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Abstract Dynamic balancing aims to reduce or eliminate the shaking base reaction
forces and moments of mechanisms, in order to minimize vibration and wear. The
derivation of the dynamic balance conditions requires significant algebraic effort,
even for simple mechanisms. In this study, a screw-based balancing methodology
is proposed and applied to a 5-bar mechanism. The method relies on four steps: 1)
representation of the links’ inertias into point masses, 2) finding the conditions for
these point masses which result in dynamic balance in one given pose (instanta-
neous balance), 3) extending these conditions over the workspace to achieve global
balance, 4) converting the point mass representation back to feasible inertias. These
four steps are applied to a 5-bar mechanism in order to obtain the conditions which
ensure complete force balance and additional moment balance over multiple trajec-
tories. Using this methodology, six out of the eight balancing conditions are found
directly from the momentum equations.

Key words: dynamic balance, 5-bar mechanism, screw theory, inertia decomposi-
tion

1 Introduction

The ever increasing demands on the throughput of robots requires reduction of their
cycle times without compromising the accuracy and the lifetime. Higher veloci-
ties induce stronger base reaction forces and moments which in turn cause frame
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vibration and wear of the manipulator [8]. Dynamic balancing aims to design the
kinematics and the mass distribution of the manipulator such that both the changing
base reaction forces and moments are eliminated [10]. With force balancing, only
the changing reaction forces are considered [1].

Dynamic balancing often involves the addition of linkages and masses - such
as counter masses and/or counter rotations - which in general leads to higher com-
plexity and higher motor torques [8]. For parallel mechanisms, the closure equa-
tions supports finding dynamic balance without additional linkages or counter-
rotations [5]. However, for mechanisms with more DOFs, the dynamic balance con-
ditions become increasingly difficult to find as the number of bodies increase and the
kinematic closure equations become more complicated. To overcome this, several
synthesis methods are presented; such as stacking of dynamically balanced 4-bar
linkages [10], and synthesis based on principal vector linkages [7]. Nevertheless,
these synthesis methodologies do not cover all the possible solutions and require
considerable effort to find the balancing conditions.

In this paper, a screw theory-based, four step methodology is presented to sim-
plify the process of finding the dynamic balance conditions for planar mechanisms,
with a potential extension to spatial mechanisms. The methodology relies on two
insights. Firstly, the geometric screw theory gives the conditions for the direct cal-
culation of a subset of the balancing conditions without differentiation or solving the
kinematic closure equations. Secondly, the dynamics equations are simplified using
an inertia decomposition method derived from Foucault and Gosselin [2]. This ap-
proach is illustrated by applying it to a 5-bar mechanism to obtain complete force
balance (similar to [4]) with additional moment balance over multiple trajectories
(similar to the Dual V [9]). First the kinematic model of a 5-bar mechanism (2.1),
and the screw dynamics (2.2) are described, based on which the four steps are illus-
trated (2.3 - 2.6).

2 Method

2.1 Kinematic model of a 5-bar mechanism

The 5-bar mechanism under investigation consists of two RR linkages connected by
a revolute joint at xxx (see Figure 1). To each body a reference frame (ψi) is associated
in the joint as seen in the figure. The base reference frame is placed arbitrarily. The
frame in which a point is represented is denoted with a superscript (e.g. aaai).

The velocity of a body in space is described by a 6D twist vector (ttt j
k), which

is the general global velocity of frame ψk expressed in ψ j. The angular velocity is
denoted by ωωω and the linear velocity by vvv. The coordinate transformation matrix
(XXX j

i ) changes the expression of a twist from frame ψi to ψ j. The matrix consists of
a rotation matrix (RRR j

i ) and a translation vector (ooo j
i )1:

1 The
[
ooo j

i×
]

is a skew symmetric form of vector ooo j
i
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ttt j
k =

[
ωωω

j
k

vvv j
k

]
= XXX j

i ttt i
k XXX j

i =

[
RRR j

i 000[
ooo j

i×
]
RRR j

i RRR j
i

]
(1)

The body Jacobian (JJJi) relates the joint velocities to the twist (ttt0
i ) of each body.

As input joint velocities (q̇qq) we choose the base joints. This makes bodies 1 and
3 the active, and 2 and 4 the passive (non-actuated) bodies. The Jacobian of the
mechanism can be found using methods such as presented by Zoppi et al. [12].
The body Jacobians are concatenated such that the total mechanism Jacobian (JJJ)
becomes:

ttt0
i = JJJiq̇qq f JJJ =

JJJ1
...

JJJ4

=


XXX0

1t̂tt 0
XXX0

1t̂tt +d1XXX0
2t̂tt d2XXX0

2t̂tt
0 XXX0

3t̂tt
d3XXX0

4t̂tt XXX0
3t̂tt +d4XXX0

4t̂tt

 (2)

in which t̂tt =
[
(nnnz)

T 000T ]T is the local twist axis, in which nnnz is the unit vector in z
direction. The Jacobian coefficients are:

d1 =−
xxx4 ·RRR4

1
[
nnnz×

]
ooo1

2

xxx4 ·RRR4
1
[
nnnz×

]
RRR1

2xxx2
−1 d2 =

xxx4 ·RRR4
3
[
nnnz×

]
ooo3

4

xxx4 ·RRR4
3
[
nnnz×

]
RRR3

2xxx2
(3)

d3 =
ooo1

2 ·RRR
1
2
[
nnnz×

]
xxx2

xxx4 ·RRR4
1
[
nnnz×

]
RRR1

2xxx2
d4 =−

ooo3
4 ·RRR

3
2
[
nnnz×

]
xxx2

xxx4 ·RRR4
3
[
nnnz×

]
RRR3

2xxx2
−1 (4)

Note that the denominators of all the coefficients are equal, yet, we write them dif-
ferently in terms of the rotation matrix in the nominator for later use (Eq. 11).
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Fig. 1 Kinematic model and instantaneous bal-
ance of a 5-bar mechanism. The momentum
wrenches sum to zero for a pure motion of joint
1.
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Fig. 2 Inertia decomposition of the 5 bar mech-
anism. The COM (ccc4), inertia (g4), and mass
(m4) of body 4 is given by sum of three point
masses (uuu4,2, uuu4,3, and rrr4)
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2.2 Dynamics

The conditions for dynamic balance are usually derived from the momentum equa-
tions. Shaking forces and moments are the derivate of momentum. When assuming
zero initial velocity, the shaking forces and moments are zero when the momentum
is zero for all motions.

In screw theory, this momentum is seen as wrench [6]; the momentum wrench
(hhh), a concatenation of the angular momentum (ξξξ ) and the linear momentum (ppp).
The momentum wrench can be expressed in another frame using a second coordi-
nate transformation matrix. The momentum generated by a body, is calculated from
the twist or the Jacobain of that body and the inertia matrix MMMi, which is given later
(Eq. 7).

hhh j =

[
ξξξ

j

ppp j

]
= (XXX i

j)
T hhhi hhh0

i = MMMittt0
i = MMMiJJJiq̇qq (5)

The admissible momentum wrench of a mechanism is defined by its momentum
span. As the 5-bar mechanism is a 2 DOF mechanism, the dimension of the span
is maximally two. In the current study we choose the bases of this momentum span
(indicated with a hat) as the momenta generated by unit velocity of the two base
joints. [

ĥhh
0
1 ĥhh

0
3

]
=

4

∑
i

MMMiJJJi = 0 (6)

When the momentum span is only zero for a certain pose we have obtained a lo-
cal momentum equilibrium or instantaneous balance, this is a necessarily but not
sufficient condition for dynamic balance. For global dynamic balance, these instan-
taneous conditions have to be extended over the complete workspace.

2.3 Step 1. Inertia decomposition

Wu and Gosselin [11] used the property that the inertia of a body can be represented
as a collection of point masses to study the dynamic equivalence of robotic plat-
forms. Continuing on that, we recognize that the inertia of a planar body can be
sufficiently represented by two point masses. For a given center of mass (COM),
inertia and mass, four equations have to be satisfied [2]. As two point masses give
six variables, the location of one point mass can be chosen freely, fixing the location
of the other mass and the mass distribution over the two points.

When the free point mass is placed on the revolute joint, this joint has no influ-
ence on the motion of the free point. Therefore this point can also be regarded to
be fixed to the connecting body. This leaves the initial body with one point mass
representation (rrri, mi). This inertia decomposition can be applied throughout the
whole mechanism, such that the inertia properties of each body are characterized by
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a single point mass. This reduces the number of dynamic parameters from 4 to 3 per
body. This finally gives the inertia matrix for a planar body:

MMMi = mi

[
−
[
rrr0

i×
]2 [rrr0

i×
]

−
[
rrr0

i×
]

III3

]
(7)

2.4 Step 2. Instantaneous balance

Dynamic balancing occurs when the location and mass of these points are such that
the momentum span reduces to zero. For a 5-bar, the mechanism’s momentum basis
is defined by the motion of one joint while the other joint (and body) is fixed. This
means that only three bodies contribute to each mechanism’s momentum basis.

−ĥhh
0
1,1 = ĥhh

0
2,1 + ĥhh

0
4,1 −ĥhh

0
3,3 = ĥhh

0
2,3 + ĥhh

0
4,3 (8)

The three body momentum bases are represented as wrenches (see to Fig. 1). For
force balance, the vector sum of the linear momenta has be to zero. For additional
moment balance, the three wrenches have to intersect at one point. A momentum
wrench generated by rotation of a point mass around an axis passes trough the point
mass in a direction perpendicular to the point and the axis location. Therefore it
follows that the point mass of the base body has to be on the intersection point of
a line perpendicular to the wrench line (ĥhh1,1) and the axis of rotation, as indicated
in Fig. 1. The mass to be located at this point is given by ratio of linear and angular
momentum.

rrr1
1 =

1
m1

[
nnnz×

](
p̂pp1

2,1 + p̂pp1
4,1
)

m1 =−
‖p̂pp1

2,1 + p̂pp1
4,1‖2

nnnz ·
(

ξ̂ξξ
1
2,1 + ξ̂ξξ

1
4,1

) (9)

If similar conditions are imposed on the second base link (rrr3
3, and m3), we have

obtained six instantaneous balance conditions.

2.5 Step 3. Global force balance

Global force balance is obtained when the sum of the linear momentum span of the
passive bodies (2 and 4) - expressed in the base bodies reference frames - is constant
over the workspace. This is required to enforce a pose independent solution for
Eq. 9. Therefore, the global force balance conditions only depends on the dynamic
properties of the passive bodies. After coordinate transformation of the linear part
of Eq. 8, the following constraint equation is obtained:

−p̂pp1
1,1 = m2

[
nnnz×

]
ooo1

2 +m2(1+d1)
[
nnnz×

]
RRR1

2rrr2
2 +m4d3

[
nnnz×

]
RRR1

4rrr4
4 = const. (10)
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Inspection shows that Eq. 10 and the terms d1 and d3 of Eqs. 3 and 4 are only
written in terms of the variables RRR1

2(q2,1) and RRR1
4(q4,1). For global force balance, the

derivative of Eq. 10 with respect to these two angles should remain zero:

δ

δq1,4

(
p̂pp1

1,1
)
=

d3

xxx4 ·RRR4
1
[
nnnz×

]
RRR1

2xxx2

(
m2‖xxx4‖2[nnnz×

]
RRR1

2rrr2
2

+m4
((

xxx4 · xxx2)+ (xxx4 ·
[
nnnz×

]
xxx2) III3

)
RRR1

2rrr4
4
)
= 0 (11)

From this derivative, the following global force balance conditions is obtained.

rrr2
2 =

m4

m2

1
‖xxx4‖2

((
xxx4 ·
[
nnnz×

]
xxx2)[nnnz×

]
−
(
xxx4 · xxx2) III3

)
rrr4

4 (12)

This constraint equation can also be obtained when differentiating Eq. 10 to the
other angles (q1,2), and from the derivatives of ( p̂pp3

3,3). The implications of global
force balance and additionally instantaneous dynamic balance on reactionless tra-
jectories are discussed in Section 2.7. This global solution step still requires consid-
erable algebraic effort.

2.6 Step 4. Inertia recomposition

The resulting balancing conditions are written in terms of the point masses, describ-
ing a range of inertias. To select a proper inertias, we recognize that at the joints
(uuui, j) - connecting body i with j - a point mass (ai, j) can be exchanged between the
bodies (see to Figure 2). The mass which is added to one link has to be subtracted
from the connecting link (ai, j =−a j,i). In such a way the inertia (gi) and COM (ccci)
of mass (mt,i) can be selected which satisfy the balance conditions.

mt,i = mi +
n

∑
j=1

ai j mt,iccci = mirrri +
n

∑
j=1

ai juuui j gi +mt,i‖ccci‖2 = mi‖rrri‖2 +
n

∑
j=1

ai j‖uuui j‖2 (13)

The mechanism can be built as long as the inertia and mass are positive. This
precludes a range selectable inertia distributions.

2.7 Reactionless trajectories

With global force balance the dimension of momentum for planar mechanism is
reduced to one. Since a 5-bar mechanism has 2 DOF, there exist a velocity vector
in each pose for which the momentum is zero. This null space motion of Eq. 5 is
numerically integrated to form a reactionless trajectory. In the instantaneous balance
poses, the momentum for both directions is always zero. This implies that in these
poses, two reactionless trajectories meet.
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Table 1 Geometrical and dynamic parameters

Joint position [m]
ooo0

1 [0, 1]
ooo1

2 [-0.866, 0.5]
ooo0

3 [0, -1]
ooo3

4 [-0.866, -0.5]

COM [m]
ccc1

1 [0.220, 0.013]
ccc2

2 [0.250, 0.433]
ccc3

3 [0.220, -0.013]
ccc4

4 [0.250, -0.433]

Mass [kg]
mt,1 1.0155
mt,2 0.2000
mt,3 1.0155
mt,4 0.2000

Inertia [kgm2]
g1 0.0240
g2 0.0500
g3 0.0240
g4 0.0500

3 Results

To evaluate the presented method, a geometry is selected, as depicted in Figure 3
and Table 1. The dynamic balance of the mechanism is evaluated using multibody
software package Spacar [3]. The mechanism moves over two reactionless trajecto-
ries (red and blue) and one arbitrary unbalanced trajectory (yellow).

The maximal shaking forces of all the trajectories are in the order of computa-
tion accuracy (max: 1.07−09 N), confirming that the mechanism is force balanced.
Also the shaking moments are approximately zero (max: 3.01−04 Nm) for the two
balanced trajectories. For the unbalanced trajectory a maximal shaking moment of
6.69 Nm is found (Fig. 4.).

4 Discussion and conclusion

Using the presented method a simplification of the balancing process is obtained,
such that six (Eq. 9 for rrr1

1, rrr3
3, m1, and m3) out of eight conditions for dynamic bal-

ance can be calculated directly from the momentum equations without manipulation
of the kineto-dynamic relationships. Furthermore, the two remaining conditions for
global balance (Eq. 12 for rrr2

2) are found to be only dependent on the dynamic proper-
ties of the passive bodies. However, these last two conditions require effort in taking
derivatives and manipulation of the momentum equations. The applicability of this
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Fig. 3 Geometry and trajectories
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balance methodology to more complex planar and ultimately spatial mechanisms is
under investigation.

In this paper, a screw-based balancing method is presented and applied to a 5-bar
mechanism. The balancing conditions are found for force balance over the complete
workspace and additional moment balance over multiple trajectories, as shown by
simulation results. To arrive at these dynamic balance conditions, a screw-based ap-
proach was presented. It consists of four steps. In the first step it was recognized that
the dynamic properties of a planar mechanism with revolute joints can be simplified
to one point mass per body. In the second step, instantaneous balance was found by
placing the point masses of the base links orthogonal to the momentum wrench line
generated by the rest of the mechanism. In the third step, the place of the remaining
point masses was calculated such that the force balance extends over the workspace.
In the last step, the resulting point masses where converted into actual inertias such
that the mechanism can be built.
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