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Abstract - Using 2 different numerical methods (FDTD and a novel pandirectional planar Helmholtz solver),
we analyzed the waveguide behaviour of a channel in a 2-dimensional photonic crystal including its
dispersion and coupling to incoming waves.

Photonic crystals [1] can be considered as generalized gratings in 1, 2 or 3 dimensions. These periodic structures,
having a period in the order of a wavelength have the important property that electromagnetic waves in a certain
frequency range cannot propagate in any direction in the structure, hence they are often referred to as photonic
bandgap materials. In order to obtain wide and overlapping bandgaps for TE and TM polarizations, a relatively
large (>~2) refractive-index contrast is needed. If a channel is formed in such a crystal (e.g. by removing a row of
elements), it can act as a highly efficient and compact waveguide for frequencies in the bandgap. Since no energy of
such waves can radiate away through the crystal, waveguides in the crystals can have low-loss bends with extremely
small bending radius [2]. We believe that such waveguides are a key to ultra high density opto-electronic integration
which will be needed e.g. for the fabrication of large optical switching matrices or chip-level optical interconnects.

In order to design waveguides and other devices in photonic crystals, more is needed than the well-known band-
structure calculations for perfectly regular crystals. For investigating propagation and localization of
electromagnetic fields, a modeling tool is needed which can account for pandirectional propagation. This precludes
using the well-known and efficient beam propagation methods (BPM’s) [3]. Given the computing power of present-
day personal computers, we restricted our computations to 2 dimensions, using the well-known finite-difference
time-domain (FDTD) method [4] and a novel method for solving the Helmholtz equations in a plane [5], both
implemented using boundary conditions based on the perfectly-matched layer [6] technique. We will illustrate the
flexibility of these methods with a few examples. It should be noted that a full 3D-analysis will be required for
accurately modeling radiation phenomena perpendicular to the plane of the waveguides, in particular if the limited
thickness of practical photonic crystals is to be
taken into account.

Figure 1 shows a method for determining the
bandgap of a 2D photonic crystal (here a rectan-
gular array of parallel high-index, square cross-
section rods). A dipole, radiating in all directions
in the plane, is driven with a very short optical "

pulse covering a broad wavelength spectrum of *

0.7-2.5 pm. The transmission of the wave to each - B Y B
point at the right side of the crystal is calculated | osc. d N A '

with FDTD (for symmetry reasons an angular | diPole ﬂ |' r v i .

range of only 45° needs to be considered). Then, 0.15 um 0.6 pm Wavelength (um)
the Fourier transform of the transmitted pulse is

taken, giving the transmission spectrum for each Fig. 1  Bandgap calculation. Left: crystal and dipole
point (direction). The right part of fig. 1 is the radiator. Right: superposition of transmission spectra,
superposition of all these spectra, showing a clear showing the bandgap.

bandgap of approximately 1.3-1.7 um.

Amplitude of transmission (a.u.)

The dispersion of a waveguide can be calculated (fig. 2) by terminating it with a perfect reflector (such as a
photonic crystal), which gives rise to a standing-wave pattern in the guide. From the distance between successive
minima or maxima in the pattern, the phase velocity and hence the effective index is easily determined. It can be
seen that the effective (phase) index is <1, similar to the case of a parallel conducting plate waveguide of which the
dispersion curve is shown for comparison. The resulting curves in the right-hand side of fig. 2 show a systematic
5..12% difference between the results obtained using different calculation methods. This is due to the so-called
numerical dispersion of the algorithms, which scales with the square of the calculation grid interval (in these
calculations the grid was 12x12 per unit cell of the crystal).
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Fig 2 Calculating  dispersion of waveguide in photonic crystal. Fig. 3 Coupling of a
Left: waveguide in crystal with arrows indicating incident and reflected waves. Gaussian beam to a
Right: calculated effective index vs. wavelength (triangles FDTD; squares channel in a photonic
Helmholtz solver; circles parallel conducting plates waveguide). crystal.

An important problem of practical devices is the coupling between photonic-crystal based waveguides and external
free-space beams or conventional waveguides. Figure 3 shows the coupling of a free-space gaussian beam (A=1.5
um), focused to a 1.0 um waist at the entrance of a channel defined by removing one row of rods. The contour plot,
obtained using the Helmholtz solver, shows lines of equal wave amplitude. It can be seen that due to partial
reflection a standing wave pattern arises in the free space region (left part of plot). It is also interesting to see that
the guided wave in the channel (right) penetrates only into the first few layers of the photonic crystal. This
evanescent field is concentrated around the high-index rods. The calculated coupling loss is 50.5%. Figure 3
suggests that a reduced beam waist will lead to a better coupling efficiency.

In fig. 4, we show coupling from a conven-
tional dielectric slab waveguide (slab width
0.5 pm, refractive index 1.45, fundamental
mode at A=1.5 pm). Again, we observe a
partially standing wave in the dielectric
slab, caused by reflection at the junction. In
this, non-optimized, configuration, the cal-
culated coupling loss is 24.7%. I

In summary: We developed numerical
tools based on the finite-difference timed-
domain (FDTD) method and a pandirec-
tional planar Helmholtz solver, which we
applied to modeling structures in a 2-di-
mensional photonic crystal. We calculated
the bandgap of the crystal and the disper- Fig. 4 Coupling a dielectric slab waveguide to a channel in a
sion of a waveguide that is formed by a photonic crystal. Left: configuration; right: calculated field
missing row of rods in the crystal. The cou- amplitude. :
pling to this waveguide of both a Gaussian
beam and a dielectric slab waveguide could be modeled and coupling efficiencies can be calculated.
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