSM all tuplesbelonging to a single doctor are stored on a single node, clustered together per relation. Withf-NSM these relation fragments are distributed over the nodes. This makes the average clustersize of f-NSM smaller as compared with t-NSM. Therefore more and smaller clusters of tupleshave to be retrieved, which makes the disk I/O less e�ective. Therefore, the disk I/O time off-NSM is the worst of all.The communication time is worst for f-NSM and almost entirely determines the total responsetime for this storage structure. All the data belonging to a tuple-object of the type Doctor hasto be collected on a single node to make its reconstruction possible. Many network messagesare involved. On the contrary, the communication costs for the other storage models is almostnegligible. Since there's almost no communication with DSM and t-NSM, the total responsetime (tIO+tMSG+tCPU ) decreases if the number of nodes is increased (not shown in a �gure).For, the disk I/O and CPU load are distributed over more nodes. On the contrary, with f-NSMthe total response time is determined by tMSG and increases with an increasing number of nodes.As long as there is no main memory over
ow, this increase is only small.The processor time is minimal with DSM since, as opposed to the normalized models, notime(s) 0.00.20.40.6
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joins are needed to reconstruct a tuple-object from its normalized representation. In order tocollect the information of each doctor on a single node, f-NSM has to redistribute relations overthe nodes, involving a hash on each tuple, thus involving additional CPU time.Deviating from our default values and assumptions, f-NSM needs special attention. Asopposed to DSM and t-NSM, which both exploit parallel disk I/O on an inter tuple-object level,f-NSM uses intra tuple-object parallelism with regard to disk I/O (for a single tuple-object hasbeen distributed over multiple disks). In the example query, a number of tuple-objects of thetype Doctor are fetched from disk in parallel. Suppose we have either skew (the tuple-objectsthat have to be fetched are not equally distributed over the nodes) or only a few number oftuple-objects to be retrieved (there are more nodes than tuple-objects). In both cases f-NSMhas the advantage over DSM and t-NSM to enable more parallel disk I/Os [12].Concluding, for this example query the costs are minimal with a normalized storage modelwith intra tuple-object clustering. A normalized storage model without intra tuple-object clus-tering requires too much communication to get acceptable response times. A direct storagemodel, fast though it is in fetching the Doctor tuple-objects, is less 
exible in selecting a singletuple-object and therefore results in a non-optimal overall performance.5.3 Response times for example 3 (value-based join)For the query of example 3, �nd the names of the doctors who can treat all Mr. Brown's diseases,the disk I/O time is minimal with the normalized storage models (�gure 10). This, again, is dueto the fact that DSM inputs all tuple-objects in their entirety. In particular this is ine�ectivewith the Patient tuple-objects. Although only the attribute name has to be tested to be valued`Mr. Brown', entire tuple-objects are retrieved. The normalized models are less bothered byretrieving super
uous information.As with the query of example 2, f-NSM severely su�ers from communication overhead. Againprocessor costs are minimal with DSM (no joins to reconstruct a tuple-object from its normalizedrepresentation) and maximal with f-NSM (the overhead for redistributing data over the nodes).It is interesting to notice that, once the data have been fetched from disk and shipped to theright nodes, the speci�c operation that implements the value-based join (namely the divide) isas expensive for all storage models. Therefore we expect the same trends in the results of other(application speci�c) value-based joins.Varying the number of nodes in the system (�gure 11) shows that with DSM and t-NSMthe total response time is almost inversely proportional to the number of nodes. This is obvi-ous since the response time is almost entirely determined by disk I/Os. These disk I/Os aredistributed over the nodes. With f-NSM, main memory over
ow occurs if the number of nodesbecomes smaller than six. Then the relation DOC DISE will be temporarily stored on disk aftertime(s)
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Figure 10: I/O, message and CPU times for the query of example 3 (`value-based' join).
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� = t-NSM� � � � � � � � � � � � � � � � � � �Figure 11: Total response time while varying the number of nodes with the query of example 3redistribution. However, even for this situation DSM still has a larger response time.Concluding, for this example query the costs are minimal with a normalized storage modelwith intra tuple-object clustering. A normalized storage model without intra tuple-object clus-tering su�ers very much from communication overhead. A direct storage model su�ers from thenecessity to input entire tuple-objects.6 Comments on the results and conclusionsWe investigated the performance of three di�erent storage models for complex objects, basedon the possible join queries for complex objects. Attention was paid to disk I/Os, networkmessages and processor loads. In order to be really able to determine the best overall storagestructure, other queries (and in particular updates!) need to be considered as well. Also, otherstorage structures or in-between storage structures may need attention. Using an index on anon-identi�er attribute might give new insights as well. Nevertheless, some main conclusionscan be drawn.The direct storage model (DSM) is the best storage model with regard to network commu-nication and processor load. The retrieval of an entire tuple-object is very fast. However, theretrieval of a single attribute of a tuple-object is not well supported. Consequently, a small andsimple operation on a large tuple-object may degrade the overall query performance enormously.A normalized storage model is much more 
exible with regard to disk I/Os. In general ituses (in particular with intra tuple-object clustering) the fewest disk accesses. Only when tuple-objects need to be fetched from disk in their entirety a direct storage model is better. Althoughjoins will be needed to reconstruct a tuple-object from its normalized representation, tupleidenti�ers seem to support such a reconstruction very well, provided that enough main memoryspace is available. However, without intra tuple-object clustering (not clustering all data of asingle tuple-object on a single node) the communication overhead becomes unacceptable.Concluding, a materialized join seems to be best supported by a direct storage model. Afunctional join may be well supported by DSM as well. However, since a normalized storagemodel with intra tuple-object clustering (t-NSM) is more 
exible (e.g. in �nding the identi�ersthemselves) and gives reasonable performance in tuple-object retrieval (and assembly), such astorage model may be preferable. For a value-based join the same conclusion can be drawnsince the operations that are speci�c for such a join do not favour a particular storage model.So, a normalized storage model with intra tuple-object clustering seems to give the best overallperformance. But, of course this may depend on the overall database load and system char-acteristics. In particular, since in non-standard database environments the materialized joins



seem to be important, a direct storage model (DSM) might be the best as well.The fact that we showed the results for disk I/O, network messages and processor costs asbeing independent of each other makes our results easily adaptable for other database systems(provided they are shared nothing). Actually one only has to pay attention to the relativeimportance of disk I/O versus network messages versus processor load and might change theconclusions correspondingly. Moreover, a close look at the results shows that for our parametersCPU costs seem to be unimportant whereas the disk I/O costs are a bottleneck4. Therefore, theconclusions based on our parameters may be interesting for many systems since in the paralleldatabase world there is a general consensus that CPU costs are no bottleneck and that the I/Obandwidth is a severe bottleneck [4].References[1] J. Banerjee, W. Kim and K-C. Kim, Queries in Object-Oriented Databases, Proceedings Fourth InternationalConference on Data Engineering, Los Angeles, CA, Feb. 1{5, 1988 (IEEE Computer Society Press, Washington,DC, 1988) 31{38.[2] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve and J. B. Rothnie, Jr., Query Processing in a Systemfor Distributed Databases (SDD-1), ACM Trans. Database Syst. 6 (1981) 602{625.[3] H. M. Blanken and A. Ybema, Storage of Versioned Objects in a CIM Environment, Proceedings InternationalConference on Data and Knowledge Systems for Manufacturing and Engineering, Hartford, CT, Oct. 19{20,1987 (IEEE Computer Society Press, Washington, DC, 1987) 65{74.[4] D. J. DeWitt and J. Gray, Parallel Database Systems: The Future of Database Processing or a Passing Fad?,ACM SIGMOD Record 19 (1990) 104{112.[5] U. Deppisch, H. -B. Paul and H. -J. Schek, A Storage System for Complex objects, in: K. Dittrich and U.Dayal(Eds.), Proceedings 1986 International Workshop on Object-Oriented Database Systems, Paci�c Grove,CA (IEEE Computer Society Press, Washington, DC, 1986) 183{195.[6] T. H�arder, An Approach to Implement Dynamically De�ned Complex Objects, in: P. America(Ed.), Par-allel Database Systems. Proceedings PRISMA Workshop, Noordwijk, The Netherlands, Sept. 24{26, 1990(Springer-Verlag, Berlin, 1990) 71{98.[7] R. Lorie and W. Plou�e, Complex Objects and their Use in Design Transactions, IEEE 1983 Proceedings ofAnnual Meeting { Database Week: Engineering Design Applications, San Jose, CA (IEEE Computer SocietyPress, Washington, DC, 1983) 115{121.[8] P. Pistor and F. Anderson, Designing a Generalized NF2 Data Model with an SQL-Type Language Interface, in:W. Chu, G. Gardarin, S. Ohsuga and Y. Kambayashi(Eds.), Proceedings of Twelfth International Conferenceon Very Large Data Bases, Kyoto, Japan, Aug. 25{28, 1986 (Morgan Kaufmann Publishers, Los Altos, CA,1986) 278{285.[9] P. Pistor and P. Dadam, The Advanced Information Management Prototype, in: S. Abiteboul, P. C. Fischerand H. -J. Schek(Eds.), Nested Relations and Complex Objects in Databases (Springer-Verlag, Berlin, 1989)3{26.[10] H. -J. Schek and M. H. Scholl, The Relational Model with Relation-Valued Attributes, Inf. Syst. 11 (1986) 137{147.[11] E. J. Shekita and M. J. Carey, A Performance Evaluation of Pointer-Based Joins, in: H. Garcia-Molina andH. V. Jagadish(Eds.), Proceedings of ACM-SIGMOD 1990 International Conference on Management of Data,Atlantic City, NJ, May 23{25, 1990 (ACM Press, New York, NY, 1990) 300{311.[12] W. B. Teeuw and H. M. Blanken, Representing Complex Objects in a Distributed Database: A PerformanceEvaluation, Universiteit Twente, Technical Report INF-90-92, Enschede, The Netherlands, Dec. 1990.[13] W. B. Teeuw and H. M. Blanken, Joining Distributed Complex Objects: De�nition and Performance, Univer-siteit Twente, Technical Report INF-91-35, Enschede, The Netherlands, May 1991.[14] P. Valduriez, Join Indices, ACM Trans. Database Syst. 12 (1987) 218{246.[15] P. Valduriez, S. Khosha�an and G. Copeland, Implementation Techniques of Complex Objects, in: W. Chu,G. Gardarin, S. Ohsuga and Y. Kambayashi(Eds.), Proceedings of Twelfth International Conference on VeryLarge Data Bases, Kyoto, Japan, Aug. 25{28, 1986 (Morgan Kaufmann Publishers, Los Altos, CA, 1986)101{110.4With the possible exception of a normalized storage model without intra tuple-object clustering. Then thenetwork messages are the bottleneck. However, this storage structure has been found to be inferior.


