
An Array Processor Design Methodology for Hard Real-Time Systems

J.A.K.S. Jayasinghe, F. Moelaert El-Hadidy and O.E. Herrniaiin

University of Twente, P.O. Box 217
7500 AE Enschede, T h e Netherlands

Abstract

Many hard real-time systems need huge computing
power and they are mostly designed by ad hoc methods.
A m y pmcessors provide a viable means to achieve huge
computing power and they can be designed systematically.
This paper presenb 4 sysfemafic design methodology to
design a m y processor based hard real-time systems.

1 Introduct'lon
Real-time systems must produce not only logically correct re-
sults, but also meet timing constraints. Depending on the
types of timing constraints, real-time systems are divided into
two groups: Hard real-time systems and Soft real-time systems
[l], [2]. A soft real-time system must produce computations
as fast as possible such that a statistically described response
time is satisfied. In a hard real-time system, computations
must be finished before a given deadline.

Analogous to the status of VLSI design a t its infancy, cur-
rently there is no scientific basis for hard real-time system de-
sign [2]. Though most state-of-the-art hard real-time systems
have been designed by ad hoc methods, a scientific approach
for hard real-time system design is esSential as verification of
the ad hoc designs are costly and error prone. Due to huge pro-
cessing power requirements, almost all hard real-time systems
need a multiprocessing edvironment. According to r2], a mul-
tiprocessor hard real-time system must possess the following
features: Homogeneity, Scalability, Survivability and Flexibil-
ity.

Array processors consist of a set of modular processing ele-
ments (PES) with spatially local communication, which makes
them homogeneous and scalable. Survivability and flexibil-
ity can be introduced in the array processor design as well.
Furthermore, systematic. methods are used in array proces-
sor designing. These factors make array processor based hard
real-time systems very attractive. The array processors 01'-
erating with synchronous (asynchronous) communication are
called systolic (wavefront) arrays. As the array processor con-
tains modular PES, only design problems associated with reg-
ular or partially-regular dependence graphs are considered for
array processor design.

The rest of this paper is organized as follows. In Section 2, we
briefly describe the widely used dependence graph approach
and its limitations for real-time array processor design. In
Section 3, our design methodology is presented. Finally, con-
clusions are drawn in Section 4.

2 Dependence Graph Based Array
Processor Design and its Limitations

In this methodology, first an algorithm is developed in so called
single assignment code, where each variable is only allowed to
get a single value. Then the algorithm is represented in a
graphical form by so called dependence graph (DG) 131. The
nodes of the DG are then mapped into an array processor.
Construction of the single assignment description for large and
complex problems is tedious and furthermore, they are asso-
ciated with DGs described in higher dimensional Euclidean
spaces. Therefore, manual mapping procedures are impracti-
cal as the visualization of the DG is tedious. Therefore, it is
necessary to automate the mapping of the DG into an array
processor. In literature, several techniques and software pack-
ages have been reported for the automation of the mapping
like in [4], [5], [6], [7], but unfortunately, only regular DGs
can be handled by these. Therefore, the current practice is to
make the DG regular while the algorithm is written in single
assignment form [8]. If the given problem is not associated
with a regular DG, dummy operations can be added to get
a regular DG. The DGs for large and complex problems are
not regular in general and are very difficult to make regular by
adding dummy operations. On the other hand, duminy nodes
keep the PES in the array processor busy unnecessarily. This
could prevent the ability to meet hard real-time deadlines.

3 Structured Dependence Graph Based
Array Processor Design

To simplify the construction of the single assignment code, we
construct it hierarchically. This generates a set of DGs which
are then combined to get the DG of the given problem. This
DG is then projected into an abstract processor array using
integer programming. Due to the generality of this approach,
it can be used for partially-regular and regular DGs. Further-
more, it enables the projection of the DGs linearly as well as
nonlinearly. In general, the abstract processor array resulting
from a projection of a partially-regular DG contains prows-
sors whose behaviors are time varying. With the help of a
set of tags, the abstract processor array is mapped into an ar-
ray processor. These tags control the time-varying behavior,
improve the regularity, survivability and flexibility of the ar-
ray processor. In the following subsections, we describe these
design steps briefly. More details are given in [9].

CH 3006-4/91/0000- 3062 $1.00 0 IEEE

3.1 The Structured Single Assignment Code
(S'AC).

The S'AC description consists of a set of hierarchical routines
where each routine is described by a header and a body. Only
a single assignment is made to every variable in each routine.
We refer to the top-most routine as the level-0 routine and the
routines in the next level as level-1 routines and so on. To
simplify the construction of the DG, level-i routines are only
allowed to call routines in the level-(i+ 1). Only atomic opera-
tions are used in the last level routines. The following syntax is
used to write the S2AC description. All but the last level rou-
tines use data types army and record as defined in conventional
structured programming languages. An array represents a set
of data on which the same operation is performed. A recoid
represents a set of data on which different operations are per-
formed. The header of a routine consists of output variables,
the name of the routine and input variables. The body of a
routine consists of four fields: type declamtion field (where the
data types of input and output variables are declared), initial-
ization field (where local variables of the routine are initial-
ized), variable assignment field (where the values of variables
are calculated by salling lower level routines or by performing
atomic operations) and output assignment field (where output
variables are updated). The second and last fields are optional.
A formal description of the syntax of the S2AC description is
given in [9].

3.2

The SDG contains a DG for each routine in the S'AC descrip-
tion. To indicate the hierarchy of the S'AC description, the
SDG is defined in Definition 3.4 with the aid of the following
auxiliary definitions.
Definition 3.1 Any edge that supplies (produces) data to (from)
a DG is said to be an I n p u t (Output) Edge of the DG. The
node to (from) which the input (output) edge supplies (pro-
duces) data is said to beathe I n p u t (Output) Node.

Definition 3.2 Any set of parallel input and/or output edges
of a DC is defined as an E d g e Bundle. We use the symbol
E B to denote an edge bundle.

Definition 3.3 A n edge bundle E B is called an I n p u t (Out-
pu t) E d g e B u n d l e if all members of the E B are input (out-
put) edges.

Definition 3.4 A family of dependence graphs represented by
N -t 1 sets GO, G', ..., GN is defined as a S t r u c t u r e d Depen-
dence G r a p h if there ezists a family of dependence gmplis
g i E G' (0 5 i < N) such that:

I The nodes of g; are labelled by a set of graphs

2 Each inbound edge connected to a node labelled by g!:")
is also labelled by a unique input edge bundle of g::"'.

3 Each outbound edge connected to a node labelled by g::")
is also labelled b y a unique output edge bundle of g$;+').

The Structured Dependence Graph (SDG)
and Expansion

{g t ,T1) ,&t l) , . . .I where 9:;') E G('+I) (I = i , 2 , . . .I.

Then, we construct a DG by the expansion of the SDG i ls
defined below.

Definition 3.5 lf an SDG is conuerted into a single DG by
recursively replacing all the labelled nodes by the releuant graph
referred by its node label such that:

1 all the labelled input and output edges are replaced b y a set
of edges corresponding to the edges referred by the input
and output edge bundles respectively,

2 all other labelled edges are replaced by a set of edges con-
necting the node where the iih edge in the output Edge
bundle is originated to the node where the iih edge an the
input edge bundle is terminated,

then the resultant DG is said to be an Expansion of the S D G .

3.3 The Canonical SDG
In array processor design, DGs containing only local-
dependence edges are of importance. Furthermore, the p r e
jection of the DG becomes easy if we can construct the DG
in a minimum dimensional Euclidean space. Therefore, we de-
fine a canonical SDG which will be expanded to create the DG
which will be used for succeeding design steps.
Definition 3.6 A n SDG is said to be ezpandable by Abut-
m e n t if the gmphs referred by the node labels can be placed
nezt to each other such that, for each labelled edge, the node
where the iih edge in the output edge bundle is originated can be
connected to the node where the i th edge in the input edge bun-
dle is terminated without introducing any nonlocal-dependence
edges in the resultant DG when the labelled edge is not an input
or output edge. While placing two graphs nezt to each other,
they are allowed to be rotated and/or mirrored to prevent the
introduction of nonlocal-dependence edges.
Definition 3.7 A n SDC is said to be a Canonical S D G if
the following conditions are satisfied.

I A11 the members of the SDG are defined in a common
n-dimensional Euclidean space.

2 The expansion of the SDG can be done b y abutment.
3 If the gmph referred by a node label has to be rvtated

and/or mirrored during the ezpansion, then that node
must be tagged with the information regarding ikow to ro-
tate and/or mirror.

4 When an edge is labelled by an input and output edge
bundle then:
(a) If the gmphs referred by the terminal nodes of the

edge are not tagged for rotation and/or mirroring,
then the directions of the edges in both bundles must
be the same.

(b) If the gmphs referred by the terminal nodes of the
edge are tagged for rotation and/or mirroring, then
the directions of the edges in both bundles must be the
same after the rotation and/or mimring .

5 Each member of the SDG is defined in a minimum diineir-
sional subspace of the common n-dimensional Euclidean
space .

6 Each member of the SDG is defined such that the partial
gmph resulted by the expansion of the terminal nodcs of
any labelled edge is in a minimum dirnelisiorial Euclidean
space when the edge is not an input or output edge.

3063

3.4 Integer Programming Formulation of t he
Scheduling and Projection of DGs

For a given n-dimensional DG, our goal is to project the DG
into a lower dimensional abstract processor array such that
timing constraints are not violated. For this, we solve two
integer programming problems. For the scheduling problem,
we assign a scaler s i to each DG node indicating its execution
time. For the projection problem, we assign an m-vector P;.
to each DG node. Here p’; indicates the target position of the
processor element (PE) where the function of the it* DG node
is performed.

3.4.1

The number of delay registers introduced into the systolic array
primarily depends on the scheduling of the DG nodes, and
hence we try to get the best schedule in the first place. The
number of delay registers introduced into the systolic array also
depends on the projection, because sometimes one can reuse
the same delay register several times. As the projection is still
an unknown, we.use the function

The Scheduling Problem for Systolic Array
Design

fs = Sdcstination node - ssource node (1)
fo r each DG edge

as our objective function. This will be an upper bound for the
number of registers necessary. The duration of the time slot
(or cycle time) is chosen according to the propagation delay of
the slowest DG node.

To satisfy the precedence conditions, we introduce the fol-
lowing constraint for each edge in the DG:

Sdestination node - ssaurce node 2 1 (2)

We must schedule the DG such that the input and output
timing constraints are met. Therefore,

Souiput node 5 doutput (3)
d p u t node 2 dinput (4)

where doutput and dinput are the deadlines and input arrival
time expressed in terms of number of cycles. To reflect the
(partial) regularity in the DG we use the following constraint:

Sdestination node - ssource node = TI (5)

by introducing a variable TI for all the edges along the same
direction connected to the same type of DG nodes. In practice,
it is convenient t o restrict the number of neighboring PES to
which a given P E can communicate to reduce the number of
communication links necessary. We ensure this requirement by
using the following constraint for each node k in the DG:

For all i E Nk, g (s i -sj) 5 C - 1 (6)
j@k. j # i

where Nk represents the set of nodes connected to node k and
C is the maximum number of neighboring PES to which a P E
can communicate. By defining g(T) such that g(0) = 1 and
? (T) = 0 for T = f l , f 2 , ..., we find whether node i and j
have the same schedule time or not.

Apart from these constraints, we allow the designer to insert
a set of optional constraints to ensure the projection of a set
of DG nodes into the same PE. In this case, these nodes must
be scheduled in different time slots which can be ensured by
the following constraint:

For d i E uk, g (s i - Sj) = 0 (7)
M J k , j# i

where uk is the kih user specified node set.

3.4.2

Once the scheduling is known, we can reduce the number of
PES necessary for the systolic array by projecting several DG
nodes into a single P E in an abstract processor array. There-
fore, for the projection problem, the objective function must
represent a measure of number of PES. Let i and j be two
neighboring nodes connected by an edge and F = W.
As the ith DG node is projected into a P E in the abstract
processor array located at 6, DG nodes i and j will be pro-
jected into the same P E when 6 = F, (i # j). Then we have
PP;. - FP;. = 0. Let

T h e P ro jec t ion Problem for Systolic Array
Design

m

1 fo rk = 0
2 for k = f l , f 2 ,

Then,

4-
f(ZTp’,ource node - Pdestination node) (9)

for each DQ edge

will be an upper bound for the number of PES necessary for the
systolic array. The projection must preserve the near-neighbor
communication. Therefore, for all DG edges, we add the fol-
lowing constraints:

(10)
Fdedestination node - Fsource node

Fdestination node - & a x e node

5 c‘
2

To reflect the (partial) regularity in the DG we use the con-
straint, - - -

Pdestination node - Psource node = TI (11)

for the DG edgeq along the extreme boundaries of regular sub-
DGs. Here, TI is a unique variable for each boundary where
regular sub-DGs of different types are connected. In the case
that limited number of communication links are allowed, only
certain components of fldestination node - P;ource are allowed
to be nonzero. For simplicity, we consider the case where com-
munication links are only allowed along the coordinate axes.
In this case we add the following constraint:

4.-
c (Pdestination node - Psowce node) 5 1

Furthermore, we cannot project two nodes into the same P E
if they have the same schedule time. Therefore, for all DG
node pairs having the same schedule time, we add the following
constraint:

3064

If there are SI DG nodes scheduled for the ith time slot, then
the above equation introduces E, S,? - SI constraints. The
number of constraints can be dramatically reduced by exploit-
ing the near-neighbor communication property. In that case,
we can relax the above constraint for all nonadjacent node
pairs, which cannot be projected into the same P E without
violating the near-neighbor communication property.

In addition to the previous constraints, we can add the fol-
lowing optional constraints also. To prevent two DG nodes
from being projected into the same PE, we can add the con-
straint, P;. - P; # 0. On the other hand, the designer might
prefer to project some specific nodes into a single PE. Con-
straints of the form P; - P; = 0 can be inserted to obtain
such preferences. These optional constraints cam be first left
out and then they can be gradually inserted to eliminate un-
desirable features of the resulting design. We recommend to
insert these optional constraints by inspecting the members of
the SDG or automatically by specifying a set of predicates.
If one is only interested in lineaf. projections, the constraint
gdesttnatton node - p’,ource node = 61 Can be introduced to each
different edge direcbion.

Once the optimum values for P; are known for all the DG
nodes, an abstract processor array can be built as follows: For
all DG nodes, define a P E a t the location described by P ; .
For all DG edges, define a communication link from the PE
location P;,,,,, node t o &e&tlat:on node in the abstract proces-
sor array. For any DG edge, the number of delay registers
required on the corresponding communication link on the a b

Multiple communication links between two PES can be merged
together when the communication time slots of these links do
not overlap and the number of delay registers on each link is
the same.

stract Processor array is given by Sdestrnattori node - Ssource node.

3.4.3

According to [3], any sys!olic array can be converted into a
wavefront array simply by replacing each synchronous coni-
munication link by an asynchronous communication link and
replacing each delay register by an initial token. We adopt the
same technique due to its simplicity. Therefore, in summary,
the scheduling and projection problems for the wavefront array
design are identical to those of systolic array design.

The Scheduling and Projection Problems for
Wavefront Array Design

3.5 Tag Based Control
In general, an abstract processor array resulting from a projec-
tion of a partially-regular DG contains PES performing time-
varying functions. We map this abstract processor array into
an array processor by designing a set of super-PEs whose func-
tionality is controlled by Tags. A supper-PE is modular and it
is capable of performing all the functions of a set of PES in the
abstract processor array. At each PE, we place a rcsidcntiul-
tag to identify the different P E types. A set of rriobile-tags is
propagated through the array in a controlled fashion to control
the time-varying behavior. The mobile tags are sent through
the array via a so called idid-tag-path defined below.

Definition 3.8 Any out-tree of the DG is said to be a Valid-
Tag-Tree if the root node of the tree represents the virtual node
where all the input edges ofthe DG are virtually connected and
the terminal nodes of any edge in the tree ezcept for the edges
from the nwt node are scheduled in consecutive time slots’.
Definition 3.9 The path defined by the projection of a valid-
tag-tree into the abstmct pmessor army is said to be a Valid-
Tag-Pat h.

As the functions performed by the PES are controlled by
tags, the functions performed by a faulty P E can be switched
off and executed on a neighboring PE. This provides a surviv-
ability to the array processor. Different combination of tags
are equivalent to different algorithms. Therefore, we can get
a flexible array processor capable of executing a set of algo-
rithms which can be mapped onto the selected topology simply
by sending different combinations of tags.

4 Conclusions
An array processor design methodology suitable for hard real-
time system is presented. Scheduling and Projection of the
DG is solved using integer programming. By exploring the
regularity of the DG we can solve the necessary IP problems
in an efficient manner. This methodology provides a unified
approach for linear and nonlinear projection of regular and
partially-regular DGs.

References
C.L. Liu and J.W. Layland, Scheduling Algofifhms f o r Multi-
programming in a Hard Real-Time Environment, in Hard Real-
Time System, pp. 174-189, IEEE Computer Society Press,
1988.
John A. Stankoric, Real-time Computing Systems: The Nert
Generation, in Hard Real-Time Systems, pp. 14-37, IEEE Corn-
puter Society Press, 1988.
S.Y Kung, VLSI A m y Processors, Prentice Hall, 1988.

Sailesh K . Rao and Thomas Kaileth, Regular Iferntiue Algo-
rilhms and their Iniplemeniafion on Processor Arrays, Proceed-
ings of the IEEE, Vol. 76, NO. 3, pp. 259-269, March 1988.

P. Quinton, Automatic Synthesis of Systolic Arrays from Uni-
form Recurrent Equations, Proceedings of te Symposium on
Computer Architecture, pp. 208-214, 1984.
W. Sang and J.A.B. Fortes, Time Optimal Linear Schedules
f o r Algorithms with Uniform Dependencies, Proceedings of the
International Conference in Systolic Arrays, pp. 393- , 1988.

Dan 1. Moldovan ADVIS: A Software Package for the Design of
Systolic A m y s , IEEE Transaction on Computer-Aided Design,
Vol CAD-6, No. 1 , pp. 33-39, January 1987.

[SI E.T.L. Omizigt, SYSTARS: A C A D Too l for the Synthesis and
Analysis of VLSI Systolic/Wavefront A m y s , in Proceedings of
the International Conference in Systolic Arrays, pp. 383- , 1988.

[9] J.A.K.S. Jayasinghe, A n A m y Processor Design Methodol-
ogy for Hard Real-Time Systems, Ph.D. Thesis, University of
Twente, ISBN 90-9004031-5, 1991.

‘The requirement of the consecutive schedules has been imposed to
simplify the controller design. In fact this can be relaxed while keeping
some form of regularity.

3065

t

