Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2(

BEHAVIOUR-BASED CONTROL FRAMEWORK
FOR AN AUTONOMOUS MOBILE ROBOT

Albert L. Schoute

Dept. of Computer Science, P.O. Box 217, 7500 AE Enschede, The Netherlands
email: a.l.schoute @cs.utwente.nl

Abstract

This paper presents the concept of an object-oriented software framework
that provides a scheduling and execution environment for behaviour-based
control of an autonomously navigating mobile robot. The framework is
build around a basic class for ‘behaviours’ and for associated ‘situations’
that handle exceptional conditions. New control methods and navigation
strategies are easily incorporated and tested by extending this framework.

1 Introduction

Planning and control functions within intelligent, embedded systems are generally
divided over multiple software layers. The lower layer(s) of the software hierarchy
typically contain(s) the basic functions that directly control the hardware, i.e. the sensors
and actuators. The top layer(s) handle(s) the long term planning and usually a high-level
command interface. In between one can identify one or more intermediate layers that are
responsible for fulfilling the current goals or tasks.

In this paper we report about a general concept for the task scheduling framework at this
intermediate level. In the context of an autonomous mobile robot the tasks to do are
sequences of behaviours the robot has to perform in order to reach its goal. Behaviours
are primitive actions such as moving through a hallway, entering a doorway, following a
moving object, approaching some landmark, or just moving to some position.
Behaviours are scheduled and executed like tasks in an operating system. In principle
they run to completion, but — in reaction to circumstantial conditions - they may be pre-
empted or suspended. Exceptional situations may be associated with behaviours to catch
unexpected conditions in parallel to the normal behaviour execution. A situation-
monitoring process is introduced as detection and exception handling mechanism.

The framework that we describe is part of a
control system for an experimental robot
vehicle, named Marvin [Koetsier 1997].
Marvin is a low-budget, PC-based vehicle that
contains all essential elements to serve as a
test-bed for autonomous system development.
The vehicle can drive physically unconnected
by means of its own battery-power-supply, two
independently driven wheels, ultrasonic
distance sensors and a high-resolution CCD-

237

Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

camera with PCI-bus frame-grabber. A wireless LAN-connection enables remote
monitoring and control. The control software runs on the Linux operating system. It has
an object-oriented structure (written in Gnu-C++) and uses multithreading.

The objective of the test-bed is to explore techniques by which robot vehicles can
navigate in office environments using natural properties of the building. Although we
allow the control program to exploit pre-knowledge of static building features,
behaviours have to cope with the actual situation in a robust, reactive manner. The
behaviour-based control framework creates an ideal context for experimentation: it is
easy to program and test new behaviours. Object-orientation cares for the encapsulation
of the basic properties of the behaviours and associated exceptional situations that must
be traced. The control framework automatically provides the context in which these
behaviours and situations are scheduled and executed. For example, position information
in absolute or behaviour-relative coordinate systems is maintained and always
accessible. Also remote monitoring and interaction is supported in a general way.

2 The software control system

o . (re)planning /
/f\ppltcatlon Sfunctions remote monitoring /
implemented by command interface | q
separate threads £
. ‘— . .
C++ framework with behawqur 51tuat1.0n
, , scheduling detection
virtual functions >
_____________________________$ __________________________ A
Linux keme.l with actuator 4 sensor
loadable driver control R reading
modules d
PC-controlled
hardware autonomous
robot system

Figure 1 Schematic overview of the software control system

The global structure of Marvin’s control software is shown in Figure 1. Drivers for the
ultrasonic sensors, the servo-motors and the frame-grabber are written in C as loadable
kernel modules. These drivers implement a file-oriented device interface that can be
accessed by standard system calls (like open, read, write, control, close). The Linux
kernel supports multithreading by creating Posix-compliant threads (pthreads) as kernel
processes [Beck 1997]. Separate threads have been introduced for behaviour execution,
situation monitoring, user interaction, planning, remote connection handling and image
capturing.

In view of the complex way in which threads interact, the two top layers heavily rely on
the object-oriented approach. Object classes for behaviours and situations play a central
role in the control framework. The actual control of the robot depends on the currently
active ‘behaviour’ and ‘situation’ objects. Object orientation facilitates a unified
treatment of these objects by means of a common base class, whereas any specific
control is detailed in a particular “derived” class. Common but dissimilar functions are

238

Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

implemented by virtual functions. The control program contains many shared
components accesses by multiple threads. Classes help to structure these components by
aggregating common data and functions and providing clearly defined interfaces. Shared
interfaces in the control software are, for example, data stores containing recent sensor
values, the robot status, the list of scheduled behaviours and the user control panel. The
pthread-package supplies synchronisation functions for exclusive access to class objects
according to the monitor concept [Silberschatz 2000].

3 Behaviour-based control

The base class BEHAVIOUR defines the basic, common properties of behaviours. All
implemented behaviours have a “control function” in common. The function control of
the current behaviour will at any instance determine the momentary behaviour of the
robot. Behaviours are instantiated dynamically, which could happen in all sorts of
circumstances dependent upon the application. The instantiation may be part of a pre-
planned series of actions, but even likely be the result of remote intervention, sensor-
based reactions or other unforeseen situations. New instances of behaviours can be
entered for scheduling by the current behaviour or any situation handler. A switch of
behaviour may occur either by termination or by interruption.

3.1 Behaviour scheduling

The execution of behaviours, queued on a global behaviour list, is delegated to a
separate execution-handler thread. New behaviours, for example entered by the planner,
are typically placed at the tail of the list. A behaviour will in general run to completion
before the next behaviour is activated. The occurrence of special situations could,
however, disturb this normal FIFO-order. Behaviours can pass through a number of
states as shown in Figure 2. The scheduling is organized such that the head of the
behaviour list is always taken as the next behaviour. The state of a behaviour on the list
could be either INITIAL (not been in action before) or RESUME (interrupted but still to be
completed). A behaviour that is currently active has state EXECUTE. It can be set in state
DESTROY for definite removal or in state SUSPEND for temporary pre-emption. In the
latter case other behaviours may have been instantiated and inserted in the list before the
pre-empted behaviour. In this way the scheduling works as exception mechanism: other
behaviours can cope with the situation before the interrupted behaviour resumes. It
allows for stack-wise (LIFO) scheduling in exceptional circumstances. In practice, this
works in a natural and effective way. A dangerous situation may lead to a temporary
interruption by the IDLE behaviour such that the robot does not move as long as the
situation remains. Or, any behaviour could be overruled by the REMOTE CONTROL
behaviour temporarily. The IDLE behaviour is also added and executed in case of an
empty behaviour list. For example at system start-up this is the first behaviour that
becomes active.

finish
new f t t of
in list 1rs out 0
selection select preempt _llst\A
agam
- sw1tch

behaviour

Figure 2 State transitions of behaviours in the behaviour list

239

Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

The execution-handler thread performs the execution of the current behaviour in a
cyclic, periodically timed loop. It calls for the function control of the current behaviour
and pauses according to some fixed time interval. The function control is declared in the
base class BEHAVIOUR as a virtual function, which means that the call is bind at
execution time to the specific implementation of this function within the particular
“derived” behaviour class. An important aspect of the general functioning of behaviours
concerns motion control and position tracing, which is treated in a next section.

3.2 Situation handling

Besides behaviour execution, a general mechanism is added for the detection of
exceptional situations not covered by the behaviours them selves. An independent
situation-handler thread runs concurrently with the execution thread. The separate
treatment of unpredictable circumstances with respect to the normal, expected behaviour,
highly contributes to the flexible and robust operation of the autonomous system.
Behaviours are freed from anticipating, at any instance, all kinds of special situations.
The same situations may occur during many behaviours and are therefore handled at best
in a separate and independent fashion.

Similar to the control function of behaviours, for situation handling a virtual function
do_situation is declared in a base class SITUATION. If a situation instance is active the
function is called periodically to detect some special condition and react on it. Any
behaviour has a list of associated situations. These objects of derived situation classes
are typically created at behaviour instantiation. It is the task of the application
environment (for example the planner) to associate a behaviour with the appropriate
situation objects. For safety reasons, certain important situations are always associated
with behaviours, like the SAFETY_CHECK (checking collision) and the REMOTE_CONTROL
situation (checking remote intervention). In case of a transient risky situation (some
person is passing by) the current behaviour is pre-empted by the IDLE behaviour, and is
later on resumed automatically. This behaviour-switching appears as a natural reaction
of the robot. Optional situations are for instance the OUTSIDE_RANGE situation (to cancel
a behaviour that carries the robot outside some radius) or LANDMARK situation (to detect
some environment feature).

The situation handling thread scans the situation list of the current behaviour and calls
for the function do_situation. Situation scanning can be used also for independent
monitoring or tracing of certain conditions and variables. The situation function may
contain output statements that display state information on the control panel or log data
for later examination.

4 Motion control and position tracing

Motion is of course a dominant factor in case of mobile robot control. Most of the
behaviours will be related to motion manoeuvres and sensor-based navigation strategies.
In fact a great advantage of the framework is that it offers an environment for
experimentation in which alternative motion behaviours easily can be tested and
compared. Common aspects of motion behaviours like speed control and position
localization are supported already by the system and made available in the base class.
Any specific behaviour inherits the basic motion control properties; only the particular
elements have to be added within a derived class declaration. Motion control and
position information are handled by a hierarchy of layers as depicted in Figure 3.

240

Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

The kernel module for the motor device does the direct i/o to actuate the wheel motors
and to read the tachometers that measure the rotation speed of the wheels. The wheel
configuration of Marvin constitutes a differential drive mechanism [Dudek 2000]. The
two independently driven motors of the back wheels are regulated by feedback control to
satisfy the linear and angular speeds as required by the upper layers. The control loop is
activated every 10 milliseconds by a system timer. Odometry is used to estimate the
robot’s position. According to the kinematics, relative displacements are calculated from
the observed rotation speeds of the wheels.

Control function of current Behaviour thread
behaviour
C++ interface
Motion class instance Interface object
Linux device interface
Driver for the motor device Kernel module

Figure 3 Software components involved with motion control and position tracing

The “motion class” object contains motion state variables (position, speeds acceleration)
and functions to access the motor device by read, write and ioctl system calls. Calling a
function refresh_motion_state keeps the state variables up to date: it performs a read
system call to obtain the most recent values from the motor device driver. By means of a
function set_speed the desired linear and angular speeds are written to the motor device
driver as setpoint references. Furthermore the global vehicle position maintained by the
motor driver may be reset or corrected by functions set_position or set_diff _position.
Correction of the global position state is necessary because accumulation of errors makes
the absolute position estimation inaccurate over longer distances. It is the aim of
experiments with sensor-based navigation to observe natural building features and use
these for absolute position localization. The robot’s pose is represented by a coordinate
frame (a class object of type FRAME). The pose consists of the x, y position and the
orientation (i.e. the heading of the robot). In fact coordinate frames are relative notions:
the robot’s pose is given by the actual placement of its “body frame” relative to some
reference frame in the ground plane. The class FRAME provides functions for frame
transformations like rotate and translate.

Motion behaviours generally concern relative manoeuvres with respect to some starting
position. The base class BEHAVIOUR contains a local frame centre that is defined at the
behaviour’s instantiation. During behaviour execution the current pose relative to this
local frame is maintained by calling a function refresh_local_pose before the control
function of the current behaviour is executed. The current pose is calculated by applying
an inverse frame transform on the robot’s pose with respect to the local centre. In this
way motion behaviours can be programmed easily in a uniform manner without
bothering about the actual positioning at the moment of application. The only concern of
the behaviour’s control function is to adapt the linear and angular speed parameters
according to the motion state in the local frame and, probably, according to available

241

Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

sensor data or interactively defined global variables. Some simple examples of particular
control function are shown in Figure 4.

void move_bhv::control (float *1lin_speed, float *ang_speed)
{ /* follow reference motion if enough free space around */
*1lin_speed = *ang_speed = 0; /* default: don’t move */
if ((lin_ref speed > 0 && sensors->free_range (FRONT) > 0.2)
[l (lin_ref speed < 0 && sensors—->free range (BACK) > 0.2))
*1lin speed = lin_ref speed;
if (sensors—->free_ range(LEFT) > 0.2
&& sensors—->free_range (RIGHT) > 0.2)
*ang_speed = ang_ref_ speed;

void remote_control bhv::control(float *lin_speed, float *ang speed)

if (!marvin_remote) { /* check termination */
state = STATE_DESTROY;
return; }

*1lin speed = remote_lin_ speed;

*ang_speed = remote_ang_ speed;

}

void turn_bhv::control (float *1lin_speed, float *ang_speed)
{ /* turn until current orientation becomes zero */
float abs_diff = fabs(curr_pose.phi);
bool sign = (curr_pose.phi > 0.0);
if (abs_diff< 0.02) { /* (almost) reached */
state = STATE_DESTROY;
return; }
if (abs_diff) > 1.0)
*ang_speed = (sign ? -0.6 : 0.6);
else if (abs_diff > 0.5)
*ang_speed = curr_pose.phi * -0.6;
else *ang_speed = (sign ? -0.3 : 0.3);
*1lin _speed = lin_ref speed;

Figure 4 Control functions of some derived behaviour classes

5 Remote user interaction

During operation of the robot control program actual state information is regularly
written to the standard terminal output. By means of cursor control these output is
presented at fixed places on the screen according to a pre-defined control panel layout
(see Figure 5). Items displayed are amongst others the current behaviour, its centre
frame, the actual robot position and speeds, active situations and, optionally, a trace of
the motor control variables, ultrasonic sensor readings or a primitive map of the
traversed path. User interaction is possible due to a user-input-handler thread that reads
the terminal input. By means of a simple tree-based menu selection mechanism the user
is able to start and stop single behaviours, inspect the actual behaviour list and do many
other things (putting motors on/off, resetting the global position, starting image
acquisition, etc.). It can also invoke existing script files that contain series of behaviours
with associated situations. Such script files are interpreted by a planner thread. The
planner will instantiate and initialise the corresponding behaviour and situation objects.

Normally, the Marvin robot drives around without a keyboard or monitor connected to

the onboard computer. The only channel of communication with the Linux operating
system is a wireless TCP/IP connection provided by a Wavelan-card (Lucent). The

242

Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

connection uses radio transmission with communication speeds up to 2 Mb/s over an
indoor range of maximal 100 meter. By establishing a Telnet-session, the robot control
program can be started and controlled remotely.

Hotion

Centre ¥ 0,20 H-position 0,78
Centre Y 0,12 ‘f-position 0,42
Orientation 0,46 Orientation 0,50
Lin Speed 0,10
Situations Ang Speed 0,01
Safety_Check front 2.54 left 0,16 right 0.77 back 0.23 down 0,09l

Remote_Control
Outside_Range remaining distance; 0,34

2 Behaviour Motion Image Trace Map Adjust Script

[alala}
falulule}
[allaln)

Figure 5 Remote session with Marvin’s control program

A more advanced, graphical user interface for monitoring and control, shown in Figure
6, has been developed in connection to vision-based navigation experiments. A client-
program (for Windows) interacts via a TCP/IP socket connection (also using the wireless
network) to a server thread in Marvin’s control system. It can display camera-images (at
a rate of 4 images/sec) and other sensor data. It can also start and stop behaviours, for
example a recognition behaviour to detect and follow a moving pattern. It may even
overrule the vehicle motion and steer Marvin remotely by activating the
REMOTE_CONTROL behaviour.

w3 elal & 3 o]

Asresl dau

i +: prmon 1.4

fetgmaad P Dmion (A1)
aEntan b |
o 05
g — iy
ol A oAb LY}
A o [1}

E_TITRRE)
pidirinl —
v ol d . [ENCH I —
@/ 8 == N—y —
oo el ot
ol Wl I
e W
— - —
o ekl gl C————————
1 i
e e
— 1 j— i e e
bk W
e —

g e sl s

Figure 6 Graphical interface of remote monitor program

243

Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

6 Experiments

Experiments have been carried out with respect to motion control strategies for sensor-
based navigation. Besides the ultrasonic distance sensors, computer vision is used to
enhance the ability of position sensing. Additional threads and classes have been
introduced to maintain a real-time “store” of camera images that can be accessed (read-
only) at any time by one or more behaviours or threads (like the server thread fulfilling
remote image requests). Images in the store are claimed during processing and have to
be freed explicitly to allow buffer reuse.

Examples of vision-related behaviours are the “moving pattern tracking” behaviour and
a “free space search” behaviour. The latter one detects the visual edges of the ground
floor and drives according to a free-space map that is derived from it (see Figure 7). The
behaviour of “driving through a hallway” has been explored by different sensor
approaches. An observer-based controller for position tracking has been employed
successfully using ultrasonic wall-distance measurements only [Siers 2000]. Position
estimation based on Kalman filtering of multiple sensor data has been investigated by
[Klein 2000]. It exploits the fact that the position of the “vanishing point” of the hallway
in the camera image reveals the heading direction of the robot [Zoghbi 2000].

Figure 7 Recognition of the floor edges (as shown by the white pixels) with its
corresponding free-space map

7 Conclusion

The presence of the general framework has alleviated the required effort for
experimentation considerably. Both the multithreading facility of Linux and the object
orientation keep the development of the robot control program manageable. New
components can be implemented independently, provided that they conform to the
existing interfaces. To introduce a new behaviour the control program needs to be
extended only at clearly isolated places. Mainly a new (derived) behaviour class has to
be programmed with its own control function. New situation handlers are fitted easily in
the existing scheme. Components of the control system, built earlier, are in general
easily reusable and/or adaptable for new experiments and application contexts.
Behaviours with associated situations can be simply tested interactively by using the
existing control panel interface operated via a remote telnet session. During operation,
state information is permanently logged. Extra logging of variables for testing purposes
can be added to the behaviour’s control function or to situation handlers.

244

Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

The capabilities of the autonomous robot have been extended over the years without a
need for a major revision of the basic framework. The behaviour-based control
mechanism has shown to be very versatile in combination with the client-server
approach for remote monitoring and control, introduced at a later stage.

The use of shared resources (like the image store) by multiple threads requires careful
synchronisation. However, once the appropriate access functions to shared class objects
are written correctly (by using exclusion and condition synchronization as provided by
the monitor concept) the pitfalls of concurrency are hidden and do not burden the
application context.

References

Beck, M. et al (1997), Linux Kernel Internals, 2nd Ed., Addison Wesley, ISBN 0-201-
33143-8

Dudek, G. and M. Jenkin (2000), Computational Principles of Mobile Robotics,
Cambridge University Press, ISBN 0-521-56876-5.

Klein, A.J. (2000), Position determination of an autonomous robot vehicle based on
multiple sensor information, Master’s thesis, DIES-2000-03, Dept. of Computer
Science, Univ. of Twente.

Koetsier, G.H. (1997), Supervisory control framework for an autonomous service
vehicle, Master’s thesis, SPA-97-019, Dept. of Computer Science, Univ. of
Twente.

Siers, M. (2000), Controller design for tracking and stabilization of a two-wheeled
mobile robot, Master’s thesis, Dept. of Applied Mathematics, Univ. of Twente.
Silberschatz, A. et al (2000), Applied Operating System Concepts, John Wiley & Sons,

ISBN 0-471-36508-4.

Zoghbi, P. (2000), Image processing for self-localization of an autonomous vehicle,

TAESTE Practical Training Report, Dept. of Computer Science, Univ. of Twente.

245

https://www.researchgate.net/publication/28552341

