

Front Tracking simulations on liquid-liquid systems; an investigation of the drag force on droplets

Ivo Roghair, Wouter Dijkhuizen, Martin van Sint Annaland and Hans Kuipers

Fundamentals of Chemical Reaction Engineering

CFD2008-071 – June 12th, 2008

Contents

- Introduction
- Objectives
- Numerical simulations
 - Grid dependency study
 - Drag force study
- Conclusions and outlook

Multi-level modelling strategy for multiphase flow

Introduction

Direct Numerical Simulations (DNS)

- Fully resolved
 - Based only on fundamental equations for fluid flow
 - Navier-Stokes + continuity equation for incompressible flow
 - Can be used to derive closures for forces on
 - Bubbles
 - Droplets
 - Particles
- Only valid when grid independence can be shown!

Front tracking

- Incompressible fluids
- Fixed Eulerian grid
- Interface consists of Lagrangian marker points that build up a triangular mesh
 - Points are moved with the interpolated fluid flow
 - Straightforward surface tension force calculation
- Advantages
 - Calculation of surface tension force with sub-grid accuracy.
 - No numerical coalescence of dispersed phase elements

Front tracking

Drag force

ΣF

 F_L

 F_{D}

F_P

 F_{VM}

 F_{G}

Forces acting on a droplet

$$m_{b} \frac{\vec{dv}_{b}}{dt} = \vec{F}_{G} + \vec{F}_{P} + \vec{F}_{D} + \vec{F}_{L} + \vec{F}_{VM} = \sum \vec{F}_{VM}$$

Stationary force balance in the rise direction

$$(\rho_c - \rho_d)g\frac{\pi}{6}d_{eq}^3 - \frac{1}{2}C_D\rho_c\frac{\pi}{4}d_{eq}^2(\vec{u_{d,z}} - \vec{u_{c,z}})^2 = 0$$

$$C_D = \frac{4(\rho_c - \rho_d)g d_{eq}}{3\rho_c(\vec{u_{d,z}} - \vec{u_{c,z}})}$$

Droplet velocity

- Determine drag force coefficient by different averaging procedures
 - Average rise velocity, then determine C_D
 - Determine C_D as a function of time, average this value
- \rightarrow No difference

Correlations from literature (bubbly flow)

Drag force

- Rigid sphere:
- Mei et al. (1994):
- Tomiyama (1998):
 - Pure

$$C_{D} = \frac{24}{Re}$$

$$C_{D} = \frac{16}{Re} \left(1 + \frac{2}{1 + \frac{16}{Re} + \frac{3.315}{Re^{0.5}}} \right)$$

$$C_{D} = max \left[min \left[\frac{16}{Re} (1 + 0.15 Re^{0.687}), \frac{48}{Re} \right], \frac{8}{3} \frac{Eo}{Eo + 4} \right]$$

$$C_{D} = max \left[\frac{24}{Re} (1 + 0.15 Re^{0.687}), \frac{8}{3} \frac{Eo}{Eo + 4} \right]$$

21

$$Re = \frac{\rho_c \vec{u_d} d_{eq}}{\mu_c} \qquad Eo = \frac{\left(\rho_c - \rho_d\right) g d_{eq}^2}{\sigma}$$

Drag force

Experiments and simulations on drag force for bubbly flow

From: Wouter Dijkhuizen, PhD thesis, University of Twente, 2008

Objectives

- Investigate the behavior of the Front Tracking model for liquid-liquid systems
- Simulate droplets in an infinite quiescent liquid to derive drag force closures
- Investigate the relation between gasliquid and liquid-liquid drag force and their dependencies

- •Vary resolution in droplet, domain 5 times droplet size
- •Vary resolution in droplet, keep domain at 100³ cells
- •Keep resolution in droplet at 20 cells, vary domain size

- Vary resolution in droplet, domain 5 times droplet size
- •Vary resolution in droplet, keep domain at 100³ cells
- •Keep resolution in droplet at 20 cells, vary domain size

Grid dependency

Vary resolution in droplet, domain 5 times droplet size
Vary resolution in droplet, keep domain at 100³ cells
Keep resolution in droplet at 20 cells, vary domain size

I. Roghair, CFD2008

Grid dependency

- •Vary resolution in droplet, domain 5 times droplet size
- •Vary resolution in droplet, keep domain at 100³ cells
- •Keep resolution in droplet at 20 cells, vary domain size

Drag force simulations

- Used settings:
 - 20 grid cells in droplet diameter
 - 100³ grid cells in domain
- Variation of continuous phase viscosity between 0.001 - 0.2 Pa·s
- Variation of equivalent droplet diameter between 0.2 – 5 mm
- "Dodecane droplet in water" system:
 - $\rho_{c} = 1000 \text{ kg/m3};$
 - $-\rho_{d} = 746 \text{ kg/m3}; \quad \mu_{d} = 1.34 \cdot 10^{-3} \text{ Pa·s}$
 - $\sigma = 0.0529 \text{ N/m};$

FOM Drag force simulations

Variation of continuous phase viscosity

 Variation of dispersed phase viscosity between 10⁻³ – 10⁻¹ Pa^{-s}

Drag force simulations

- Variation of equivalent droplet diameter between 0.2 – 7 mm
- Physical properties
 - $\rho_{c} = 1000 \text{ kg/m}^{3}; \quad \mu_{c} = 10^{-1} \text{ Pa}^{-1} \text{ s}$
 - $\rho_{d} = 800 \text{ kg/m}^{3};$
 - $\sigma = 0.0529 \text{ N/m};$

FOM Drag force simulations

Variation of dispersed phase viscosity

• Due to volume losses more detailed simulations:

Drag force simulations

- Computational grid 150³ cells
- 30 cells within droplet diameter
- Higher surface tension

EXAMPLE 7 FOM Drag force simulations

Drag force coefficient compared to Tomiyama correlations (high Re)

Drag force simulations

University of Twente

The Netherlands

FOM Conclusions and outlook

- Front tracking model can simulate dispersed liquid phases but a high resolution is required
- Volume loss strongly depending on droplet resolution
- Correlations of Mei et al. and Tomiyama for bubbly flow are well predicted
 - Some overshoot due to wall effects
- Transition of free-slip to no-slip condition as a function of μ_{d} shown
- Outlook:
 - Eo dependence of drag force coefficient
 - Droplet and bubble swarms

Thank you for your attention

Front tracking

Surface tension is mapped from the interface mesh to the Eulerian grid.

$$\vec{F}_{a} = \sigma \left(\vec{t}_{m,a} \times \vec{n}_{a} \right)$$
$$\vec{F}_{b} = \sigma \left(\vec{t}_{m,b} \times \vec{n}_{b} \right)$$
$$\vec{F}_{c} = \sigma \left(\vec{t}_{m,c} \times \vec{n}_{c} \right)$$

