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(Extended Abstract)

In this paper we propose a state-dependent im-
portance sampling heuristic to estimate the proba-
bility of population overflow in networks of parallel
queues. This heuristic approximates the “optimal”
state-dependent change of measure without the need
for costly optimization involved in other recently pro-
posed adaptive algorithms. Preliminary results from
simulations of networks with up to 4 parallel queues
and different traffic intensities yield asymptotically ef-
ficient estimates (with relative error increasing sub-
linearly in the overflow level) where state-independent
importance sampling is ineffective.

1 INTRODUCTION

Importance sampling is one of the most effective
methodologies for the efficient simulation of queueing
networks involving rare events (see, e.g., Parekh and
Walrand 1989, Heidelberger 1995, Juneja and Nicola
2005). Until recently, only state-independent impor-
tance sampling heuristics were developed and consid-
ered for analysis. In these heuristics, the change of
measure is “static” and independent of the network
state (i.e., the number of customers at each node in
a Jackson network). A relatively simple (and well
known) heuristic change of measure for simulations
of population overflow in queueing networks is that
proposed in Parekh and Walrand (1989). However,
even for the simplest Jackson queueing network (e.g.,
2-nodes in series or in parallel), the effectiveness of this
heuristic is limited to only some region of the (arrival
and service) parameters space (see Glasserman and
Kou 1995, de Boer 2004). (We use the term “effective-
ness” interchangeably with “asymptotic efficiency,” see
Nicola and Zaburnenko (2005) for a precise definition.)

Recent theoretical and empirical studies (see, e.g.,
Kroese and Nicola 2002 and de Boer and Nicola 2002)
reveal that state-dependent change of measures are
generally more effective, also where no effective state-
independent change of measure exists. In de Boer
and Nicola (2002) an adaptive optimization technique
based on the method of cross-entropy (Rubinstein
2002) is used to approximate the “optimal” state-
dependent change of measure. A drawback of this ap-
proach, however, is the excessive computational and

storage demands for large state-space models associ-
ated with large networks. In Zaburnenko and Nicola
(2005) and Nicola and Zaburnenko (2005), heuris-
tics are proposed to approximate the “optimal” state-
dependent change of measure without the need for a
costly optimization. The key observation is that the
“optimal” change of measure depends on the network
state only along and close to the boundaries (when one
or more nodes are empty), and tends to become state-
independent in the interior of the state-space. There-
fore, if we can determine the change of measure along
the boundaries and at the interior of the state-space,
then we may be able to combine them appropriately
to construct a state-dependent change of measure that
approximates the “optimal” one in the entire state-
space. The proposed methodology is dubbed “state-
dependent heuristic” or SDH in short. The proposed
heuristics are effective, easy to implement and could be
more efficient than those based on adaptive method-
ologies (e.g., de Boer and Nicola 2002), particularly
for large networks. Experimental results for tandem
networks with multiple nodes yield asymptotically ef-
ficient estimates, mostly with a bounded relative error
(see Zaburnenko and Nicola 2005, Nicola and Zabur-
nenko 2005).

In this paper we follow a similar heuristic approach
to develop a state-dependent change of measure for the
efficient simulation of rare events in parallel queues. In
Section ?? we introduce the model and notation. In
Section ?? we motivate and outline the SDH for par-
allel networks. In Section ?? we present experimental
results and comparisons with the well-known heuristic
in Parekh and Walrand (1989) for the estimation of
the probability of network population overflow.

2 MODEL AND NOTATION

Consider a queueing network consisting of n nodes in
parallel, each having its own (infinite) buffer. At node
i (1 6 i 6 n) customers arrive according to a Poisson
process with rate λi. The service time is exponentially
distributed with rate µi, after which customers exit the
network. Let Xi,t (1 6 i 6 n) denote the number of
customers at node i at time t > 0 (including those in
service). Then the vector Xt = (X1,t, X2,t, ..., Xn,t) is
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a Markov process representing the state of the network
at time t. Denote by St the total number of customers
in the network (network population) at time t, i.e.,
St =

∑n
i=1 Xi,t.

Assuming that the initial network state is X0 (usu-
ally, X0 = (0, 0, ..., 0) corresponding to an empty net-
work), we are interested in the probability that the
network population reaches some high level L ∈ N be-
fore becoming empty. We denote this probability by
γ(L) and refer to it as the population overflow proba-
bility, starting from the initial state X0. Since the as-
sociated event is typically rare, importance sampling
may be used to efficiently estimate this probability (for
a review see, e.g., Heidelberger 1995).

Starting from X0, define τ as the first time St hits
level L or level 0, then

γ(L) = E I{Sτ=L} = ẼWτ I{Sτ=L} , (1)

where Wτ is the likelihood ratio over the interval [0, τ ];
E and Ẽ are the expectations under the original and
the new change of measures, respectively. The rela-
tive error is the ratio of the standard deviation of the
estimator over its expectation, i.e.,√

ẼWτ
2 I{Sτ=L}

γ(L)
2 − 1 . (2)

The estimator ẼWτ I{Sτ=L} is said to be asymp-
totically efficient if its relative error grows at sub-
exponential (e.g., polynomial) rate as L → ∞ (i.e.,
as γ(L) → 0). The estimator is said to have bounded
relative error if its relative error is bounded in L as
γ(L) → 0. It is important to note that a change of
measure may, in general, depend on the state of the
system, even if the original underlying distributions
do not depend on the system state.

3 STATE-DEPENDENT HEURISTICS

Recent theoretical and empirical studies in Kroese and
Nicola (2002) and de Boer and Nicola (2002) indicate
that the “optimal” change of measure depends on the
network state, i.e., the number of customers at the
network nodes. Furthermore, this crucial dependence
is strong along the boundaries of the state-space (i.e.,
when one or more buffers are empty) and diminishes
in the interior of the state-space (i.e., when contents of
all buffers are sufficiently large). This observation sug-
gests that if we know the “optimal” change of measure
along the boundaries and in the interior of the state-
space, then we might be able to construct a change of
measure that approximates the “optimal” one over the
entire state-space. In Nicola and Zaburnenko (2005),
heuristics based on combining known large deviations
results and time-reversal arguments are used to con-
struct such a change of measure for tandem networks.
Empirical results show that it produces asymptoti-
cally efficient estimates, mostly with a bounded rela-
tive error. Here we propose a heuristic state-dependent
change of measure to efficiently simulate networks of
parallel queues.

SDH for the n-node Parallel Network:

Let λi and µi, respectively, be the arrival and service
rates at node i, and denote its traffic intensity by ρi =
λi
µi

< 1 (i = 1, . . . , n). Without loss of generality we

assume that
∑n

i=1 (λi + µi) = 1. Denote by λ̃i and µ̃i
the corresponding rates at node i under the new change
of measure, and by SDHi the 2 × 2 linear operator
(matrix) transforming the original rates into the new
rates at node i (i = 1, . . . , n). Define [a]+ = max(a, 0)
and [a]1 = min(a, 1), then the change of measure at
node i (i = 1, . . . , n) is given by:

[
λ̃i
µ̃i

]
= SDHi

[
λi
µi

]
, (3)

SDHi =

[
bi − xi
bi

]+ [
1 0
0 1

]

+

[
xi
bi

]1 [
0 1
1 0

]
,

(4)

for some integer bi ≥ 1. The first matrix is the identity
matrix, corresponding to no change of measure. The
second matrix is the identity matrix with the first
and the second rows interchanged; this corresponds
to interchanging the arrival and service rates at node
i. Note that, under the above change of measure, the
equality

∑n
i=1 (λ̃i + µ̃i) = 1 holds.

Remark 1 Note that bi is the number of boundary
levels for which the change of measure at node i de-
pends on its content xi (we also refer to it as the de-
pendence range at node i). Proper selection of the bi’s
is crucial for achieving asymptotic efficiency. In gen-
eral, the “optimal” bi’s (yielding estimates with low-
est variance) depend on the set of network parameters
(particularly the traffic intensities ρi’s) as well as the
overflow level L.

According to the above change of measure, empty
nodes are not “pushed” (overloaded) at all, and busy
nodes are “pushed” simultaneously, however, to dif-
ferent extents depending on their respective ratios of
xi/bi. The well-known heuristic in Parekh and Wal-
rand (1989) suggests interchanging the arrival and ser-
vice rates at the bottleneck node (with the highest ρi).
This is a state-independent change of measure, which
works only in a limited region of the network param-
eters space (namely, when the utilization at the bot-
tleneck node is sufficiently high relative to those at all
other nodes). For a single node, say, node i, our change
of measure, with bi = 1, is identical to that in Parekh
and Walrand (1989); both are asymptotically efficient.

4 EXPERIMENTAL RESULTS

Importance sampling to estimate the probability of
population overflow (γ(L)) involves generating, say, N ,
independent and identically distributed (i.i.d.) busy
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cycles (i.e., starting with an empty network). Start-
ing a cycle at time 0, define τL as the instant when
the network population reaches level L for the first
time. Similarly, define τ0 as the instant when the net-
work population returns to 0 for the first time. The
indicator function Ii(τL < τ0) takes the value 1 if the
population overflow (level L) is reached in cycle i, oth-
erwise it takes the value 0. In each cycle, the change of
measure is applied until either the population overflow
event is reached or the network population returns to
0. Let Wi be the likelihood ratio associated with cy-
cle i, then unbiased estimators of the first and second
moments of I W are given by

γ̃ =
1

N

i=N∑

i=1

Ii Wi and γ̃2 =
1

N

i=N∑

i=1

Ii Wi
2 .

The variance and the relative error of the importance
sampling estimator γ̃ (of γ(L)) are given by V AR(γ̃) =

(γ̃2 − (γ̃)2) / (N − 1) and RE(γ̃) =
√
V AR(γ̃) / γ̃, re-

spectively.
In the following we experiment with 2- and 4-node

parallel networks. The intent is to demonstrate the
effectiveness of our proposed heuristic (termed SDH)
compared to that in Parekh and Walrand (1989)
(termed PW). For the 2-node parallel network: λ1 =
λ2 = 0.15 and µ1 = µ2 = 0.35 (i.e., a symmetric net-
work with ρ1 = ρ2 = 0.43). For the 4-node parallel
network: λi = 0.05 and µi = 0.2, for i = 1, 2, 3, 4 (i.e.,
a symmetric network with ρi = 0.25, for i = 1, 2, 3, 4).
(Typically, PW fails to efficiently estimate the proba-
bility of population overflow when the node utilizations
are equal or sufficiently close.)

In all simulation experiments, the same number of
replications, namely, 106, is used to obtain estimates of
the population overflow probability γ(L) using both,
our state-dependent heuristic in Section ?? (SDH) and
the heuristic in Parekh and Walrand (1989) (PW). For
each estimate we include the relative error (in percent-
age). Whenever feasible, numerical results (for exam-
ple, using the algorithm outlined in de Boer 2000) are
included to verify the correctness of the simulation es-
timates. Otherwise, the corresponding table entry is
marked with a “∗”.

Experimental results in Tables ?? and ?? show that
PW yields incorrect and unstable estimates. On the
other hand, our proposed SDH yields correct and
asymptotically efficient estimates with a relative er-
ror increasing sub-linearly in the overflow level L. Due
to symmetry in the above examples, the “best” value
for the dependence range (bi) is the same at all nodes.
Typically, SDH requires only a few minutes to achieve
relative errors less than 1%. Moreover, the SDH ap-
proach does not require difficult analysis or costly pre-
computation, and its effectiveness is not diminished
for networks with larger state-space. However, sim-
ple and robust guidelines for selecting the number of
boundary layers (dependence range) need to be de-
veloped and tested through analysis and/or extensive
experimentation.
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Table 1: 2-Node Parallel Network (ρ1 = ρ2 = .43)

L Num. PW SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE%

25 1.980e-08 1.193e-08 ± 12 4 1.976e-08 ± 0.14

50 2.581e-17 8.517e-18 ± 13 6 2.583e-17 ± 0.17

100 2.093e-35 2.303e-35 ± 86 7 2.092e-35 ± 0.27

Table 2: 4-Node Parallel Network (ρi = .25, 1 ≤ i ≤ 4)

L Num. PW SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE%

25 * 8.510e-13 ± 12 4 7.364e-12 ± 0.30

50 * 1.829e-27 ± 48 5 5.043e-26 ± 0.40

100 * 4.624e-58 ± 08 6 3.171e-55 ± 0.87
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