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Abstract 

Many hard real-time systems need huge computing 
power and they are mostly designed by ad hoc methods. 
A m y  pmcessors provide a viable means to achieve huge 
computing power and they can be designed systematically. 
This paper presenb 4 sysfemafic design methodology to 
design a m y  processor based hard real-time systems. 

1 Introduct'lon 
Real-time systems must produce not only logically correct re- 
sults, but also meet timing constraints. Depending on the 
types of timing constraints, real-time systems are divided into 
two groups: Hard real-time systems and Soft real-time systems 
[l], [2]. A soft real-time system must produce computations 
as fast as possible such that a statistically described response 
time is satisfied. In a hard real-time system, computations 
must be finished before a given deadline. 

Analogous to the status of VLSI design a t  its infancy, cur- 
rently there is no scientific basis for hard real-time system de- 
sign [2]. Though most state-of-the-art hard real-time systems 
have been designed by ad hoc methods, a scientific approach 
for hard real-time system design is esSential as verification of 
the ad hoc designs are costly and error prone. Due to  huge pro- 
cessing power requirements, almost all hard real-time systems 
need a multiprocessing edvironment. According to r2], a mul- 
tiprocessor hard real-time system must possess the following 
features: Homogeneity, Scalability, Survivability and Flexibil- 
ity. 

Array processors consist of a set of modular processing ele- 
ments (PES) with spatially local communication, which makes 
them homogeneous and scalable. Survivability and flexibil- 
ity can be introduced in the array processor design as well. 
Furthermore, systematic. methods are used in array proces- 
sor designing. These factors make array processor based hard 
real-time systems very attractive. The array processors 01'- 
erating with synchronous (asynchronous) communication are 
called systolic (wavefront) arrays. As the array processor con- 
tains modular PES, only design problems associated with reg- 
ular or partially-regular dependence graphs are considered for 
array processor design. 

The rest of this paper is organized as follows. In Section 2,  we 
briefly describe the widely used dependence graph approach 
and its limitations for real-time array processor design. In 
Section 3, our design methodology is presented. Finally, con- 
clusions are drawn in Section 4. 

2 Dependence Graph Based Array 
Processor Design and its Limitations 

In this methodology, first an algorithm is developed in so called 
single assignment code, where each variable is only allowed to 
get a single value. Then the algorithm is represented in a 
graphical form by so called dependence graph (DG) 131. The 
nodes of the DG are then mapped into an array processor. 
Construction of the single assignment description for large and 
complex problems is tedious and furthermore, they are asso- 
ciated with DGs described in higher dimensional Euclidean 
spaces. Therefore, manual mapping procedures are impracti- 
cal as the visualization of the DG is tedious. Therefore, it is 
necessary to  automate the mapping of the DG into an array 
processor. In literature, several techniques and software pack- 
ages have been reported for the automation of the mapping 
like in [4], [5], [6], [7], but unfortunately, only regular DGs 
can be handled by these. Therefore, the current practice is to 
make the DG regular while the algorithm is written in single 
assignment form [8]. If the given problem is not associated 
with a regular DG, dummy operations can be added to get 
a regular DG. The DGs for large and complex problems are 
not regular in general and are very difficult to make regular by 
adding dummy operations. On the other hand, duminy nodes 
keep the PES in the array processor busy unnecessarily. This 
could prevent the ability to  meet hard real-time deadlines. 

3 Structured Dependence Graph Based 
Array Processor Design 

To simplify the construction of the single assignment code, we 
construct it hierarchically. This generates a set of DGs which 
are then combined to get the DG of the given problem. This 
DG is then projected into an abstract processor array using 
integer programming. Due to the generality of this approach, 
it can be used for partially-regular and regular DGs. Further- 
more, it enables the projection of the DGs linearly as well as 
nonlinearly. In general, the abstract processor array resulting 
from a projection of a partially-regular DG contains prows- 
sors whose behaviors are time varying. With the help of a 
set of tags, the abstract processor array is mapped into an ar- 
ray processor. These tags control the time-varying behavior, 
improve the regularity, survivability and flexibility of the ar- 
ray processor. In the following subsections, we describe these 
design steps briefly. More details are given in [9]. 
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3.1 The Structured Single Assignment Code 
(S'AC). 

The S'AC description consists of a set of hierarchical routines 
where each routine is described by a header and a body. Only 
a single assignment is made to  every variable in each routine. 
We refer to the top-most routine as the level-0 routine and the 
routines in the next level as level-1 routines and so on. To 
simplify the construction of the DG, level-i routines are only 
allowed to call routines in the level-(i+ 1). Only atomic opera- 
tions are used in the last level routines. The following syntax is 
used to  write the S2AC description. All but the last level rou- 
tines use data types army and record as defined in conventional 
structured programming languages. An array represents a set 
of data on which the same operation is performed. A recoid 
represents a set of data on which different operations are per- 
formed. The header of a routine consists of output variables, 
the name of the routine and input variables. The body of a 
routine consists of four fields: type declamtion field (where the 
data types of input and output variables are declared), initial- 
ization field (where local variables of the routine are initial- 
ized), variable assignment field (where the values of variables 
are calculated by salling lower level routines or by performing 
atomic operations) and output assignment field (where output 
variables are updated). The second and last fields are optional. 
A formal description of the syntax of the S2AC description is 
given in [9]. 

3.2 

The SDG contains a DG for each routine in the S'AC descrip- 
tion. To indicate the hierarchy of the S'AC description, the 
SDG is defined in Definition 3.4 with the aid of the following 
auxiliary definitions. 
Definition 3.1 Any edge that supplies (produces) data to (from) 
a DG is said to be an I n p u t  (Output)  Edge of the DG. The 
node to (from) which the input (output) edge supplies (pro- 
duces) data is said to beathe I n p u t  (Output)  Node.  

Definition 3.2 Any set of parallel input and/or output edges 
of a DC is defined as an E d g e  Bundle.  We use the symbol 
E B  to denote an edge bundle. 

Definition 3.3 A n  edge bundle E B  is called an I n p u t  (Out- 
pu t )  E d g e  B u n d l e  if all members of the E B  are input (out- 
put) edges. 

Definition 3.4 A family of dependence graphs represented by 
N -t 1 sets GO, G', ..., GN is defined as a S t r u c t u r e d  Depen-  
dence  G r a p h  if there ezists a family of dependence gmplis 
g i  E G' (0 5 i < N )  such that: 

I The nodes of g; are labelled by a set of graphs 

2 Each inbound edge connected to a node labelled by g!:") 
is also labelled by a unique input edge bundle of g::"'. 

3 Each outbound edge connected to a node labelled by g::") 
is also labelled b y  a unique output edge bundle of g$;+'). 

The Structured Dependence Graph (SDG) 
and Expansion 

{g t ,T1 ) ,&t l ) ,  . . .I where 9:;') E G('+I) (I = i , 2 , .  . .I. 

Then, we construct a DG by the expansion of the SDG i ls 
defined below. 

Definition 3.5 lf an SDG is conuerted into a single DG by 
recursively replacing all the labelled nodes by the releuant graph 
referred by its node label such that: 

1 all the labelled input and output edges are replaced b y  a set 
of edges corresponding to the edges referred by the input 
and output edge bundles respectively, 

2 all other labelled edges are replaced by a set of edges con- 
necting the node where the iih edge in the output Edge 
bundle is originated to the node where the iih edge an the 
input edge bundle is terminated, 

then the resultant DG is said to be an Expansion of the S D G .  

3.3 The Canonical SDG 
In array processor design, DGs containing only local- 
dependence edges are of importance. Furthermore, the p r e  
jection of the DG becomes easy if we can construct the DG 
in a minimum dimensional Euclidean space. Therefore, we de- 
fine a canonical SDG which will be expanded to create the DG 
which will be used for succeeding design steps. 
Definition 3.6 A n  SDG is said to  be ezpandable by Abut-  
m e n t  if the gmphs referred by the node labels can be placed 
nezt to each other such that, for each labelled edge, the node 
where the iih edge in  the output edge bundle is originated can be 
connected to the node where the i th edge in  the input edge bun- 
dle is terminated without introducing any nonlocal-dependence 
edges in  the resultant DG when the labelled edge is not an input 
or output edge. While placing two graphs nezt to each other, 
they are allowed to be rotated and/or mirrored to prevent the 
introduction of nonlocal-dependence edges. 
Definition 3.7 A n  SDC is said to be a Canonical  S D G  if 
the following conditions are satisfied. 

I A11 the members of the SDG are defined in  a common 
n-dimensional Euclidean space. 

2 The expansion of the SDG can be done b y  abutment. 
3 If the gmph referred by a node label has to be rvtated 

and/or mirrored during the ezpansion, then that node 
must be tagged with the information regarding ikow to ro- 
tate and/or mirror. 

4 When an edge is labelled by an input and output edge 
bundle then: 
(a) If the gmphs referred by the terminal nodes of the 

edge are not tagged for rotation and/or mirroring, 
then the directions of the edges in  both bundles must 
be the same. 

(b) If the gmphs referred by the terminal nodes of the 
edge are tagged for  rotation and/or mirroring, then 
the directions of the edges in  both bundles must be the 
same after the rotation and/or mimring .  

5 Each member of the SDG is defined in  a minimum diineir- 
sional subspace of the common n-dimensional Euclidean 
space . 

6 Each member of the SDG is defined such that the partial 
gmph resulted by the expansion of the terminal nodcs of 
any labelled edge is in  a minimum dirnelisiorial Euclidean 
space when the edge is not an input or output edge. 

3063 



3.4 Integer Programming Formulation of t he  
Scheduling and Projection of DGs 

For a given n-dimensional DG, our goal is to  project the DG 
into a lower dimensional abstract processor array such that 
timing constraints are not violated. For this, we solve two 
integer programming problems. For the scheduling problem, 
we assign a scaler s i  to  each DG node indicating its execution 
time. For the projection problem, we assign an m-vector P;. 
to  each DG node. Here p’; indicates the target position of the 
processor element (PE) where the function of the it* DG node 
is performed. 

3.4.1 

The number of delay registers introduced into the systolic array 
primarily depends on the scheduling of the DG nodes, and 
hence we try to  get the best schedule in the first place. The 
number of delay registers introduced into the systolic array also 
depends on the projection, because sometimes one can reuse 
the same delay register several times. As the projection is still 
an unknown, we.use the function 

The Scheduling Problem for Systolic Array 
Design 

fs = Sdcstination node - ssource node (1 ) 
fo r  each DG edge 

as our objective function. This will be an upper bound for the 
number of registers necessary. The duration of the time slot 
(or cycle time) is chosen according to  the propagation delay of 
the slowest DG node. 

To satisfy the precedence conditions, we introduce the fol- 
lowing constraint for each edge in the DG: 

Sdestination node - ssaurce node 2 1 (2) 

We must schedule the DG such that the input and output 
timing constraints are met. Therefore, 

Souiput node 5 doutput (3) 
d p u t  node 2 dinput (4) 

where doutput and dinput are the deadlines and input arrival 
time expressed in terms of number of cycles. To reflect the 
(partial) regularity in the DG we use the following constraint: 

Sdestination node - ssource node = TI (5) 

by introducing a variable TI for all the edges along the same 
direction connected to the  same type of DG nodes. In practice, 
it is convenient t o  restrict the number of neighboring PES to 
which a given P E  can communicate to reduce the number of 
communication links necessary. We ensure this requirement by 
using the following constraint for each node k in the DG: 

For all i E Nk, g ( s i  -sj) 5 C - 1 ( 6 )  
j@k.  j # i  

where Nk represents the set of nodes connected to  node k and 
C is the maximum number of neighboring PES to which a P E  
can communicate. By defining g(T) such that g(0) = 1 and 
? ( T )  = 0 for T = f l , f 2 ,  ..., we find whether node i and j 
have the same schedule time or not. 

Apart from these constraints, we allow the designer to insert 
a set of optional constraints to  ensure the projection of a set 
of DG nodes into the same PE. In this case, these nodes must 
be scheduled in different time slots which can be ensured by 
the following constraint: 

For d i E uk, g ( s i  - Sj )  = 0 (7) 
M J k ,  j# i  

where uk is the kih user specified node set. 

3.4.2 

Once the scheduling is known, we can reduce the number of 
PES necessary for the systolic array by projecting several DG 
nodes into a single P E  in an abstract processor array. There- 
fore, for the projection problem, the objective function must 
represent a measure of number of PES. Let i and j be two 
neighboring nodes connected by an edge and F = W. 
As the ith DG node is projected into a P E  in the abstract 
processor array located at 6, DG nodes i and j will be pro- 
jected into the same P E  when 6 = F, ( i  # j). Then we have 
PP;. - FP;. = 0. Let 

T h e  P ro jec t ion  Problem for Systolic Array 
Design 

m 

1 fo rk  = 0 
2 for k = f l , f 2 ,  

Then, 

4- 
f(ZTp’,ource node - Pdestination node) (9) 

for each DQ edge 

will be an upper bound for the number of PES necessary for the 
systolic array. The projection must preserve the near-neighbor 
communication. Therefore, for all DG edges, we add the fol- 
lowing constraints: 

(10) 
Fdedestination node - Fsource node 

Fdestination node - & a x e  node 

5 c‘ 
2 

To reflect the (partial) regularity in the DG we use the con- 
straint, - - - 

Pdestination node - Psource node = TI (11) 

for the DG edgeq along the extreme boundaries of regular sub- 
DGs. Here, TI is a unique variable for each boundary where 
regular sub-DGs of different types are connected. In the case 
that limited number of communication links are allowed, only 
certain components of fldestination node - P;ource are allowed 
to  be nonzero. For simplicity, we consider the case where com- 
munication links are only allowed along the coordinate axes. 
In this case we add the following constraint: 

4.- 
c (Pdestination node - Psowce node) 5 1 

Furthermore, we cannot project two nodes into the same P E  
if they have the same schedule time. Therefore, for all DG 
node pairs having the same schedule time, we add the following 
constraint: 
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If there are SI DG nodes scheduled for the ith time slot, then 
the above equation introduces E, S,? - SI constraints. The 
number of constraints can be dramatically reduced by exploit- 
ing the near-neighbor communication property. In that case, 
we can relax the above constraint for all nonadjacent node 
pairs, which cannot be projected into the same P E  without 
violating the near-neighbor communication property. 

In addition to  the previous constraints, we can add the fol- 
lowing optional constraints also. To prevent two DG nodes 
from being projected into the same PE, we can add the con- 
straint, P;. - P; # 0. On the other hand, the designer might 
prefer to  project some specific nodes into a single PE. Con- 
straints of the form P; - P; = 0 can be inserted to  obtain 
such preferences. These optional constraints cam be first left 
out and then they can be gradually inserted to eliminate un- 
desirable features of the resulting design. We recommend to 
insert these optional constraints by inspecting the members of 
the SDG or automatically by specifying a set of predicates. 
If one is only interested in lineaf. projections, the constraint 
gdesttnatton node - p’,ource node = 61 Can be introduced to  each 
different edge direcbion. 

Once the optimum values for P; are known for all the DG 
nodes, an abstract processor array can be built as follows: For 
all DG nodes, define a P E  a t  the location described by P ; .  
For all DG edges, define a communication link from the PE 
location P;,,,,, node t o  &e&tlat:on node in the abstract proces- 
sor array. For any DG edge, the number of delay registers 
required on the corresponding communication link on the a b  

Multiple communication links between two PES can be merged 
together when the communication time slots of these links do 
not overlap and the number of delay registers on each link is 
the same. 

stract Processor array is given by Sdestrnattori node - Ssource node. 

3.4.3 

According to  [3], any sys!olic array can be converted into a 
wavefront array simply by replacing each synchronous coni- 
munication link by an asynchronous communication link and 
replacing each delay register by an initial token. We adopt the 
same technique due to its simplicity. Therefore, in summary, 
the scheduling and projection problems for the wavefront array 
design are identical to those of systolic array design. 

The Scheduling and Projection Problems for 
Wavefront Array Design 

3.5 Tag Based Control 
In general, an abstract processor array resulting from a projec- 
tion of a partially-regular DG contains PES performing time- 
varying functions. We map this abstract processor array into 
an array processor by designing a set of super-PEs whose func- 
tionality is controlled by Tags. A supper-PE is modular and it 
is capable of performing all the functions of a set of PES in the 
abstract processor array. At each PE, we place a rcsidcntiul- 
tag to identify the different P E  types. A set of rriobile-tags is 
propagated through the array in a controlled fashion to control 
the time-varying behavior. The mobile tags are sent through 
the array via a so called idid-tag-path defined below. 

Definition 3.8 Any out-tree of the DG is said to be a Valid- 
Tag-Tree if the root node of the tree represents the virtual node 
where all the input edges ofthe DG are virtually connected and 
the terminal nodes of any edge in the tree ezcept for the edges 
from the nwt node are scheduled in consecutive time slots’. 
Definition 3.9 The path defined by  the projection of a valid- 
tag-tree into the abstmct pmessor  army is said to be a Valid- 
Tag-Pat h. 

As the functions performed by the PES are controlled by 
tags, the functions performed by a faulty P E  can be switched 
off and executed on a neighboring PE. This provides a surviv- 
ability to the array processor. Different combination of tags 
are equivalent to  different algorithms. Therefore, we can get 
a flexible array processor capable of executing a set of algo- 
rithms which can be mapped onto the selected topology simply 
by sending different combinations of tags. 

4 Conclusions 
An array processor design methodology suitable for hard real- 
time system is presented. Scheduling and Projection of the 
DG is solved using integer programming. By exploring the 
regularity of the DG we can solve the necessary IP problems 
in an efficient manner. This methodology provides a unified 
approach for linear and nonlinear projection of regular and 
partially-regular DGs. 
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‘The requirement of the consecutive schedules has been imposed to 
simplify the controller design. In fact this can be relaxed while keeping 
some form of regularity. 
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