
Design and Implementation of theAmoeba Complex Object Server ACOS�Frank Sauer Wouter B. Teeuw Henk M. BlankenUniversity of Twente, Enschede, The NetherlandsAbstractIn this paper we describe the initial design and implementation of a database applicationfor the Amoeba distributed operating system: the complex object server ACOS. We use thetop-down design methodology that was suggested by Parnas, in which a model is turned intoan implementation by gradually adding details. Therefore, not all components of the systemneed to be implemented on the same level of detail at the same time. Those components thatare considered to be a bottleneck will be fully implemented, whereas other components willstill be simulated or replaced by dummies. We consider two main bottlenecks: starting allprocesses that together execute the parallel database query and the I/O of the data storedon the several disks in the system.Keywords: Amoeba distributed operating system, complex objects, design methodology,parallelism, performance aspects, physical database design, shared-nothing databases.1 IntroductionWithin the Star�sh project, several Dutch universities are cooperating in the design, imple-mentation, and application of a transparent distributed computing system. The distributedoperating system Amoeba [MRTv90,TRSS89] is used as a base to experiment with. The Uni-versity of Twente studies the performance aspects of an extensible complex object server forAmoeba. The object server, which we call ACOS (Amoeba Complex Object Server) has to beseen as a database application for Amoeba.Complex objects are used in so-called non-standard database application areas, such as geo-graphic information systems, robotics, cartography, and CAD/CAM. Complex objects are dataobjects that are both highly structured, and large in size. These large clusters of structured dataform a unit of manipulation. The structural aspects of complex objects can easily be capturedin object-oriented data models [AkBl91]. But, except for rich data structuring capabilities, innon-standard database applications a high performance is generally required as well. Therefore,the physical design of a complex object server needs to be e�cient enough to allow a fast re-trieval and processing of the complex objects. Examples of complex object systems are DASDBS[Paul88] and AIM-P [PiDa89]. These systems are centralized however.In this paper we describe the design and implementation of ACOS. Rather than designingand implementing the entire system, discovering some performance bottlenecks, and solvingthese performance bottlenecks by either last minute changes, or making a new design, we aim atdetecting performance bottlenecks as soon as possible. Therefore, we use the top-down designmethodology as described by Parnas as well as Randell [PaDa67,PaMa91,ZuRa68]. The idea is�The investigations were partly supported by the Foundation for Computer Science in the Netherlands SIONunder project 612-317-025 nicknamed Star�sh.

that a simulation model is evolved to a real system by gradual addition of detail. The model isnot only a true representation of the system to be designed, it is the system.Two performance bottlenecks get special attention in this paper. First, the client-serverbased Amoeba system a query tree will be mapped on many processes in order to be executed.Experiences with the PRISMA database system [ABFG92] have shown that creating manyprocesses may be a bottleneck. Second, for the shared-nothing database systems we aim at, diskI/O is a bottleneck due to the fact that during the past years CPU performance has improvedfrom about 1 mips in 1983 to well over twenty mips in 1990, whereas disk drives have improvedtheir response time and throughput by only about a factor two in the same period [DeGr90].The remainder of this paper is organized as follows. In Section 2 we describe the problemsand goals in the design of a complex object server for Amoeba. In Section 3 we outline ourmethodology for the design and implementation of ACOS. In Section 4 we give some infor-mation on the Amoeba OS, the architecture of the system on which ACOS is currently beingimplemented. In Section 5 we describe the design of ACOS itself, whereupon the design andimplementation of the two earlier mentioned bottlenecks is the subject of the next sections:Section 6 and Section 7. Finally, in Section 8, we present the current status of our project, aswell as some preliminary conclusions.2 A complex object server: problems and goalsWe take a nested or NF2 tuple [ScSc86] with object references as an example of a complexobject. A complex object is a tuple (a record) with both atomic-valued attributes, and relation-valued attributes. The latter ones are sets of tuples, with each tuple containing atomic- andrelation-valued attributes again. So, the complex objects are hierarchically structured. Anobject identi�er (OID) distinguishes the object from all other objects in the system. The OIDmay be used by the objects to refer to each other. In this way, relationships between objectsare established.The problem is how to fragment these objects, and how to distribute the fragments overthe system nodes in order to achieve the, for non-standard database systems required, highperformance. For example, the entire object may be stored directly into a single storage unit, likein the DASDBS system [Paul88], or the hierarchically structured objects may �rst be normalized(i.e., vertically fragmented), whereupon the fragments will be stored separately. Also, relatedobjects or fragments can be stored on the same node or not, objects or parts of objects maybe replicated, and so on. In short, we need an optimal physical design for the complex objectserver.The way in which we want to attack these physical design problems is as follows. Sincethe performance of a complex object server is critical, it is our intention to experiment withthe system performance while still designing and implementing the system. Therefore we use adesign approach as described in the next section, which enables us to measure the performanceeven though the system has not yet been fully implemented. Based on analytical performanceevaluations, we will simulate/implement several complex object fragmentation, replication, anddistribution strategies, and measure the performance of the (partially implemented) system inorder to guide further design.3 Top-down design methodologyA commonly used design approach is that a system is designed (on paper) in a top-down way,each time distributing the functionality over more detailed components, until the design is ona level of such great detail that it is almost an implementation. Then, in a bottom-up way the

functionally complete system will be implemented on the hardware. That is, smaller modulesare implemented and tested, and will be composed into larger ones. With such an approach,there will be some kind of performance estimation during the design, and after implementationthe performance will be measured. The performance evaluation becomes a design veri�cation.The drawback of this approach is that whether the functionally complete design of the systemmeets its performance requirements will not be discovered until the system has been built andused in its operating environment. At that point in time | when system modi�cations can beextremely di�cult or costly | it may turn out that components designed separately by variousmembers of the design group do not work together, since everybody has its own idea of whateach component should do. Even if the individual components meet their speci�cation, thecombined system may fail since there has been no means of verifying that the initial structuringof the problem was correct and feasible. That is, a slight oversight in the design, probably madeon a high level of abstraction, will not be discovered before the implementation is completed.Moreover, even if the overall design is correct, we still can not estimate the performance sincethe optimization of individual components will not automatically lead to optimization of thewhole system.In order to prevent such problems, Parnas [PaDa67] outlined a design methodology basedon three important points. First, the design should begin with a speci�cation of the overallbehaviour of the computer system. From the speci�cation, one proceeds to a design by eitherlowering the level of abstraction or functionally decomposing the components. Applying thistechnique recursively to each component brings us from the purely behavioral speci�cation tothe purely structural �nal design.Second, to avoid a situation in which an oversight in an earlier stage is not detectable until allcomponents have been designed and are being tested, simulation should be used. Also, becauseat times some components of the system still are in a relatively abstract form, while others willhave proceeded through one or more levels closer to reality of the implementation, the ability isneeded to have several levels of abstraction resident and interacting within the simulation.Third, since the similarity between the simulator and the operating computer system is solarge, the simulator or model must become the system. The system and the model are so closethat it is not meaningful to have a parallel development of the system and its model, with themodel following the system as it develops. Rather, the simulation model should evolve into areal system by gradual addition of detail. In this way double e�ort is avoided.We use this approach in ACOSand top-down implement the system while still designingit. The critical parts of the system are implemented, while other parts, which have not beendesigned yet, are simulated or replaced by dummies (their design is probably nothing more thana description of inputs and outputs). The performance measurements on this partially imple-mented system will guide further design. That is, modelling, either analytical or by simulation,and performance measurements will be integrated into the design of the system.4 The Amoeba architectureThe Amoeba distributed operating-system [MRTv90,TRSS89] is an object based system usingthe Client-Server approach. Client processes use Remote Procedure Calls (RPC) to requestoperations on objects, which are managed by server processes. Servers communicate with theoutside world by creating a port and listen to that port with a call to getrequest. The serverpublishes the port, so clients can send their requests with a call to trans to that port. Finallythe server sends the result of the RPC with putreply back to the client.Objects are both identi�ed and protected by capabilities. A capability is a placeholder for theport of the object's server, the object number, the access rights, and a cryptographic protection.Because of an cryptographic protection mechanism, capabilities can be managed outside the

kernel, by the user processes. Many of the services in Amoeba are o�ered by processes inuser space, in the form of servers. The kernel o�ers memory management, multiple threadedprocesses, and handles interprocess communication. All other services, usually found in kernels,are in user space. An example of this is the directory name service. The directory-name serverin Amoeba (called SOAP) is a server process in user space, translating names to capabilities.Note that each object in Amoeba is identi�ed by a capability, and has no name. To make lifeeasier for us humans however, the SOAP server o�ers a service that allows us to use readable(path)names for capabilities.The Amoeba hardware usually consists of workstations, specialized servers (e.g. a �le server),a processor pool and of course a network. Replication can be used to make the system faulttolerant. Our current con�guration consists of one specialized �le server (an Intel 80486 machine,with 64 MBytes of memory and a disk of 1.2 GBytes) and 6 workstations (Intel 80386 machineswith 16 MBytes of memory and a 120 MBytes disk). The processors of the workstations areused to provide the computing power. We do not have a processor pool.5 The design of ACOSThis section gives a general outline of the ACOS design, with a constant focus on the fact thatwe are building an experimentation platform for doing performance measurements and withthe methodology described in section 3 in mind. Figure 1 gives an overview of the design ina data
ow diagram notation. Each bubble in this �gure represents one type of server, whichcan be instantiated many times if necessary. Examples of multiply instantiated servers arethe fragment server (one per disk) and the data
ow processors, which build up a graph ofinterconnected processes to execute a query. What follows is a short description of the severalservers the system consists of.Query Optimizer The query optimizer (QO) optimizes a query with respect to the fragmen-tation and allocation of the data, as known from the Data-Dictionary Server.Query Scheduler The query scheduler (QS) is responsible for distributing the optimized queryover the processors in the system. It starts and controls a possibly large number ofData
owProcesses. See section 6 for more details.DataFlow Processor The data
ow processor (DFP) is a multi-threaded process performinga single database operation on a number of input streams, and sending the result to anumber of output streams. See Section 6 for more details on DFPs and multi-threading.Fragment Server The fragment server (FS) o�ers a disk service that permits the user of thedisk (the DFPs) to identify fragments (parts of Complex Objects) by their OID. It hidesthe block service of the Amoeba virtual disk server. Each node of the system has oneFragment Server. See also Section 7.Virtual Disk Server The Amoeba virtual disk server o�ers a block service with virtual blocksize, thus hiding the physical aspects of dealing with disks. Each disk is managed by itsown virtual disk server.Log Server An important aspect of an experimentation platform is gathering the results ofmeasurements. The log server serves just this purpose. All other parts of ACOS sendtheir results (timing, number of disk accesses, etc.) to the log server, which collects andstores them. The log information can be used later on to �ne-tune the performance, e.g.by redistributing the data.

Figure 1: Flows of control information and data on a top-level descriptionData-Dictionary Server The data-dictionary server manages a data-dictionary containinginformation concerning the structure, size, replication and distribution of complex objects.6 A potential bottleneck: starting many processesThe query scheduler is responsible for the distribution of the optimized query over the nodes inthe system. Its input is a Directed Acyclic Graph (DAG) that has been produced by the queryoptimizer and represents the query. For each atomic part of the query there is a vertex in theDAG. Atomic means that one operation is done on the incoming data streams from the childrenvertices. For each vertex in the DAG, the QS allocates a so-called data
ow processor (DFP) ona node of the system. Also, the QS connects the DFP's according to the query-DAG.The algorithm to traverse a DAG and for each vertex starting a DFP is given in Figure 2.This algorithm | written in pseudo-code | recursively traverses the query-DAG, visiting eachvertex exactly once. Note that the DFP processes have to be started in a bottom-up order,because each process must be able to �nd the capabilities (ports) of the processes they wantto send requests to. We intend to investigate several strategies with regard to the initializationand communication activities of the QS and the DFPs [TeBl93a].

procedure executeQuery(POINTER TO Vertex root)begincomment is this a leaf-vertex?if (root!input = nil)then comment input from fragment serverargv := setArgs(operation,nil,root!argv)executeProcess(DFP, root!node, QS, argv)mark(root)else comment intermediate vertex, start children �rstchild := root!inputwhile (child != nil)do if (!marked(child))then comment recursively execute o�springexecuteQuery(child!v)else comment nothing�child := child!nextodargv := setArgs(operation, root!input, root!argv)executeProcess(DFP, root!node, QS, argv)mark(root)�end executeQueryFigure 2: Algorithm to traverse the query-DAG and distribute the DFP's6.1 Simulating queriesAs already stated before, we want to be able to do performance measurements in an early phase ofthe project, possibly during the design, to have a short feedback between design and performanceof possible implementations. To achieve this, it is necessary to simulate large parts of the systemand implement only those parts that are of interest to the performance measurements. A largepart of the �nal system will be concerned with the translation and optimization of user givenqueries. To measure the performance of the bottom layers of the system, it is not necessary toimplement those parts. Therefore, we built a small library of C routines that can be used tomanually construct an (optimized) query-DAG, which can be hard-coded (linked) into the QS.These routines build vertices, connect them and register the root vertex of each query with theQS, so the query can be executed once the QS is started. The data structures used to describea DAG are listed in Figure 3.Using a nil-pointer as input in a vertex, forces this vertex to connect to the fragment serverof the node contained in node. The following calls are o�ered to create and connect vertices:Vertex *newVertex(int node, Operations op, ... <operation dependent args> ...);newVertex creates a new vertex, performing the operation contained in op. The related DFPwill be executed on the node contained in node. The parameters of the database operationare given in the variable number of arguments following the operations opcode. Now considerthe example query depicted in Figure 4. Assuming the disks are maintained by two di�erent

typedef struct _VertexList{ struct _Vertex *v // pointer to head of vertex liststruct _VertexList *next // for list construction} VertexListtypedef struct _Vertex{ VertexList *input, // pointer to list of input (child) verticesOperations operation; // operation to be performedchar *argv[] // pointer to array of string argumentsint node; // node number to be executed on} Vertex; Figure 3: The type-de�nitions for our query-DAG representation
select select

join

Figure 4: Example of a database querynodes | say node 2 and 3 |, and node 1 is performing the join, this query is described by thefollowing calls to newVertex:s1 = newVertex(2,DFP_SELECT, ...);s2 = newVertex(3,DFP_SELECT, ...);j1 = newVertex(1,DFP_JOIN, ...);makeChilds(2,j1,s1,s2);The makeChilds function is used to connect the vertices s1 and s2 to j1 by �lling the input listof j1 with pointers to s1 and s2. This function can be used to connect an arbitrary number ofvertices, for it is de�ned with a variable number of parameters:makeChilds(int nrOfInputs,Vertex *parent, ...);A pointer to the root vertex of the query-DAG will be placed in a global list of queries, whichare waiting to be selected by the QS for execution.The arguments of the database operations are not important in this context. Even better,we don't have to perform any real database operations in order to get performance �gures onthe two potential bottlenecks we are concerned with. It su�ces to simulate them. By simulatingdatabase operations we do not need to be concerned with the structure of the incoming tuples andthe semantics of the database operations. Therefore, the DFPs can be implemented as fairlystraightforward �lters, reading input streams, �ltering some data, and sending the resulting

operation arguments newVertex descriptionSELECT nrOfTuples,tupleSize,percentage,nrOfPageAccesses The DFP performing a SELECT starts by re-ceiving nrOfTuples tuples of size tupleSize.It forwards a certain percentage of the re-ceived tuples to its output-streams. The lastargument is used only by leaf vertices andstates how many page accesses are needed toread a fragment from disk.PROJECT nrOfTuples,tupleSize,percentage,nrOfPageAccesses In this case, the percentage states how muchdata of one tuple is sent through. The resulttuples are therefore smaller than the receivedtuples.JOIN nrOfTuplesLeft,nrOfTuplesRight,tsizeLeft,tsizeRight,tsizeResult,nrOfResultTuples The arguments state the number of tuplescoming from the left, the right, the size of thetuples coming from the left, the right and thesize of the result tuples, and �nally the num-ber of tuples to be forwarded to the output.SPLIT nrOfProbs, : : : nrOfProbs means number of probabilities.This number matches the number of outputstreams. The probabilities themselves aregiven in a variable number of arguments fol-lowing nrOfProbs. The probabilities are usedto implement a randomizer for choosing anoutput for each incoming tuple. Note thatthe probabilities have to add up to one.Table 1: Examples of how to simulate the database operationsdata to their outputs. Table 1 describes how the basic database operations are simulated. Notethat this table does not contain all possible operations, it contains the operations that will beconsidered in our �rst experiments.6.2 Implementation aspects of the data
ow processorIn Figure 5 we �nd the outline of the DFP in a data
ow diagram. An important aspect of theDFP is that is behaves both as a client and a server. A DFP is a server for the QS and for otherDFPs that ask the DFP to do something. On the other hand, the DFP itself will request datafrom other DFP's or fragment servers and can therefore be called a client as well. To implementthis behaviour and to guarantee a maximum throughput of data, the DFPs are implemented asmulti-threaded servers. Each DFP has one main thread and several input/output threads. Eachinput and each output is managed by its own thread and the main (body) thread synchronizeswith the input and output threads to see whether it is in the position to perform the databaseoperation associated with the DFP.After the creation of the DFP by the QS, it starts by creating a server port, which is sentto the QS for publication. It requests from the QS the whereabouts of its children DFPs bysending the input list contained in argv to the QS. The QS can translate this request into a listof capabilities of the children DFPs, because they published their capabilities before (due to the

Figure 5: The Data
ow Processor (DFP)bottom-up traversal of the query-DAG).After this connection phase, the DFP starts all its input and output threads and waits fora request to deliver some data. When this request arrives at one of its output threads (whichperform the getrequest), the request is processed and transformed into requests to the childrenDFPs (the input threads will `forward' the request to the children DFPs by means of a trans-call). When the children DFPs sent the replies (call to putreply), the data is processed andreplied to the parent DFPs.7 A potential bottleneck: the disk I/OOn the bottom of the query-DAGs we �nd the vertices requesting data from the fragment servers.The fragment servers manage the stored fragments of the complex objects on disk. A fragmentis requested from the fragment server using the OID of the required tuple. This tuple maybe scattered all over the system, so by requesting the tuple at every fragment server, all parts(fragments) are found and the tuple can be reconstructed.In our system, an OID consists of three parts, and forms a <root, parent, self> tuple. Partsof the OID may be wildcarded in requests to the fragment server, so all nested parts of one tuplecan be retrieved in one request.Since the fragment server is built directly on top of the Amoeba virtual disk server, it isinteresting to see what the interface of this virtual disk server looks like. the interface of thevirtual disk server mainly consists of two calls:disk_write(*diskcapability, L2BLOCKSIZE, start, nrofblocks, *buffer)disk_read (*diskcapability, L2BLOCKSIZE, start, nrofblocks, *buffer)The diskcapability de�nes the diskserver to communicate with. L2BLOCKSIZE means the 2logof the actual block size, so a block size of 512 is de�ned with a L2BLOCKSIZE of 9. start de�nes

Figure 6: The Fragment Server (FS)the �rst block to read/write, nrofblocks the number of blocks and �nally, buffer is a pointerto the bu�er containing the data to write (or a pointer to a bu�er to read the data into).Since this interface constitutes more or less raw disk I/O, the fragment server has to keep itsown administration of free disk blocks, which blocks belong to which fragments, etc. In Figure 6an overview of the fragment server is given.The main task of the fragment server is to map requests containing an OID to a series ofrequests to the virtual disk server containing block numbers. Therefore, the fragment serverhas to keep a table containing <OID, block> entries. This table is kept on disk in the so-calleddirectory blocks. The directory blocks form a linked list of blocks, starting at block zero of eachdisk. A directory block is de�ned by:typedef struct _dirBlock{ long nextBlock; // pointer to next block in the listlong firstFree; // first free block on the diskstruct _dirBlock *nextMem; // the list pointer in memorylong nrOfEntries; // the number of directory entries in this blockDIRENTRY dir[DIRSIZE]; // array of directory entries} DIRBLOCK;firstFree is a pointer to the �rst free block on the disk and only has a meaning in block zero.The free blocks are also chained in a linked list using a nextBlock pointer at the beginning ofthe disk block.The directory blocks are read in main memory at the start of the fragment server. The OIDsare put in a hash table to allow a fast translation from OID to blocks. The block number de�nedfor an OID gives the �rst block belonging to the fragment. The rest of the data is found bytraversing the nextBlock pointers found in each data block.

The structure of the data blocks is not de�ned in the fragment server. It uses the nextblockpointer to connect them, but the rest of the data has no semantics. We could have chosenfor nested directories (per relation, per object, per tuple, etc.) but the chosen implementationwith one directory level o�ers the most
exibility for experiments, because the data containedin the data blocks can always be interpreted as a second level directory by a higher layer of thesystem. One always has a choice between putting an OID in the main directory (fast access!)or in a nested directory (not de�ned yet). Another reason for making the fragment server asstraightforward and dumb as possible is to allow a
exibility in storage models. Fragmentsbelonging to objects stored with the Direct Storage Model will most certainly be structurallydi�erent from fragments stored in a Normalized Storage Model model [TeBl93b]. The fragmentserver doesn't care.Because our prototype DFPs do not perform any real database operations, but merely con-sume bytes, the fragment servers can generate random data of the requested size. No real dataneeds to be stored in our �rst implementation.8 Current status and conclusionsIn this paper we described issues related to the design and implementation of the Amoeba Com-plex Object Server ACOS. We use a design methodology in which the system is implementedin a top-down way. First the critical parts are implemented, whereas other components aresimulated. Which parts are critical and which parts are not has been decided based on a studyof the literature, experiences from other projects, and analytical performance evaluations. Thecritical parts (according to our analytical performance evaluation) that get most attention arethe storage of objects on disk, the start of all processes on all nodes, and the communication.The design of the related ACOS components has been thoroughly described in this paper.The current status of our project is as follows. We started with an extensive analytical perfor-mance evaluation (e.g., [TeBl93b]). We derived formulas for disk I/O, network communication,and CPU time and compared several strategies for parallelism, query execution, and commu-nication. Based on the results of this performance evaluation, we are currently designing andimplementing a simpli�ed version of the object server ACOS. With the `simulation-approach'taken in our design, it will be possible to do measurements on all relevant parameters in anexperimental framework. This framework can be gradually transformed into a real system, us-ing the results from the measurements to make design and/or implementation decisions. Forimplementation, simulation, and evaluation tests, we have a seven node system. Performancetest results are not yet available, but are expected in the near future.

References[AkBl91] B. R. M. van den Akker & H. M. Blanken, \Geographic Data Modelling in TM," in Advancesin Data Management. Proceedings Third International Conference on Management of Data,Bombay, India, December 12{14, 1991, P. Sadanandan & T. M. Vijayaraman, eds., McGraw-Hill, New Dehli, India, 1991, pp. 107{126.[ABFG92] P. M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P. J. Grefen, M. L. Kersten & A. N.Wilschut, \PRISMA/DB: A Parallel, Main-Memory Relational DBMS," IEEE Transactionson Knowledge and Data Engineering 4 (6), December 1992.[DeGr90] D. J. DeWitt & J. Gray, \Parallel Database Systems: The Future of Database Processing ora Passing Fad?," SIGMOD RECORD 19 (4), 1990, pp. 104{112.[MRTv90] S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse & H. van Staveren,\Amoeba | A Distributed Operating System for the 1990s," Computer 23 (5), May 1990,pp. 44{53.[PaDa67] D. L. Parnas & J. A. Darringer, \SODAS and a methodology for system design," in Proceed-ings AFIPS 1967 Fall Joint Computer Conference, Anaheim, CA, November 14{16, 1967,Thompson Book, Washington, DC, 1967, pp. 449{474.[PaMa91] D. L. Parnas & J. Madey, \Functional Documentation for Computer Systems Engineering(version 2)," McMaster University, CRL-237, Hamilton, Ontario, Canada, September 1991.[Paul88] H-B. Paul, \DAS Datenbank-Kernsystem f�ur Standard- und Nicht-Standard-Anwendungen {Architectur, Implementierung, Anwendungen {," Technischen Hochschule Darmstadt, Darm-stadt, Germany, November 1988, (in German).[PiDa89] P. Pistor & P. Dadam, \The Advanced Information Management Prototype," in NestedRelations and Complex Objects in Databases, S. Abiteboul, P. C. Fischer & H. -J. Schek, eds.,Lecture Notes in Computer Science#361, Springer-Verlag, Berlin, 1989, pp. 3{26.[ScSc86] H. -J. Schek & M. H. Scholl, \The Relational Model with Relation-Valued Attributes," In-formation Systems 11 (2), 1986, pp. 137{147.[TRSS89] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender, J. Jansen& G. van Rossum, \Experiences with the Amoeba Distributed Operating System," VrijeUniversiteit, IR-194, Amsterdam, The Netherlands, July 1989.[TeBl93a] W. B. Teeuw & H. M. Blanken, \Control versus Data Flow in Parallel Database Machines,"IEEE Transactions on Parallel and Distributed Systems (1993), (to appear).[TeBl93b] W. B. Teeuw & H. M. Blanken, \Joining Distributed Complex Objects: De�nition and Per-formance," Data & Knowledge Engineering 9 (1), January 1993.[ZuRa68] F. W. Zurcher & B. Randell, \Iterative Multi-Level Modelling | A Methodology for Com-puter System Design," in Proceedings International Federation of Information ProcessingSocieties 1968, 1968, pp. 138{142.

